Automatic and Accurate Extraction of Sea Ice in the Turbid Waters of the Yellow River Estuary Based on Image Spectral and Spatial Information
<p>The study area.</p> "> Figure 2
<p>The reflectance of the ice and water in the GF1 image.</p> "> Figure 3
<p>(<b>a</b>) True color GF1 image acquired on 12 January 2018; and (<b>b</b>) the results of the sea–land separation.</p> "> Figure 4
<p>Sea ice and water reflectance box plot.</p> "> Figure 5
<p>(<b>a</b>) Band 1 and Band 2 exhibit good separation in this scatter plot; (<b>b</b>) Band 1 and Band 2 display poor separation in this scatter plot.</p> "> Figure 6
<p>Scatter plots of band combinations for seawater and sea ice.</p> "> Figure 7
<p>Scatter plot of the reflectivity of the different types of sea ice and seawater.</p> "> Figure 8
<p>The similarity of the sea ice and seawater spectral curves for the different sensors.</p> "> Figure 9
<p>Object-oriented segmentation results.</p> "> Figure 10
<p>The range of sea ice spectral information index of sea ice and sea water.</p> "> Figure 11
<p>Sea ice extraction results using spectral information. (<b>a</b>) GF1 image (R/G/B); (<b>b</b>–<b>d</b>) The three sub-areas of the study area; (<b>e</b>–<b>h</b>) The extraction results using spectral information, respectively.</p> "> Figure 12
<p>Image features at different quantization levels. (<b>a</b>) Sea ice areas in GF1 images; (<b>b</b>–<b>d</b>) sea ice images at 64, 32, and 16 quantization levels, respectively; (e) Sea water areas in GF1 images; (<b>f</b>–<b>h</b>) sea water images at 64, 32, and 16 quantization levels, respectively.</p> "> Figure 13
<p>Images with different textural feature parameters under different quantization levels. (<b>a</b>–<b>d</b>) Texture image of homogeneity, dissimilarity, entropy, second moment at 64 quantization levels; (<b>e</b>–<b>h</b>) Texture image of homogeneity, dissimilarity, entropy, second moment at 32 quantization levels.</p> "> Figure 14
<p>Plots of the ice water textural characteristic indicators for different window sizes. (<b>a</b>) Ice and water texture value distribution in 3 window sizes; (<b>b</b>) Ice and water texture value distribution in 5 window sizes; (<b>c</b>) Ice and water texture value distribution in 7 window sizes; (<b>d</b>) Ice and water texture value distribution in 11 window sizes.</p> "> Figure 14 Cont.
<p>Plots of the ice water textural characteristic indicators for different window sizes. (<b>a</b>) Ice and water texture value distribution in 3 window sizes; (<b>b</b>) Ice and water texture value distribution in 5 window sizes; (<b>c</b>) Ice and water texture value distribution in 7 window sizes; (<b>d</b>) Ice and water texture value distribution in 11 window sizes.</p> "> Figure 15
<p>The effect of the window size on sea ice extraction using an edge point density map.</p> "> Figure 16
<p>Box plots for the combinations of the edge density map and textural feature.</p> "> Figure 17
<p>Comparison of edge texture results and spectral results. (<b>a</b>–<b>e</b>) GF1 true color images; (<b>f</b>–<b>j</b>) results of sea ice extraction from spectral information; and (<b>k</b>–<b>o</b>) results of the sea ice extraction from edge texture information.</p> "> Figure 18
<p>Comparison of the sea ice extraction results obtained using different methods. (<b>a</b>,<b>e</b>,<b>i</b>,<b>m</b>) True color images of the GF1 image acquired on 12 January 2018; (<b>b</b>,<b>f</b>,<b>j</b>,<b>n</b>) Classification results for the method proposed in this paper; (<b>c</b>,<b>g</b>,<b>k</b>,<b>o</b>) K-Means classification results; (<b>d</b>,<b>h</b>,<b>l</b>,<b>p</b>) SVM classification results.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Sea–Land Separation
2.3. Sea Ice Spectral Information Extraction
2.4. Sea Ice Spatial Information Extraction
2.5. Object-Oriented Extraction of Sea Ice Extent
2.6. Determination of Segmentation Threshold Based on OTSU
2.7. Accuracy Verification
3. Results
3.1. Analysis of Sea Ice Spectral Information Index
3.2. Optimization of Spatial Feature Extraction Scheme
3.3. Accuracy Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouyang, L.; Hui, F.; Zhu, L.; Cheng, X.; Cheng, B.; Shokr, M.; Zhao, J.; Ding, M.; Zeng, T. The spatiotemporal patterns of sea ice in the Bohai Sea during the winter seasons of 2000–2016. Int. J. Digit. Earth 2017, 12, 893–909. [Google Scholar] [CrossRef]
- Zherui, L.; Huiwen, C. Sea Ice Automatic Extraction in the Liaodong Bay from Sentinel-2 Imagery Using Convolutional Neural Networks. E3S Web Conf. 2020, 143, 2015. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Gu, S. Research on the Temporal Variation Characteristics of Sea Ice Thickness and the Regeneration Period of Sea Ice. Resource Sci. 2003, 24–32. [Google Scholar]
- Zhang, X.-L.; Zhang, Z.-H.; Xu, Z.-J.; Li, G.; Sun, Q.; Hou, X.-J. Sea ice disasters and their impacts since 2000 in Laizhou Bay of Bohai Sea, China. Nat. Hazards 2012, 65, 27–40. [Google Scholar] [CrossRef]
- Liu, C.; Gu, W.; Chao, J.; Li, L.; Yuan, S.; Xu, Y. Spatio-temporal characteristics of the sea-ice volume of the Bohai Sea, China, in winter 2009/10. Ann. Glaciol. 2013, 54, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-Y.; Yu, S.-S.; Wang, Y.; Yue, Q.-J. Sea Ice Management for Oil and Gas Platforms in the Bohai Sea. Pol. Marit. Res. 2017, 24, 195–204. [Google Scholar] [CrossRef]
- Sun, M.; Yuan, B. The characteristics of ice conditions in the operation sea area of Shengli Oilfield and countermeasures for disaster mitigation. Ocean. Dev. Manag. 2017, 34, 98–102. [Google Scholar]
- Yuan, B.; Guo, J. Research on my country’s Sea Ice Disaster Prevention and Mitigation Countermeasures in the New Era. In Proceedings of the 3rd Annual Ocean Development and Management Academic Conference, China, 20 September 2019. [Google Scholar]
- Sun, S.; Su, J. Features of sea ice disaster in the Bohai Sea in 2010. J. Nat. Disasters 2011, 20, 87–93. [Google Scholar] [CrossRef]
- Yuan, B.; Guo, J. Ideas and measures for improving my country’s sea ice disaster prevention and mitigation capabilities in the new era. In Proceedings of the 9th Maritime Power Strategic Forum, China, 20 November 2018. [Google Scholar]
- Shutler, J.D.; Quartly, G.D.; Donlon, C.J.; Sathyendranath, S.; Platt, T.; Chapron, B.; Johannessen, J.A.; Girard-Ardhuin, F.; Nightingale, P.D.; Woolf, D.K.; et al. Progress in satellite remote sensing for studying physical processes at the ocean surface and its borders with the atmosphere and sea ice. Prog. Phys. Geogr. Earth Environ. 2016, 40, 215–246. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Liu, C.; Liu, X.; Chen, Y.; Zhang, Y. Research advances in remote sensing monitoring of sea ice in the Bohai sea. Earth Sci. Inf. 2021, 14, 1729–1743. [Google Scholar] [CrossRef]
- Han, Y.; Wei, C.; Zhou, R.; Hong, Z.; Zhang, Y.; Yang, S. Combining 3D-CNN and Squeeze-and-Excitation Networks for Remote Sensing Sea Ice Image Classification. Math. Probl. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Quincey, D.; Luckman, A. Progress in satellite remote sensing of ice sheets. Prog. Phys. Geogr. Earth Environ. 2009, 33, 547–567. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Remote Sensing Using GNSS-R: A Review. Remote Sens. 2019, 11, 2565. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Yu, P.; Wen, Z.; Clausi, D.A. IceSynth II: Synthesis of SAR Sea-Ice Imagery Using Region-Based Posterior Sampling. IEEE Geosci. Remote Sens. Lett. 2010, 7, 348–351. [Google Scholar] [CrossRef]
- Dabboor, M.; Montpetit, B.; Howell, S.; Haas, C. Improving Sea Ice Characterization in Dry Ice Winter Conditions Using Polarimetric Parameters from C- and L-Band SAR Data. Remote Sens. 2017, 9, 1270. [Google Scholar] [CrossRef] [Green Version]
- Moen, M.-A.N.; Doulgeris, A.P.; Anfinsen, S.N.; Renner, A.H.H.; Hughes, N.; Gerland, S.; Eltoft, T. Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts. Cryosphere 2013, 7, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Singha, S.; Johansson, M.; Hughes, N.; Hvidegaard, S.M.; Skourup, H. Arctic Sea Ice Characterization Using Spaceborne Fully Polarimetric L-, C-, and X-Band SAR With Validation by Airborne Measurements. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3715–3734. [Google Scholar] [CrossRef]
- Hollands, T.; Linow, S.; Dierking, W. Reliability Measures for Sea Ice Motion Retrieval from Synthetic Aperture Radar Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Huck, P.; Light, B.; Eicken, H.; Haller, M. Mapping sediment-laden sea ice in the Arctic using AVHRR remote-sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load. Remote Sens. Environ. 2007, 107, 484–495. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, K.; Shao, D.; Xu, Y.; Gu, W. Monitoring the Characteristics of the Bohai Sea Ice Using High-Resolution Geostationary Ocean Color Imager (GOCI) Data. Sustainability 2019, 11, 777. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-D.; Wu, Z.-K.; Wang, C.; Li, X.-W.; Qiu, Y.-B.; Wand, X.-D. Reducing the Impact of Thin Clouds on Arctic Ocean Sea Ice Concentration from FengYun-3 MERSI Data Single Cavity. IEEE Access 2017, 5, 16341–16348. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Zhang, Y.; Ji, R.; Yu, W.; Feng, R.; Guo, L. Study on Sea Ice Extraction and Area Correction Model Based on MODIS and GF Data. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 62105. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J.; Tschudi, M.A.; Ivanoff, A. Comparison of aerial video and Landsat 7 data over ponded sea ice. Remote Sens. Environ. 2003, 86, 458–469. [Google Scholar] [CrossRef]
- König, M.; Hieronymi, M.; Oppelt, N. Application of Sentinel-2 MSI in Arctic Research: Evaluating the Performance of Atmospheric Correction Approaches Over Arctic Sea Ice. Front. Earth Sci. 2019, 7, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Wang, Y.; Yang, J. Monitoring the Spatiotemporal Evolution of Sea Ice in the Bohai Sea in the 2009–2010 Winter Combining MODIS and Meteorological Data. Estuaries Coasts 2011, 35, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Fan, Q.; Zhang, X. Multifeature fusion for polarimetric synthetic aperture radar image classification of sea ice. J. Appl. Remote Sens. 2014, 3, 610–621. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Xiao, J.; Yan, X.-H. Classification of MODIS images combining surface temperature and texture features using the Support Vector Machine method for estimation of the extent of sea ice in the frozen Bohai Bay, China. Int. J. Remote Sens. 2015, 36, 2734–2750. [Google Scholar] [CrossRef]
- Su, H.; Ji, B.; Wang, Y. Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data. Remote Sens. 2019, 11, 2436. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Naoki, K.; Cho, K. Thin ice area extraction in the seasonal sea ice zones of the northern hemisphere using modis data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Siitam, L.; Sipelgas, L.; Pärn, O.; Uiboupin, R. Statistical characterization of the sea ice extent during different winter scenarios in the Gulf of Riga (Baltic Sea) using optical remote-sensing imagery. Int. J. Remote Sens. 2016, 38, 617–638. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Zhang, Q. Detection of sea ice in sediment laden water using MODIS in the Bohai Sea: A CART decision tree method. Int. J. Remote Sens. 2015, 36, 1661–1674. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D. Extraction of Bohai Sea ice from MODIS data based on multi-constraint endmembers and linear spectral unmixing. Int. J. Remote Sens. 2020, 41, 5525–5548. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Y.; Zhang, J.; Zhang, X.; Meng, J.; Xie, Q. PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform. Acta Oceanol. Sin. 2015, 34, 59–67. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Zhang, Y. Research on application of environment-1 satellite data in monitoring of beach and sea ice conditions in oilfields. In Proceedings of the 16th China Environmental Remote Sensing Application Technology Forum, Nanning, China, 29 March 2012. [Google Scholar]
- Li, P.; Ke, Y.; Bai, J.; Zhang, S.; Chen, M.; Zhou, D. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data. Mar. Pollut. Bull. 2019, 149, 110518. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Xie, H.; Ackley, S.F.; Zheng, S. Object-Based Arctic Sea Ice Ridge Detection from High-Spatial-Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 787–791. [Google Scholar] [CrossRef]
- Caldeira, K.; Cvijanovic, I. Estimating the Contribution of Sea Ice Response to Climate Sensitivity in a Climate Model. JClI 2014, 27, 8597–8607. [Google Scholar] [CrossRef]
- An, D.; Du, Y.; Berndtsson, R.; Niu, Z.; Zhang, L.; Yuan, F. Evidence of climate shift for temperature and precipitation extremes across Gansu Province in China. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 139, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Cvijanovic, I.; Caldeira, K. Atmospheric impacts of sea ice decline in CO2 induced global warming. Clim. Dynam. ClDY 2015, 44, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Noerdlinger, P.D.; Brower, K.R. The melting of floating ice raises the ocean level. Geophys. J. Int. 2007, 170, 145–150. [Google Scholar] [CrossRef] [Green Version]
Area | Date | Image | Band Number | Resolution | Cloud Cover |
---|---|---|---|---|---|
Yellow River Delta | 21 January 2017 | GF1 | 4 | 16 m | 1% |
Yellow River Delta | 12 January 2018 | GF1 | 4 | 16 m | 1% |
Yellow River Delta | 12 January 2018 | Sentinel-2 | 10 | 10 m | 0% |
Yellow River Delta | 23 January 2019 | Landsat8 | 7 | 30 m | 0% |
Yellow River Delta | 21 January 2017 | Planet | 4 | 3 m | 1% |
Yellow River Delta | 12 January 2018 | Planet | 4 | 3 m | 2% |
Yellow River Delta | 23 January 2019 | Planet | 4 | 3 m | 1% |
Liaodong Bay | 17 February 2019 | Landsat8 | 7 | 30 m | 0% |
Liaodong Bay | 17 February 2019 | Planet | 4 | 30 m | 0% |
R | G | R + G | R + B | R + NIR | G + B | G + NIR |
B | NIR | R * G | R * B | R * NIR | G * B | G * NIR |
B + NIR | R − G | R – B | R − NIR | G − B | G − NIR | B − NIR |
B * NIR | R/G | R/B | R/NIR | G/B | G/NIR | B/NIR |
Area | Date | Image | Method | OA | k |
---|---|---|---|---|---|
Yellow River Delta | 12 January 2018 | GF1 | This method | 0.98 | 0.96 |
GF1 | SVM | 0.93 | 0.86 | ||
GF1 | K-Means | 0.78 | 0.55 | ||
21 January 2017 | GF1 | This method | 0.93 | 0.81 | |
GF1 | SVM | 0.84 | 0.59 | ||
GF1 | K-Means | 0.77 | 0.45 | ||
12 January 2018 | Sentinel-2 | This method | 0.99 | 0.98 | |
Sentinel-2 | SVM | 0.9 | 0.95 | ||
Sentinel-2 | K-Means | 0.81 | 0.60 | ||
23 January 2019 | Landsat-8 | This method | 0.94 | 0.88 | |
Landsat-8 | SVM | 0.89 | 0.77 | ||
Landsat-8 | K-Means | 0.76 | 0.46 | ||
Liaodong Bay | 17 February 2019 | Landsat-8 | This method | 0.99 | 0.98 |
Landsat-8 | SVM | 0.96 | 0.95 | ||
Landsat-8 | K-Means | 0.91 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, H.; Gong, Z.; Mou, K.; Hu, J.; Ke, Y.; Zhou, D. Automatic and Accurate Extraction of Sea Ice in the Turbid Waters of the Yellow River Estuary Based on Image Spectral and Spatial Information. Remote Sens. 2022, 14, 927. https://doi.org/10.3390/rs14040927
Qiu H, Gong Z, Mou K, Hu J, Ke Y, Zhou D. Automatic and Accurate Extraction of Sea Ice in the Turbid Waters of the Yellow River Estuary Based on Image Spectral and Spatial Information. Remote Sensing. 2022; 14(4):927. https://doi.org/10.3390/rs14040927
Chicago/Turabian StyleQiu, Huachang, Zhaoning Gong, Kuinan Mou, Jianfang Hu, Yinghai Ke, and Demin Zhou. 2022. "Automatic and Accurate Extraction of Sea Ice in the Turbid Waters of the Yellow River Estuary Based on Image Spectral and Spatial Information" Remote Sensing 14, no. 4: 927. https://doi.org/10.3390/rs14040927
APA StyleQiu, H., Gong, Z., Mou, K., Hu, J., Ke, Y., & Zhou, D. (2022). Automatic and Accurate Extraction of Sea Ice in the Turbid Waters of the Yellow River Estuary Based on Image Spectral and Spatial Information. Remote Sensing, 14(4), 927. https://doi.org/10.3390/rs14040927