Investigating Various Products of IMERG for Precipitation Retrieval over Surfaces with and without Snow and Ice Cover
"> Figure 1
<p>Spatial distribution of mean seasonal precipitation rate (mm/day) over the CONUS using stage IV (<b>a</b>–<b>d</b>) and various IMERG products (<b>e</b>–<b>t</b>), each presented in a row. Average intensity is calculated from three years (2015–2017) of data.</p> "> Figure 2
<p>Seasonal spatial distribution of the difference in mean daily precipitation between IMERG products and STAGE IV for three years (20152017). Average intensity includes zero precipitation rate. Each row is labeled with IMERG product minus stage IV data. IMERG Final—Stage IV in panel (<b>a</b>–<b>d</b>), IMERG HQ—Stage IV in panel (<b>e</b>–<b>h</b>), IMERG IR—Stage IV in panel (<b>i</b>–<b>l</b>), IMERG Late—Stage IV in panel (<b>m</b>–<b>p</b>).</p> "> Figure 3
<p>A precipitation event on 29 December 2017 for a selected study area shown in (<b>a</b>). Precipitation intensity from STAGE IV and IMERG products are shown in panels (<b>b</b>–<b>f</b>). Wet-bulb temperature, liquid probability, and snow- and ice-covered surfaces are shown in panels (<b>g</b>–<b>i</b>), respectively.</p> "> Figure 4
<p>Comparison of different IMERG products (from left to right column: final, HQ, IR and, late) with stage IV data for three years (2015–2017) over CONUS over snow- and ice-covered surfaces. Orographic effects are excluded using mountains mask. The X-axis indicates wet-bulb temperature 1 °C bins. Each color indicates the threshold for rainfall intensity from 0 mm/h (in black) to 2 mm/h (in cyan). The number of events for each threshold is shown in the first row (<b>a</b>–<b>d</b>). The second row to the seventh row shows statistical indices for correlation coefficient (CC), probability of distribution (POD), false alarm ratio (FAR), bias, volume bias (VBias) and, Heidke skill score (HSS) shown in panels (<b>e</b>–<b>ab</b>).</p> "> Figure 5
<p>Similar to <a href="#remotesensing-13-02726-f004" class="html-fig">Figure 4</a>, but for snow- and ice-free surfaces.</p> "> Figure 6
<p>Comparison of IMERG-HQ and IMERG-IR over snow- and ice-covered and snow- and ice-free surfaces using three years (2015–2017) of data over CONUS. Stage IV is used as a reference. Dashed and solid lines represent IMERG-IR and IMERG-HQ in panels (<b>a</b>–<b>l</b>), respectively. Precipitation is delineated from no precipitation using a threshold of 0.3 mm/h. Orographic effects are excluded using mountains mask.</p> "> Figure 7
<p>Comparison of precipitation estimates from different passive microwave sensors (used in IMERG-HQ) with IMERG-IR using stage IV data as a reference. Three years (2015–2017) of data over CONUS are used. Orographic effects are excluded using mountains mask. Event numbers is shown in panels (<b>a</b>,<b>b</b>) and coefficients in panels (<b>c</b>–<b>n</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Comparison Approach and Metrics
2.2. Dataset
- IMERG Products
- National Centers for Environment Prediction (NCEP) Stage IV
- ERA5-Land
- NOAA Autosnow Product
- K3 Mountain Map
3. Results
3.1. General Characterization
3.2. Assessment of the IMERG Products as a Function of Precipitation Rate, Surface, and Environmental Conditions
3.3. Performance of Individual PMW Precipitation Estimates
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pradhan, A.; Nair, A.S.; Indu, J.; Kirstetter, P.-E. Impact of sampling of GPM orbital data on streamflow simulations. J. Hydrol. 2021, 593, 125798. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Kulie, M.; Milani, L.; Munchak, S.J.; Wood, N.B.; Levizzani, V. Satellite Estimation of Falling Snow: A Global Precipitation Measurement (GPM) Core Observatory Perspective. J. Appl. Meteorol. Clim. 2019, 58, 1429–1448. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Z.; Wang, F.; He, H.; Zhou, J.; Wu, X.; Liu, Z. Hydrologic Evaluation of Multi-Source Satellite Precipitation Products for the Upper Huaihe River Basin, China. Remote Sens. 2018, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Moazami, S.; Najafi, M. A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada. J. Hydrol. 2021, 594, 125929. [Google Scholar] [CrossRef]
- Murali Krishna, U.V.; Das, S.K.; Deshpande, S.M.; Doiphode, S.L.; Pandithurai, G. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent. Earth Space Sci. 2017, 4, 540–553. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Berg, W.; L’Ecuyer, T.; Kummerow, C. Rainfall Climate Regimes: The Relationship of Regional TRMM Rainfall Biases to the Environment. J. Appl. Meteorol. Clim. 2006, 45, 434–454. [Google Scholar] [CrossRef]
- Lebsock, M.D.; L’Ecuyer, T.S. The retrieval of warm rain from CloudSat. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Adhikari, A.; Ehsani, M.R.; Song, Y.; Behrangi, A. Comparative Assessment of Snowfall Retrieval from Microwave Humidity Sounders Using Machine Learning Methods. Earth Space Sci. 2020, 7, e2020EA001357. [Google Scholar] [CrossRef]
- Ferraro, R.; Peters-Lidard, C.; Hernandez, C.; Turk, F.J.; Aires, F.; Prigent, C.; Lin, X.; Boukabara, S.A.; Furuzawa, F.A.; Gopalan, K.; et al. An Evaluation of Microwave Land Surface Emissivities over the Continental United States to Benefit GPM-Era Precipitation Algorithms. IEEE Trans. Geosci. Remote Sens. 2012, 51, 378–398. [Google Scholar] [CrossRef]
- Ehsani, M.R.; Behrangi, A.; Adhikari, A.; Song, Y.; Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. Assessment of the Advanced Very High-Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning. J. Hydrometeorol. 2021, 22, 1591–1608. [Google Scholar] [CrossRef]
- Hsu, K.-L.; Gao, X.; Sorooshian, S.; Gupta, H. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1, pp. 343–353. [Google Scholar]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- You, Y.; Petkovic, V.; Tan, J.; Kroodsma, R.; Berg, W.; Kidd, C.; Peters-Lidard, C. Evaluation of V05 Precipitation Estimates from GPM Constellation Radiometers Using KuPR as the Reference. J. Hydrometeorol. 2020, 21, 705–728. [Google Scholar] [CrossRef]
- Behrangi, A.; Tian, Y.; Lambrigtsen, B.H.; Stephens, G.L. What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res. 2014, 50, 4893–4905. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, L.-F.; Bras, R.L. Evaluation of the Quality of Precipitation Products: A Case Study Using WRF and IMERG Data over the Central United States. J. Hydrometeorol. 2018, 19, 2007–2020. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Yang, F.; Biswas, N.K.; Rahat, S.H.; Neelam, T.J. Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin. Forecasting 2020, 2, 248–266. [Google Scholar] [CrossRef]
- Behrangi, A.; Yin, X.; Rajagopal, S.; Stampoulis, D.; Ye, H. On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance. Q. J. R. Meteorol. Soc. 2018, 144, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Behrangi, A.; Hsu, K.L.; Imam, B.; Sorooshian, S.; Kuligowski, R.J. Evaluating the Utility of Multispectral Information in Delineating the Areal Extent of Precipitation. J. Hydrometeorol. 2009, 10, 684–700. [Google Scholar] [CrossRef]
- Shige, S.; Kida, S.; Ashiwake, H.; Kubota, T.; Aonashi, K. Improvement of TMI Rain Retrievals in Mountainous Areas. J. Appl. Meteorol. Clim. 2013, 52, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Randel, D.L.; Kummerow, C.D.; Ringerud, S. The Goddard Profiling (GPROF) Precipitation Retrieval Algorithm. In Advances in Global Change Research; Springer Science and Business Media LLC: Berlin, Germany, 2020; Volume 1, pp. 141–152. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.H. NASA Global Precipitation Measurments (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); Algorithm Theoretical Basis Document (ATBD), Version 06 2019; NASA: Washington, DC, USA, 2020.
- Cui, W.; Dong, X.; Xi, B.; Feng, Z.; Fan, J. Can the GPM IMERG Final Product Accurately Represent MCSs’ Precipitation Characteristics over the Central and Eastern United States? J. Hydrometeorol. 2020, 21, 39–57. [Google Scholar] [CrossRef]
- Lin, Y.; Mitchel, K.E. The NCEP Stage II/IV hourly precipitation analysis. In Proceedings of the 19th Conference Hydrology, American Meteorological Society, San Diego, CA, USA, 9–13 January 2005. [Google Scholar]
- Nelson, B.R.; Prat, O.; Seo, D.-J.; Habib, E. Assessment and Implications of NCEP Stage IV Quantitative Precipitation Estimates for Product Intercomparisons. Weather Forecast. 2016, 31, 371–394. [Google Scholar] [CrossRef]
- Cocks, S.B.; Martinaitis, S.M.; Kaney, B.; Zhang, J.; Howard, K. MRMS QPE Performance during the 2013/14 Cool Season. J. Hydrometeorol.. 2016, 17, 791–810. [Google Scholar] [CrossRef]
- Wang, Y.H.; Broxton, P.; Fang, Y.; Behrangi, A.; Barlage, M.; Zeng, X.; Niu, G.Y. A Wet-Bulb Temperature-Based Rain-Snow Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States. Geophys. Res. Lett. 2019, 46, 13825–13835. [Google Scholar] [CrossRef]
- Sims, E.M.; Liu, G. A Parameterization of the Probability of Snow-Rain Transition. J. Hydrometeorol. 2015, 16, 1466–1477. [Google Scholar] [CrossRef]
- Romanov, P. Global 4 km Multisensor Automated Snow/Ice Map (GMASI): Algorithm Theoretical Basis Document; NOAA NESDIS Center for Satellite Applications and Research; American Meteorological Society Publishing: Washington, DC, USA, 2016. [Google Scholar]
- Kapos, V.; Rhind, J.; Edwards, M.; Price, M.F.; Ravilious, C. Developing a Map of the World’s Mountain Forests; CABI Publishing: Wallingford, UK, 2000; pp. 4–19. [Google Scholar]
- Körner, C.; Paulsen, J.; Spehn, E.M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 2011, 121, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Karagulle, D.; Frye, C.; Sayre, R.; Breyer, S.; Aniello, P.; Vaughan, R.; Wright, D. Modeling global Hammond landform regions from 250-m elevation data. Trans. GIS 2017, 21, 1040–1060. [Google Scholar] [CrossRef]
- Sayre, R.; Frye, C.; Karagulle, D.; Krauer, J.; Breyer, S.; Aniello, P.; Wright, D.J.; Payne, D.; Adler, C.; Warner, H.; et al. A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions. Mt. Res. Dev. 2018, 38, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Kirstetter, P.; Gourley, J.J.; Hong, Y.; Behrangi, A.; Flamig, Z. Evaluation of MRMS Snowfall Products over the Western United States. J. Hydrometeorol. 2017, 18, 1707–1713. [Google Scholar] [CrossRef]
- Behrangi, A.; Bormann, K.J.; Painter, T.H. Using the Airborne Snow Observatory to Assess Remotely Sensed Snowfall Products in the California Sierra Nevada. Water Resour. Res. 2018, 54, 7331–7346. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Behrangi, A.; Chen, H.; Lambrigtsen, B. How well were the early 2017 California Atmospheric River precipitation events captured by satellite products and ground-based radars? Q. J. R. Meteorol. Soc. 2018, 144, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Anagnostou, E.N.; Nikolopoulos, E.; Borga, M. Error Analysis of Satellite Precipitation Products in Mountainous Basins. J. Hydrometeorol. 2014, 15, 1778–1793. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Ehsani, M.R.; Guan, B.; Heflin, S.; Behrangi, A. Global Intercomparison of Atmospheric Rivers Precipitation in Remote Sensing and Reanalysis Products. J. Geophys. Res. Atmos. 2020, 125, e2020JD033021. [Google Scholar] [CrossRef]
- Behrangi, A.; Guan, B.; Neiman, P.J.; Schreier, M.; Lambrigtsen, B. On the Quantification of Atmospheric Rivers Precipitation from Space: Composite Assessments and Case Studies over the Eastern North Pacific Ocean and the Western United States. J. Hydrometeorol. 2015, 17, 369–382. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E.; Ralph, F.M. An Intercomparison between Reanalysis and Dropsonde Observations of the Total Water Vapor Transport in Individual Atmospheric Rivers. J. Hydrometeorol. 2018, 19, 321–337. [Google Scholar] [CrossRef]
- Song, Y.; Behrangi, A.; Blanchard-Wrigglesworth, E. Assessment of Satellite and Reanalysis Cold Season Snowfall Estimates Over Arctic Sea Ice. Geophys. Res. Lett. 2020, 47, e2020GL088970. [Google Scholar] [CrossRef]
- Behrangi, A.; Gardner, A.S.; Wiese, D.N. Comparative analysis of snowfall accumulation over Antarctica in light of Ice discharge and gravity observations from space. Environ. Res. Lett. 2020, 15, 104010. [Google Scholar] [CrossRef]
- Ayat, H.; Evans, J.P.; Sherwood, S.; Behrangi, A. Are Storm Characteristics the Same When Viewed Using Merged Surface Radars or a Merged Satellite Product? J. Hydrometeorol. 2021, 22, 43–62. [Google Scholar] [CrossRef]
- Gupta, H.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Moghari, S.-M.; Tang, Q. Validation of GPM IMERG V05 and V06 Precipitation Products over Iran. J. Hydrometeorol. 2021, 21, 1011–1037. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arabzadeh, A.; Behrangi, A. Investigating Various Products of IMERG for Precipitation Retrieval over Surfaces with and without Snow and Ice Cover. Remote Sens. 2021, 13, 2726. https://doi.org/10.3390/rs13142726
Arabzadeh A, Behrangi A. Investigating Various Products of IMERG for Precipitation Retrieval over Surfaces with and without Snow and Ice Cover. Remote Sensing. 2021; 13(14):2726. https://doi.org/10.3390/rs13142726
Chicago/Turabian StyleArabzadeh, Alireza, and Ali Behrangi. 2021. "Investigating Various Products of IMERG for Precipitation Retrieval over Surfaces with and without Snow and Ice Cover" Remote Sensing 13, no. 14: 2726. https://doi.org/10.3390/rs13142726
APA StyleArabzadeh, A., & Behrangi, A. (2021). Investigating Various Products of IMERG for Precipitation Retrieval over Surfaces with and without Snow and Ice Cover. Remote Sensing, 13(14), 2726. https://doi.org/10.3390/rs13142726