Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data
"> Figure 1
<p>The study area of the Bohai Sea, including the Liaodong Bay, Bohai Bay, and Laizhou Bay.</p> "> Figure 2
<p>TOA reflectance values in OLCI all bands (<b>a</b>) and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> values (<b>b</b>) for sea ice, seawater, turbid seawater, land, snow, and cloud cover in the Bohai Sea. The whiskers in (<b>a</b>) depict the standard deviations of the TOA reflectance samples. The whiskers in (<b>b</b>) indicate the maximum and minimum ratio values of the sample. The box is determined by the 25th and 75th percentiles of the ratio values of the sample. The median value is marked as the line within the box.</p> "> Figure 3
<p>Sample TOA reflectance values for sea ice and turbid seawater in OLCI Bands 12, 16, 20, and 21 in the Bohai Sea.</p> "> Figure 4
<p>The histogram distributions of sampling points for the three sea ice development stages (freezing, stable and melting stages) with <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>–<b>c</b>) and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ENDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> (<b>d</b>–<b>f</b>). The T<sub>NDSIII</sub> and T<sub>ENDSIII</sub> threshold values (dashed vertical lines) were determined for sea ice separation by the Jenks natural break method.</p> "> Figure 5
<p>An example of true-color (<b>a</b>), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> (<b>b</b>), (b12−b16)/(b12+b16) (<b>c</b>), and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ENDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> (<b>d</b>) feature extraction from OLCI imagery on 24 January 2018. A statistical histogram of the main types of surface cover (sea ice, seawater, turbid seawater, land, snow, and cloud) in each image is displayed alongside the corresponding image (<b>e</b>–<b>g</b>).</p> "> Figure 6
<p>An image of sea ice extraction result for the entire Bohai Sea (top) on 1 February 2018 using threshold segmentation from <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ENDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>. Three true-color images in the first column (<b>a</b>,<b>f</b>,<b>k</b>) are the enlarged MSI validation images indicated by boxes I, II, and III in the top image, respectively. The next four columns present the results of sea ice extent extraction using <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> (<b>b</b>,<b>g</b>,<b>l</b>), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ENDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> (<b>c</b>,<b>h</b>,<b>m</b>), NDSI (<b>d</b>,<b>i</b>,<b>n</b>), and SVM (<b>e</b>,<b>j</b>,<b>o</b>).</p> "> Figure 7
<p>Sea ice extraction results based on <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ENDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> from OLCI images with 300 m spatial resolution on 29 January 2018 (<b>b</b>) and February 16, 2018 (<b>d</b>). Two true-color images in the first column (<b>a</b>,<b>c</b>) are the MSI validation images with 60 m spatial resolution. The blue box in (<b>b</b>) represents the boundary of the validation image (<b>a</b>).</p> "> Figure 8
<p>Spatiotemporal evolution of the extent of Bohai Sea ice during the winter of 2017–2018 from OLCI images using the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ENDSIII</mi> </mrow> <mrow> <mi>O</mi> <mi>L</mi> <mi>C</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> method (<b>a</b>–<b>r</b>). Red areas depict sea ice coverage.</p> "> Figure 9
<p>The evolution of the Bohai Sea ice area extracted from OLCI images during the winter of 2017–2018.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Normalized Difference Sea Ice Information Index
3.2. Enhanced Normalized Difference Sea Ice Information Index
3.3. Determinaton of Threshold Values
3.4. Normalized Difference Snow Index
3.5. Support Vector Machine Classifier
4. Results
4.1. Sea Ice Detection and Validation
4.2. Spatiotemporal Evolution of the Bohai Sea Ice in the 2017–2018 Winter
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ning, L.; Xie, F.; Gu, W.; Xu, Y.; Huang, S.; Yuan, S.; Cui, W.; Levy, J. Using remote sensing to estimate sea ice thickness in the Bohai Sea, China based on ice type. Int. J. Remote Sens. 2009, 30, 4539–4552. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Yang, J. Monitoring the Spatiotemporal Evolution of Sea Ice in the Bohai Sea in the 2009–2010 Winter Combining MODIS and Meteorological Data. Estuaries Coasts 2012, 35, 281–291. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 1. Satellite algorithm development. J. Mar. Syst. 2012, 95, 32–40. [Google Scholar] [CrossRef]
- Ouyang, L.; Hui, F.; Zhu, L.; Cheng, X.; Cheng, B.; Shokr, M.; Zhao, J.; Ding, M.; Zeng, T. The spatiotemporal patterns of sea ice in the Bohai Sea during the winter seasons of 2000–2016. Int. J. Digit. Earth 2017, 1–17. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Y.; Zhang, J.; Zhang, X.; Meng, J.; Xie, Q. PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform. Acta Oceanol. Sin. 2015, 34, 59–67. [Google Scholar] [CrossRef]
- Teleti, P.R.; Luis, A.J. Sea ice observations in polar regions: Evolution of technologies in remote sensing. Int. J. Geosci. 2013, 4, 1031–1050. [Google Scholar] [CrossRef]
- Karvonen, J. Baltic sea ice concentration estimation based on C-band dual-polarized SAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5558–5566. [Google Scholar] [CrossRef]
- Ivanova, N.; Pedersen, L.; Tonboe, R.; Kern, S.; Heygster, G.; Lavergne, T.; Sørensen, A.; Saldo, R.; Dybkjær, G.; Brucker, L. Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere 2015, 9, 1797–1817. [Google Scholar] [CrossRef]
- Lavergne, T.; Macdonald Sørensen, A.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Fetterer, F.; Stewart, J.S.; Helfrich, S. How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting. Ann. Glaciol. 2015, 56, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Agnew, T.; Howell, S. The use of operational ice charts for evaluating passive microwave ice concentration data. Atmosphere-Ocean 2003, 41, 317–331. [Google Scholar] [CrossRef]
- Berg, A.; Eriksson, L.E.B. SAR algorithm for sea ice concentration—Evaluation for the Baltic Sea. IEEE Geosci. Remote Sens. Lett. 2012, 9, 938–942. [Google Scholar] [CrossRef]
- Deng, H.; Clausi, D.A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Trans. Geosci. Remote Sens. 2005, 43, 528–538. [Google Scholar] [CrossRef]
- Huck, P.; Light, B.; Eicken, H.; Haller, M. Mapping sediment-laden sea ice in the Arctic using AVHRR remote-sensing data: Atmospheric correction and determination of reflectances as a function of ice type and sediment load. Remote Sens. Environ. 2007, 107, 484–495. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 2. Study of sea ice seasonal and interannual variability. J. Mar. Syst. 2012, 95, 41–49. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, C.; Liu, X. Practical Model of Sea Ice Thickness of Bohai Sea Based on MODIS Data. Chin. Geogr. Sci. 2018, 28, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Drüe, C.; Heinemann, G. High-resolution maps of the sea-ice concentration from MODIS satellite data. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Zhang, D.; Ke, C.; Sun, B.; Lei, R.; Tang, X. Extraction of sea ice concentration based on spectral unmixing method. J. Appl. Remote Sens. 2011, 5, 053552. [Google Scholar] [CrossRef]
- Liu, W.; Sheng, H.; Zhang, X. Sea ice thickness estimation in the Bohai Sea using geostationary ocean color imager data. Acta Oceanol. Sin. 2016, 35, 105–112. [Google Scholar] [CrossRef]
- Lang, W.; Wu, Q.; Zhang, X.; Meng, J.; Wang, N.; Cao, Y. Sea ice drift tracking in the Bohai Sea using geostationary ocean color imagery. J. Appl. Remote Sens. 2014, 8, 083650. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, K.; Shao, D.; Xu, Y.; Gu, W. Monitoring the Characteristics of the Bohai Sea Ice Using High-Resolution Geostationary Ocean Color Imager (GOCI) Data. Sustainability 2019, 11, 777. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Wang, C.; Li, X.; Li, X.; Qiu, Y. Reducing the impact of thin clouds on Arctic Ocean sea ice concentration from FengYun-3 MERSI data single cavity. IEEE Access 2017, 5, 16341–16348. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y. Using MODIS data to estimate sea ice thickness in the Bohai Sea (China) in the 2009–2010 winter. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Xiao, J.; Li, L. Improving MODIS sea ice detectability using gray level co-occurrence matrix texture analysis method: A case study in the Bohai Sea. ISPRS J. Photogramm. Remote Sens. 2013, 85, 13–20. [Google Scholar] [CrossRef]
- Han, Y.; Li, J.; Zhang, Y.; Hong, Z.; Wang, J. Sea ice detection based on an improved similarity measurement method using hyperspectral data. Sensors 2017, 17, 1124. [Google Scholar] [CrossRef]
- Gignac, C.; Bernier, M.; Chokmani, K.; Poulin, J. IceMap250—Automatic 250 m sea ice extent mapping using MODIS data. Remote Sens. 2017, 9, 70. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Xiao, J.; Yan, X. Classification of MODIS images combining surface temperature and texture features using the Support Vector Machine method for estimation of the extent of sea ice in the frozen Bohai Bay, China. Int. J. Remote Sens. 2015, 36, 2734–2750. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Zhang, Q. Detection of sea ice in sediment laden water using MODIS in the Bohai Sea: A CART decision tree method. Int. J. Remote Sens. 2015, 36, 1661–1674. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping water quality parameters with sentinel-3 ocean and land colour instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef]
- Bi, S.; Li, Y.; Wang, Q.; Lyu, H.; Liu, G.; Zheng, Z.; Du, C.; Mu, M.; Xu, J.; Lei, S.; et al. Inland Water Atmospheric Correction Based on Turbidity Classification Using OLCI and SLSTR Synergistic Observations. Remote Sens. 2018, 10, 1002. [Google Scholar] [CrossRef]
- Lin, J.; Lyu, H.; Miao, S.; Pan, Y.; Wu, Z.; Li, Y.; Wang, Q. A two-step approach to mapping particulate organic carbon (POC) in inland water using OLCI images. Ecol. Indic. 2018, 90, 502–512. [Google Scholar] [CrossRef]
- Vuolo, F.; Zóltak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Ackerman, S.A. Sea ice extent and classification mapping with the moderate resolution imaging spectroradiometer airborne simulator. Remote Sens. Environ. 1999, 68, 152–163. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Weston, J.; Watkins, C. Support vector machines for multi-class pattern recognition. In Proceedings of the 7th European Symposium on Artificial Neural Networks (ESANN-99), Bruges, Belgium, 21–24 April 1999; Volume 99, pp. 219–224. [Google Scholar]
- Zhang, H.; Zhang, Y.; Lin, H. Compare different levels of fusion between optical and SAR data for impervious surfaces estimation. In Proceedings of the 2nd International Workshop on Earth Observation and Remote Sensing Applications, EORSA 2012, Shanghai, China, 8–11 June 2012; pp. 26–30. [Google Scholar] [CrossRef]
- Yuan, S.; Gu, W.; Liu, C.; Xie, F. Towards a semi-empirical model of the sea ice thickness based on hyperspectral remote sensing in the Bohai Sea. Acta Oceanol. Sin. 2017, 36, 80–89. [Google Scholar] [CrossRef]
Band Number | Central Wavelength (nm) | Full Width at Half Maximum (nm) | Signal-to-Noise Ratio |
---|---|---|---|
Band 1 | 400 | 15 | 2188 |
Band 2 | 412.5 | 10 | 2061 |
Band 3 | 442.5 | 10 | 1811 |
Band 4 | 490 | 10 | 1541 |
Band 5 | 510 | 10 | 1488 |
Band 6 | 560 | 10 | 1280 |
Band 7 | 620 | 10 | 997 |
Band 8 | 665 | 10 | 883 |
Band 9 | 673.75 | 7.5 | 707 |
Band 10 | 681.25 | 7.5 | 745 |
Band 11 | 708.75 | 10 | 785 |
Band 12 | 753.75 | 7.5 | 605 |
Band 13 | 761.25 | 2.5 | 232 |
Band 14 | 764.375 | 3.75 | 305 |
Band 15 | 767.5 | 2.5 | 330 |
Band 16 | 778.75 | 15 | 812 |
Band 17 | 865 | 20 | 666 |
Band 18 | 885 | 10 | 395 |
Band 19 | 900 | 10 | 308 |
Band 20 | 940 | 20 | 203 |
Band 21 | 1020 | 40 | 152 |
Ground Truth | ||||||
---|---|---|---|---|---|---|
Sea Ice | Other | Total | Commission Error | |||
Map | Sea Ice | 89 | 11 | 100 | 11.00% | |
Other | 35 | 754 | 789 | 4.44% | ||
Total | 124 | 765 | 889 | |||
Omission Error | 28.23% | 1.44% | Overall Accuracy | |||
Kappa | 76.54% | 94.83% | ||||
Map | Sea Ice | 94 | 35 | 129 | 27.13% | |
Other | 30 | 730 | 760 | 3.95% | ||
Total | 124 | 765 | 889 | |||
Omission Error | 24.19% | 4.58% | Overall Accuracy | |||
Kappa | 70.05% | 92.69% | ||||
NDSI | Map | Sea Ice | 107 | 77 | 184 | 41.85% |
Other | 18 | 798 | 816 | 2.21% | ||
Total | 125 | 875 | 1000 | |||
Omission Error | 14.40% | 8.80% | Overall Accuracy | |||
Kappa | 63.88% | 90.50% | ||||
SVM | Map | Sea Ice | 97 | 19 | 116 | 16.38% |
Other | 28 | 762 | 790 | 3.54% | ||
Total | 125 | 781 | 906 | |||
Omission Error | 22.40% | 2.43% | Overall Accuracy | |||
Kappa | 77.51% | 94.81% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Ji, B.; Wang, Y. Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data. Remote Sens. 2019, 11, 2436. https://doi.org/10.3390/rs11202436
Su H, Ji B, Wang Y. Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data. Remote Sensing. 2019; 11(20):2436. https://doi.org/10.3390/rs11202436
Chicago/Turabian StyleSu, Hua, Bowen Ji, and Yunpeng Wang. 2019. "Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data" Remote Sensing 11, no. 20: 2436. https://doi.org/10.3390/rs11202436
APA StyleSu, H., Ji, B., & Wang, Y. (2019). Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data. Remote Sensing, 11(20), 2436. https://doi.org/10.3390/rs11202436