Can GPM IMERG Capture Extreme Precipitation in North China Plain?
<p>Map of elevation and rain stations in the North China Plain. The red line is the boundary line of the North China Plain. The thick black line is the boundary line of Hebei Province. The white points are daily rain gauges, and the blue points are hourly rain gauges.</p> "> Figure 2
<p>Technical flow chart of article method.</p> "> Figure 3
<p>The distributions of CC, ME, and KGE for the IMERG-F and IMERG-L precipitation products at the hourly scale.</p> "> Figure 4
<p>The distributions of POD, FAR, and CSI for the IMERG-F and IMERG-L precipitation products at the hourly scale.</p> "> Figure 5
<p>The distributions of three metrics CC, ME, and KGE for the IMERG-F and IMERG-L precipitation products at the daily scale.</p> "> Figure 6
<p>The distributions of three metrics POD, FAR, and CSI for the IMERG-F and IMERG-L precipitation products at the daily scale.</p> "> Figure 7
<p>The distributions of three metrics CC, KGE, and CSI for the IMERG-F and IMERG-L precipitation products at the seasonal scale.</p> "> Figure 8
<p>Threshold for extracting hourly (<b>a</b>,<b>b</b>) and daily (<b>c</b>,<b>d</b>) extreme precipitation events from 2000 to 2018.</p> "> Figure 9
<p>Features of hourly scale extreme precipitation events from 2000 to 2018.</p> "> Figure 10
<p>The CC of hourly and daily extreme precipitation from 2000 to 2018.</p> "> Figure 11
<p>The Bias of hourly and daily extreme precipitation from 2000 to 2018.</p> "> Figure 12
<p>Levels of 14 flash flood hazard events (∗). A larger level means more severe events.</p> "> Figure 13
<p>The distribution of precipitation and floods. The background is the precipitation of the corresponding IMERG products. The black, color filled dots are station observed precipitation. The red circles are flash flood events. (<b>a</b>) hazard_dailyP_cal, IMERG-F. (<b>b</b>) hazard_dailyP_uncal, IMERG-L.</p> "> Figure 13 Cont.
<p>The distribution of precipitation and floods. The background is the precipitation of the corresponding IMERG products. The black, color filled dots are station observed precipitation. The red circles are flash flood events. (<b>a</b>) hazard_dailyP_cal, IMERG-F. (<b>b</b>) hazard_dailyP_uncal, IMERG-L.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Precipitation Data
2.2.2. Rain Gauge Data
2.2.3. Flash Flood Disaster Data
2.3. Methodology
2.3.1. Evaluation Metrics
2.3.2. Identification of 3D Extreme Precipitation Events
3. Results and discussion
3.1. Evaluation Results at Multiple Scales
3.1.1. Evaluation at the Hourly Scale
3.1.2. Evaluation at the Daily Scale
3.1.3. Evaluation Results at the Seasonal Scale
3.2. Evaluation in Terms of 3D Extreme Precipitation Events
3.3. Extreme Precipitation-Induced Disaster Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.; Kakar, R.; Braun, S.A.; Huffman, G.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Qiaohong, S.; Zhang, X.; Zwiers, F.W. A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. J. Clim. 2020, 34, 243–258. [Google Scholar]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Silva, C.M.S.E.; De Souza, D.O. Spatial distribution of the level of return of extreme precipitation events in Northeast Brazil. Int. J. Clim. 2020, 40, 5098–5113. [Google Scholar] [CrossRef]
- Zhou, Y.; Nelson, K.; Mohr, K.; Huffman, G.J.; Levy, R.; Grecu, M. A Spatial-Temporal Extreme Precipitation Database from GPM IMERG. J. Geophys. Res. Atmos. 2019, 124, 10344–10363. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Zhang, Y.; Verbist, K.M.J. Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements-A case study in Chile. J. Geophys. Res. Atmos. 2017, 122, 5267–5284. [Google Scholar] [CrossRef]
- Abdourahamane, Z.S. Evaluation of fine resolution gridded rainfall datasets over a dense network of rain gauges in Niger. Atmos. Res. 2021, 252, 105459. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Newman, A.J.; Wood, A.W.; Papalexiou, S.M.; Vionnet, V.; Whitfield, P.H. SCDNA: A serially complete precipitation and temperature dataset for North America from 1979 to 2018. Earth Syst. Sci. Data 2020, 12, 2381–2409. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M.; Qian, J.-H.; Colby, F.; Douglas, E.; Eichler, T. Climatology of Daily Precipitation and Extreme Precipitation Events in the Northeast United States. J. Hydrometeorol. 2015, 16, 2537–2557. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Al-Zahrani, M.A.; Sharif, H. Assessment of global precipitation measurement satellite products over Saudi Arabia. J. Hydrol. 2018, 559, 1–12. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Crow, W.T.; Zhu, Y.; Cui, Y. The Effect of Spatiotemporal Resolution Degradation on the Accuracy of IMERG Products over the Huai River Basin. J. Hydrometeorol. 2020, 21, 1073–1088. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Zeng, Z.; Long, D. Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Mid-latitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7. J. Hydrometeorol. 2015, 17, 121–137. [Google Scholar] [CrossRef]
- Liu, Z. Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) Monthly Precipitation Products: Initial Results. J. Hydrometeorol. 2016, 17, 777–790. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.L.; Kempler, S.J. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Bull. Am. Meteorol. Soc. 2016. [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
- Li, N.; Tang, G.; Zhao, P.; Hong, Y.; Gou, Y.; Yang, K. Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos. Res. 2017, 183, 212–223. [Google Scholar] [CrossRef]
- Ramadhan, R.; Marzuki, M.; Yusnaini, H.; Muharsyah, R.; Suryanto, W.; Sholihun, S.; Vonnisa, M.; Battaglia, A.; Hashiguchi, H. Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. Remote Sens. 2022, 14, 412. [Google Scholar] [CrossRef]
- Xia, X.; Fu, D.; Fei, Y.; Shao, W.; Xia, X. An Improved Assessment Method and Its Application to the Latest IMERG Rainfall Product in Mainland China. Remote Sens. 2021, 13, 5107. [Google Scholar] [CrossRef]
- Prakash, S.; Srinivasan, J. A Comprehensive Evaluation of Near-Real-Time and Research Products of IMERG Precipitation over India for the Southwest Monsoon Period. Remote Sens. 2021, 13, 3676. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Behrangi, A. Investigating Various Products of IMERG for Precipitation Retrieval over Surfaces with and without Snow and Ice Cover. Remote Sens. 2021, 13, 2726. [Google Scholar] [CrossRef]
- Maghsood, F.F.; Hashemi, H.; Hosseini, S.H.; Berndtsson, R. Ground Validation of GPM IMERG Precipitation Products over Iran. Remote Sens. 2019, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Kummerow, C.; Tapiador, F.J. Assessment of IMERG Precipitation Estimates over Europe. Remote Sens. 2019, 11, 2470. [Google Scholar] [CrossRef] [Green Version]
- Watters, D.; Battaglia, A. The Summertime Diurnal Cycle of Precipitation Derived from IMERG. Remote Sens. 2019, 11, 1781. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sungmin, O.; Wang, N.; Liu, L.; Huang, Y. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Yang, M.; Liu, G.; Chen, T.; Chen, Y.; Xia, C. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China. Atmos. Res. 2020, 246, 105101. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176, 121–133. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Yang, S.; You, S.; Huang, Y.; Wang, Q.; Zhou, Q. Comprehensive Evaluation of Two Successive V3 and V4 IMERG Final Run Precipitation Products over Mainland China. Remote Sens. 2018, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, X.; Liu, L.; Wang, D.; Huang, H.; Pan, C. Evaluation of TMPA 3B42V7, GPM IMERG and CMPA precipitation estimates in Guangdong Province, China. Int. J. Clim. 2018, 39, 738–755. [Google Scholar] [CrossRef]
- Arshad, M.; Ma, X.; Yin, J.; Ullah, W.; Ali, G.; Ullah, S.; Liu, M.; Shahzaman, M.; Ullah, I. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan-Science Direct. Atmos. Res. 2020, 249, 105341. [Google Scholar] [CrossRef]
- Sahlu, D.; Nikolopoulos, E.I.; Moges, S.A. First Evaluation of the Integrated Multi-satellite Retrieval for GPM Day-1 IMERG over the upper Blue Nile Basin. J. Hydrometeorol. 2016, 17, 2875–2882. [Google Scholar] [CrossRef]
- He, Z.; Yang, L.; Tian, F.; Ni, G.; Hou, A.; Lu, H. Intercomparisons of Rainfall Estimates from TRMM and GPM Multisatellite Products over the Upper Mekong River Basin. J. Hydrometeorol. 2017, 18, 413–430. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sens. 2020, 13, 13. [Google Scholar] [CrossRef]
- Xiao, D.; Zhao, Y.; Bai, H.; Tang, J.; Feng, P.; Liu, D. Simulation and Projection of Climate Change in North China Plain by CMIP5 Multi-model. Geogr. Geo-Inf. Sci. 2020, 36, 75–82. [Google Scholar]
- Wang, C.; Tang, G.; Han, Z.; Guo, X.; Hong, Y. Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and improvements. J. Hydrol. 2018, 564, 342–356. [Google Scholar] [CrossRef]
- Shen, L.; Lin, R.; Lu, L. Accuracy analysis of GPM IMERG and CMORPH precipitation data over North China. Clim. Res. 2020, 81, 55–70. [Google Scholar] [CrossRef]
- Hong, Y.; Gochis, D.; Cheng, J.T.; Hsu, K.L.; Sorooshian, S. Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network. J. Hydrometeorol. 2007, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Zhou, B.; Zhai, P. A New Forecast Model Based on the Analog Method for Persistent Extreme Precipitation. Weather Forecast. 2016, 31, 1325–1341. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Yang, M.; Ma, M.; Tang, G.; Wang, T.; Zhao, X.; Ma, S.; Wu, J.; Wang, W. Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sens. 2022, 14, 928. https://doi.org/10.3390/rs14040928
Zhang D, Yang M, Ma M, Tang G, Wang T, Zhao X, Ma S, Wu J, Wang W. Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sensing. 2022; 14(4):928. https://doi.org/10.3390/rs14040928
Chicago/Turabian StyleZhang, Dasheng, Mingxiang Yang, Meihong Ma, Guoqiang Tang, Tsechun Wang, Xun Zhao, Suying Ma, Jin Wu, and Wei Wang. 2022. "Can GPM IMERG Capture Extreme Precipitation in North China Plain?" Remote Sensing 14, no. 4: 928. https://doi.org/10.3390/rs14040928
APA StyleZhang, D., Yang, M., Ma, M., Tang, G., Wang, T., Zhao, X., Ma, S., Wu, J., & Wang, W. (2022). Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sensing, 14(4), 928. https://doi.org/10.3390/rs14040928