Low-Density Lipoprotein Receptor-Related Protein 1 as a Potential Therapeutic Target in Alzheimer’s Disease
<p>Roles of the low-density lipoprotein receptor-related protein 1 (LRP1) in the clearance of amyloid β (Aβ). In the brain, LRP1 is implicated in the uptake for subsequent degradation of Aβ in neurons, astrocytes and vascular smooth muscle cells. Moreover, LRP1 plays a key role in the efflux of Aβ from the brain into the blood through the brain microvascular endothelial cells. Aβ then enters the systemic circulation where it can further be cleared by soluble LRP1 (sLRP1), freely circulating in the plasma. Aβ is further transported into peripheral clearance organs, such as the liver, with the help of LRP1 and is further cleared from the body.</p> "> Figure 2
<p>Reported potential therapeutic strategies targeting the low-density lipoprotein receptor-related protein 1 (LRP1) to increase the clearance of amyloid β (Aβ) across the blood–brain barrier (BBB) including a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, cholesterol-lowering statins and a monoacylglycerol lipase (MAGL) inhibitor.</p> ">
Abstract
:1. Introduction
2. Aβ Clearance across the BBB
2.1. The Aβ Hypothesis and Aβ Clearance
2.2. BBB and the Neurovascular Unit in AD
2.3. Clearance of Aβ across the BBB
3. Peripheral Clearance of Aβ
4. The Role of LRP1 in AD
4.1. LRP1 Structure, Expression and Function
4.2. Expression of LRP1 in AD
Subjects (Age in Year Range; Number of Subjects per Sex) | AD Patients | Investigated Samples | Findings AD vs. NDC | Methods | References |
---|---|---|---|---|---|
NDC (41–75 y; n = 5/M, n = 5/F) AD (74–88 y; n = 6/M, n = 4/F) | Braak stage 1–6; CERAD index Moderate-High | Capillaries of superior temporal and calcarine occipital cortex | Increase in the number of LRP1-positive capillaries; negative correlations between LRP1-positive capillaries and NFTs and Aβ plaque burden | IHC | [114] |
NDC (68 y, n = 15) AD (79 y, n = 15) | Braak stage 4–6; CERAD index High | Capillaries of temporal cortex | No difference in LRP1 capillary expression; positive correlations between Aβ1–42 plaque burden and positive LRP1 capillary expression | IHC | [118] |
Controls (n = 19) AD (n = 23) | Braak stage 4–6; CERAD index High; none/mild CAA (n = 27) moderate/ severe CAA (n = 15) | Frontal and occipital cortex; occipital and frontal leptomeningeal vessels | No difference in LRP1 expression in relation to CAA or between AD and controls | Dot blot | [123] |
NDC (60–88 y; n = 10/M, n = 10/F) AD (78–89 y; n = 5/M, n = 5/F) | Braak stage 3–5; CERAD 1–3 | Perivascular astrocytes (basal ganglia) | No difference in LRP1 expression in perivascular astrocytes | IHC | [120] |
NDC (60–68 y; n = 264/M, n = 461/F) AD (68–77 y; n = 34/M, n = 36/F) | MMSE 18 | Plasma | Reduction in sLRP1 levels | ELISA | [125] |
NDC (75–79 y; n = 9) AD (77–82 y; n = 8) | Braak stage High | Frontal cortex | Increased LRP1 levels in AD | Western blot | [116] |
Controls (n = 20) AD (n = 38) probable-AD (n = 3) | CDR 4–5 | Frontal cortex | No difference in LRP1 levels | Western blot | [119] |
Controls (40–64 y, n = 11; 65–74 y, n = 11; 75–84 y, n = 11; ≥ 85 y, n = 6) AD (65–74 y, n = 9; 75–84 y, n = 22; ≥85 y, n = 8). | LOAD | Midfrontal cortex | Reduction in LRP1 levels in older age and in AD | Western blot | [124] |
NDC (82–89 y; n = 6/M, n = 3/F) AD (85–89 y; n = 5/M, n = 4/F) | Braak stage 4–6 | Hippocampus | No difference in LRP1 levels | Western blot, IP | [121] |
NDC (70–78 y; n = 3/M, n = 3/F) AD (79–86 y; n = 3/M, n = 3/F) | Braak stage 5–6 | Hippocampus | Increased LRP1 levels in the microvasculature, reduced LRP1 levels in neurons | IHC, Western blot | [110] |
NDC (81–88 y; n = 17/M, n = 21/F) AD (84–91 y; n = 21/M, n = 22/F) | Braak stage 4–6 | Cerebellum, BA39, Hippocampus | Reduction in LRP1 levels in cerebellum, increased LRP1 levels in BA39 and hippocampus | LC-MS/MS | [115] |
NDC (66–82; n = 16) AD (68–88: n = 17) | Disease duration 5–10 y | Temporal cortex | No difference in LRP1 levels | ELISA | [122] |
Model (Number of Animals; Age; Sex) | Investigated Samples | Findings | Methods | References |
---|---|---|---|---|
Mice | ||||
APP/PS1 (n = 10; 3–15 m; M) | Cerebral cortex and hippocampus | Progressive reduction in LRP1 levels with ageing | Western blot | [128] |
APP/PS1 (n = 3; 8–9 m; F) | Intestine, Liver | Reduction in LRP1 expression in intestine, no difference in the liver | IHC | [126] |
APP/PS1 (n = 3; 3 m; M) | Hippocampus | Reduction in LRP1 levels | Western blot | [127] |
APP/PS1 (n = 10; 12 m; M) | Brain | Reduction in LRP1 expression | Western blot | [129] |
SAMP8 (n = 8; 11 m) | Cortex and hippocampus | Reduction in LRP1 expression | IF, Western blot | [133] |
3xTg-AD (n = 3; 24 m) | Hippocampus | Reduction in LRP1 levels | IHC, Western blot | [130] |
3xTg-AD (n = 8; 16 m) | Choroid plexus | Increase in LRP1 expression | IF | [134] |
Rat | ||||
ALAD (n = 7; 8–10 wk; M) | Brain | Reduction in LRP1 levels | ELISA | [131] |
SD + Aβ1–42 (n = 8; 8 wk; M) | Brain | Reduction in LRP1 expression | Western blot, IHC | [132] |
Cell Line | Treatment | Findings | Methods | References (DOI) |
---|---|---|---|---|
HBMECs | Aβ1–42 2 μM 48 h | Increase in sLRP1 levels | ELISA | [139] |
HBMECs | Aβ1–42 2 μM 48 h | Increase in sLRP1 levels | ELISA | [140] |
HBMECs | Aβ1–42 ≥2 μM 48 h | Increase in sLRP1 levels but no significant difference in LRP1 expression | ELISA | [135] |
HBMECs | Aβ1–42 10 μM 48 h | No difference in LRP1 expression | ELISA, Western blot | [141] |
hCMEC/D3 | Aβ1–42 1 μM, 5 μM 2 h, 6 h | Reduction in LRP1 expression | Western blot | [137] |
hCMEC/D3 | Aβ1–40, Aβ1–42 100 nM, 50 nM 24 h | Reduction in LRP1 expression | Western blot | [138] |
pBCECs | Aβ1–40, Aβ1–42 240 nM 6 h | Reduction in LRP1 expression | Western blot | [136] |
4.3. Genetic Studies on LRP1 in AD
4.4. Role of LRP1 in Production of Aβ
4.5. LRP1-Mediated Clearance of Aβ
4.6. Role of LRP1 in τ Pathology
5. LRP1 as Therapeutic Target
6. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [CrossRef]
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Blennow, K.; De Leon, M.J.; Zetterberg, H. Alzheimer’s Disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef]
- Dorszewska, J.; Prendecki, M.; Oczkowska, A.; Dezor, M.; Kozubski, W. Molecular Basis of Familial and Sporadic Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 952–963. [Google Scholar] [CrossRef]
- Reitz, C.; Rogaeva, E.; Beecham, G.W. Late-Onset vs Nonmendelian Early-Onset Alzheimer Disease: A Distinction without a Difference? Neurol. Genet. 2020, 6, e512. [Google Scholar] [CrossRef]
- Glenner, G.G.; Wong, C.W. Alzheimer’s Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein. Biochem. Biophys. Res. Commun. 1984, 120, 885–890. [Google Scholar] [CrossRef]
- Kang, J.; Lemaire, H.-G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.-H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. Nature 1987, 325, 733–736. [Google Scholar] [CrossRef]
- Kidd, M. Paired Helical Filaments in Electron Microscopy of Alzheimer’s Disease. Nature 1963, 197, 192–193. [Google Scholar] [CrossRef]
- Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal Phosphorylation of the Microtubule-Associated Protein Tau (Tau) in Alzheimer Cytoskeletal Pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917. [Google Scholar] [CrossRef]
- Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-Associated Protein Tau (Tau) Is a Major Antigenic Component of Paired Helical Filaments in Alzheimer Disease. Proc. Natl. Acad. Sci. USA 1986, 83, 4044–4048. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Makin, S. The Amyloid Hypothesis on Trial. Nature 2018, 559, S4–S7. [Google Scholar] [CrossRef]
- Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary Tangles but Not Senile Plaques Parallel Duration and Severity of Alzheimer’s Disease. Neurology 1992, 42, 631. [Google Scholar] [CrossRef]
- Arnsten, A.F.T.; Datta, D.; Del Tredici, K.; Braak, H. Hypothesis: Tau Pathology Is an Initiating Factor in Sporadic Alzheimer’s Disease. Alzheimer’s Dement. 2021, 17, 115–124. [Google Scholar] [CrossRef]
- Lane-Donovan, C.; Boxer, A.L. Disentangling Tau: One Protein, Many Therapeutic Approaches. Neurotherapeutics 2024, 21, e00321. [Google Scholar] [CrossRef]
- Davies, P. Selective Loss of Central Cholinergic Neurons in Alzheimer’s Disease. Lancet 1976, 308, 1403. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Altomare, D.; Thal, D.R.; Ribaldi, F.; Van Der Kant, R.; Ossenkoppele, R.; Blennow, K.; Cummings, J.; Van Duijn, C.; Nilsson, P.M.; et al. The Probabilistic Model of Alzheimer Disease: The Amyloid Hypothesis Revised. Nat. Rev. Neurosci. 2022, 23, 53–66. [Google Scholar] [CrossRef]
- Cummings, J.; Osse, A.M.L.; Cammann, D.; Powell, J.; Chen, J. Anti-Amyloid Monoclonal Antibodies for the Treatment of Alzheimer’s Disease. BioDrugs 2024, 38, 5–22. [Google Scholar] [CrossRef]
- Haass, C. Take Five—BACE and the γ-Secretase Quartet Conduct Alzheimer’s Amyloid β-Peptide Generation. EMBO J. 2004, 23, 483–488. [Google Scholar] [CrossRef]
- Haass, C.; Kaether, C.; Thinakaran, G.; Sisodia, S. Trafficking and Proteolytic Processing of APP. Cold Spring Harb. Perspect. Med. 2012, 2, a006270. [Google Scholar] [CrossRef]
- Esch, F.S.; Keim, P.S.; Beattie, E.C.; Blacher, R.W.; Culwell, A.R.; Oltersdorf, T.; McClure, D.; Ward, P.J. Cleavage of Amyloid β Peptide During Constitutive Processing of Its Precursor. Science 1990, 248, 1122–1124. [Google Scholar] [CrossRef]
- Wang, R.; Meschia, J.F.; Cotter, R.J.; Sisodia, S.S. Secretion of the Beta/A4 Amyloid Precursor Protein. Identification of a Cleavage Site in Cultured Mammalian Cells. J. Biol. Chem. 1991, 266, 16960–16964. [Google Scholar] [CrossRef]
- Goate, A.; Chartier-Harlin, M.-C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; et al. Segregation of a Missense Mutation in the Amyloid Precursor Protein Gene with Familial Alzheimer’s Disease. Nature 1991, 349, 704–706. [Google Scholar] [CrossRef]
- Hendriks, L.; Van Duijn, C.M.; Cras, P.; Cruts, M.; Van Hul, W.; Van Harskamp, F.; Warren, A.; McInnis, M.G.; Antonarakis, S.E.; Martin, J.-J.; et al. Presenile Dementia and Cerebral Haemorrhage Linked to a Mutation at Codon 692 of the β–Amyloid Precursor Protein Gene. Nat. Genet. 1992, 1, 218–221. [Google Scholar] [CrossRef]
- Mullan, M.; Crawford, F.; Axelman, K.; Houlden, H.; Lilius, L.; Winblad, B.; Lannfelt, L. A Pathogenic Mutation for Probable Alzheimer’s Disease in the APP Gene at the N–Terminus of β–Amyloid. Nat. Genet. 1992, 1, 345–347. [Google Scholar] [CrossRef]
- Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J.; et al. A Mutation in APP Protects against Alzheimer’s Disease and Age-Related Cognitive Decline. Nature 2012, 488, 96–99. [Google Scholar] [CrossRef]
- De Strooper, B.; Saftig, P.; Craessaerts, K.; Vanderstichele, H.; Guhde, G.; Annaert, W.; Von Figura, K.; Van Leuven, F. Deficiency of Presenilin-1 Inhibits the Normal Cleavage of Amyloid Precursor Protein. Nature 1998, 391, 387–390. [Google Scholar] [CrossRef]
- Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T.D.; Hardy, J.; Hutton, M.; Kukull, W.; et al. Secreted Amyloid β–Protein Similar to That in the Senile Plaques of Alzheimer’s Disease Is Increased in Vivo by the Presenilin 1 and 2 and APP Mutations Linked to Familial Alzheimer’s Disease. Nat. Med. 1996, 2, 864–870. [Google Scholar] [CrossRef]
- Tarasoff-Conway, J.M.; Carare, R.O.; Osorio, R.S.; Glodzik, L.; Butler, T.; Fieremans, E.; Axel, L.; Rusinek, H.; Nicholson, C.; Zlokovic, B.V.; et al. Clearance Systems in the Brain—Implications for Alzheimer Disease. Nat. Rev. Neurol. 2015, 11, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.J.; Munsell, L.Y.; Morris, J.C.; Swarm, R.; Yarasheski, K.E.; Holtzman, D.M. Human Amyloid-β Synthesis and Clearance Rates as Measured in Cerebrospinal Fluid in Vivo. Nat. Med. 2006, 12, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease. Science 2010, 330, 1774. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein E: High-Avidity Binding to Beta-Amyloid and Increased Frequency of Type 4 Allele in Late-Onset Familial Alzheimer Disease. Proc. Natl. Acad. Sci. USA 1993, 90, 1977–1981. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Rimmler, J.B.; Locke, P.A.; Conneally, P.M.; Schmader, K.E.; et al. Protective Effect of Apolipoprotein E Type 2 Allele for Late Onset Alzheimer Disease. Nat. Genet. 1994, 7, 180–184. [Google Scholar] [CrossRef]
- Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; et al. Human apoE Isoforms Differentially Regulate Brain Amyloid-β Peptide Clearance. Sci. Transl. Med. 2011, 3, 89ra57. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and Function of the Blood–Brain Barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Reese, T.S.; Karnovsky, M.J. Fine Structural Localization of a Blood-Brain Barrier to Exogenous Peroxidase. J. Cell Biol. 1967, 34, 207–217. [Google Scholar] [CrossRef]
- Zlokovic, B.V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron 2008, 57, 178–201. [Google Scholar] [CrossRef] [PubMed]
- Mahringer, A.; Fricker, G. ABC Transporters at the Blood–Brain Barrier. Expert Opin. Drug Metab. Toxicol. 2016, 12, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. Neurovascular Regulation in the Normal Brain and in Alzheimer’s Disease. Nat. Rev. Neurosci. 2004, 5, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–Endothelial Interactions at the Blood–Brain Barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ji, C.; Shao, A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Front. Neurosci. 2020, 14, 334. [Google Scholar] [CrossRef]
- Lee, H.-G.; Wheeler, M.A.; Quintana, F.J. Function and Therapeutic Value of Astrocytes in Neurological Diseases. Nat. Rev. Drug Discov. 2022, 21, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the Neurovascular Unit: Key Functions and Signaling Pathways. Nat. Neurosci. 2016, 19, 771–783. [Google Scholar] [CrossRef]
- Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central Nervous System Pericytes in Health and Disease. Nat. Neurosci. 2011, 14, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Alzheimer Disease and Cerebrovascular Pathology: An Update. J. Neural Transm. 2002, 109, 813–836. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Leurgans, S.E.; Wang, Z.; Wilson, R.S.; Bennett, D.A.; Schneider, J.A. Cerebral Amyloid Angiopathy Pathology and Cognitive Domains in Older Persons. Ann. Neurol. 2011, 69, 320–327. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Bacskai, B.J.; Hernandez-Guillamon, M.; Pruzin, J.; Sperling, R.; Van Veluw, S.J. Cerebral Amyloid Angiopathy and Alzheimer Disease—One Peptide, Two Pathways. Nat. Rev. Neurol. 2020, 16, 30–42. [Google Scholar] [CrossRef]
- Nakata, Y.; Shiga, K.; Yoshikawa, K.; Mizuno, T.; Mori, S.; Yamada, K.; Nakajima, K. Subclinical Brain Hemorrhages in Alzheimer’s Disease: Evaluation by Magnetic Resonance T2*-Weighted Images. Ann. N. Y. Acad. Sci. 2002, 977, 169–172. [Google Scholar] [CrossRef]
- Nakata-Kudo, Y.; Mizuno, T.; Yamada, K.; Shiga, K.; Yoshikawa, K.; Mori, S.; Nishimura, T.; Nakajima, K.; Nakagawa, M. Microbleeds in Alzheimer Disease Are More Related to Cerebral Amyloid Angiopathy than Cerebrovascular Disease. Dement. Geriatr. Cogn. Disord. 2006, 22, 8–14. [Google Scholar] [CrossRef]
- Atri, A.; Locascio, J.J.; Lin, J.M.; Yap, L.; Dickerson, B.C.; Grodstein, F.; Irizarry, M.C.; Growdon, J.H.; Greenberg, S.M. Prevalence and Effects of Lobar Microhemorrhages in Early-Stage Dementia. Neurodegener. Dis. 2005, 2, 305–312. [Google Scholar] [CrossRef]
- Sveinbjornsdottir, S.; Sigurdsson, S.; Aspelund, T.; Kjartansson, O.; Eiriksdottir, G.; Valtysdottir, B.; Lopez, O.L.; Van Buchem, M.A.; Jonsson, P.V.; Gudnason, V.; et al. Cerebral Microbleeds in the Population Based AGES-Reykjavik Study: Prevalence and Location. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1002–1006. [Google Scholar] [CrossRef]
- Yates, P.A.; Desmond, P.M.; Phal, P.M.; Steward, C.; Szoeke, C.; Salvado, O.; Ellis, K.A.; Martins, R.N.; Masters, C.L.; Ames, D.; et al. Incidence of Cerebral Microbleeds in Preclinical Alzheimer Disease. Neurology 2014, 82, 1266–1273. [Google Scholar] [CrossRef]
- Winkler, D.T.; Bondolfi, L.; Herzig, M.C.; Jann, L.; Calhoun, M.E.; Wiederhold, K.-H.; Tolnay, M.; Staufenbiel, M.; Jucker, M. Spontaneous Hemorrhagic Stroke in a Mouse Model of Cerebral Amyloid Angiopathy. J. Neurosci. 2001, 21, 1619–1627. [Google Scholar] [CrossRef]
- Cacciottolo, M.; Christensen, A.; Moser, A.; Liu, J.; Pike, C.J.; Smith, C.; LaDu, M.J.; Sullivan, P.M.; Morgan, T.E.; Dolzhenko, E.; et al. The APOE4 Allele Shows Opposite Sex Bias in Microbleeds and Alzheimer’s Disease of Humans and Mice. Neurobiol. Aging 2016, 37, 47–57. [Google Scholar] [CrossRef]
- Montagne, A.; Zhao, Z.; Zlokovic, B.V. Alzheimer’s Disease: A Matter of Blood–Brain Barrier Dysfunction? J. Exp. Med. 2017, 214, 3151–3169. [Google Scholar] [CrossRef]
- Yan, S.D.; Chen, X.; Fu, J.; Chen, M.; Zhu, H.; Roher, A.; Slattery, T.; Zhao, L.; Nagashima, M.; Morser, J.; et al. RAGE and Amyloid-β Peptide Neurotoxicity in Alzheimer’s Disease. Nature 1996, 382, 685–691. [Google Scholar] [CrossRef]
- Wijesuriya, H.C.; Bullock, J.Y.; Faull, R.L.M.; Hladky, S.B.; Barrand, M.A. ABC Efflux Transporters in Brain Vasculature of Alzheimer’s Subjects. Brain Res. 2010, 1358, 228–238. [Google Scholar] [CrossRef]
- Van Assema, D.M.E.; Lubberink, M.; Bauer, M.; Van Der Flier, W.M.; Schuit, R.C.; Windhorst, A.D.; Comans, E.F.I.; Hoetjes, N.J.; Tolboom, N.; Langer, O.; et al. Blood–Brain Barrier P-Glycoprotein Function in Alzheimer’s Disease. Brain 2012, 135, 181–189. [Google Scholar] [CrossRef]
- Storck, S.E.; Meister, S.; Nahrath, J.; Meißner, J.N.; Schubert, N.; Di Spiezio, A.; Baches, S.; Vandenbroucke, R.E.; Bouter, Y.; Prikulis, I.; et al. Endothelial LRP1 Transports Amyloid-β(1-42) across the Blood-Brain Barrier. J. Clin. Investig. 2016, 126, 123–136. [Google Scholar] [CrossRef]
- Kanekiyo, T.; Liu, C.-C.; Shinohara, M.; Li, J.; Bu, G. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer’s Amyloid-β. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 16458–16465. [Google Scholar] [CrossRef]
- Lam, F.C.; Liu, R.; Lu, P.; Shapiro, A.B.; Renoir, J.; Sharom, F.J.; Reiner, P.B. β-Amyloid Efflux Mediated by P-glycoprotein. J. Neurochem. 2001, 76, 1121–1128. [Google Scholar] [CrossRef]
- Hartz, A.M.S.; Miller, D.S.; Bauer, B. Restoring Blood-Brain Barrier P-Glycoprotein Reduces Brain Amyloid-β in a Mouse Model of Alzheimer’s Disease. Mol. Pharmacol. 2010, 77, 715–723. [Google Scholar] [CrossRef]
- Cirrito, J.R.; Deane, R.; Fagan, A.M.; Spinner, M.L.; Parsadanian, M.; Finn, M.B.; Jiang, H.; Prior, J.L.; Sagare, A.; Bales, K.R.; et al. P-Glycoprotein Deficiency at the Blood-Brain Barrier Increases Amyloid-Beta Deposition in an Alzheimer Disease Mouse Model. J. Clin. Investig. 2005, 115, 3285–3290. [Google Scholar] [CrossRef]
- Kuhnke, D.; Jedlitschky, G.; Grube, M.; Krohn, M.; Jucker, M.; Mosyagin, I.; Cascorbi, I.; Walker, L.C.; Kroemer, H.K.; Warzok, R.W.; et al. MDR1-P-Glycoprotein (ABCB1) Mediates Transport of Alzheimer’s Amyloid-Beta Peptides—Implications for the Mechanisms of Abeta Clearance at the Blood-Brain Barrier. Brain Pathol. 2007, 17, 347–353. [Google Scholar] [CrossRef]
- Storck, S.E.; Hartz, A.M.S.; Bernard, J.; Wolf, A.; Kachlmeier, A.; Mahringer, A.; Weggen, S.; Pahnke, J.; Pietrzik, C.U. The Concerted Amyloid-Beta Clearance of LRP1 and ABCB1/P-Gp across the Blood-Brain Barrier Is Linked by PICALM. Brain. Behav. Immun. 2018, 73, 21–33. [Google Scholar] [CrossRef]
- Do, T.M.; Noel-Hudson, M.-S.; Ribes, S.; Besengez, C.; Smirnova, M.; Cisternino, S.; Buyse, M.; Calon, F.; Chimini, G.; Chacun, H.; et al. ABCG2- and ABCG4-Mediated Efflux of Amyloid-β Peptide 1-40 at the Mouse Blood-Brain Barrier. J. Alzheimer’s Dis. JAD 2012, 30, 155–166. [Google Scholar] [CrossRef]
- Krohn, M.; Lange, C.; Hofrichter, J.; Scheffler, K.; Stenzel, J.; Steffen, J.; Schumacher, T.; Brüning, T.; Plath, A.-S.; Alfen, F.; et al. Cerebral Amyloid-β Proteostasis Is Regulated by the Membrane Transport Protein ABCC1 in Mice. J. Clin. Investig. 2011, 121, 3924–3931. [Google Scholar] [CrossRef]
- Bell, R.D.; Sagare, A.P.; Friedman, A.E.; Bedi, G.S.; Holtzman, D.M.; Deane, R.; Zlokovic, B.V. Transport Pathways for Clearance of Human Alzheimer’s Amyloid β-Peptide and Apolipoproteins E and J in the Mouse Central Nervous System. J. Cereb. Blood Flow Metab. 2007, 27, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Wang, Y.-R.; Xiang, Y.; Zhou, H.-D.; Giunta, B.; Mañucat-Tan, N.B.; Tan, J.; Zhou, X.-F.; Wang, Y.-J. Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery. Mol. Neurobiol. 2015, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- DeMattos, R.B.; Bales, K.R.; Cummins, D.J.; Dodart, J.-C.; Paul, S.M.; Holtzman, D.M. Peripheral Anti-Aβ Antibody Alters CNS and Plasma Aβ Clearance and Decreases Brain Aβ Burden in a Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2001, 98, 8850–8855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lee, D.H.S. Sink Hypothesis and Therapeutic Strategies for Attenuating Aβ Levels. Neuroscientist 2011, 17, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.R.; Pacoma, R.; Watson, J.; Ou, W.; Alves, J.; Mason, D.E.; Peters, E.C.; Urbina, H.D.; Welzel, G.; Althage, A.; et al. Enhanced Proteolytic Clearance of Plasma Aβ by Peripherally Administered Neprilysin Does Not Result in Reduced Levels of Brain Aβ in Mice. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.J.; Andersson, C.; Narwal, R.; Janson, J.; Goldschmidt, T.J.; Appelkvist, P.; Bogstedt, A.; Steffen, A.-C.; Haupts, U.; Tebbe, J.; et al. Sustained Peripheral Depletion of Amyloid-β with a Novel Form of Neprilysin Does Not Affect Central Levels of Amyloid-β. Brain 2014, 137, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Georgievska, B.; Gustavsson, S.; Lundkvist, J.; Neelissen, J.; Eketjäll, S.; Ramberg, V.; Bueters, T.; Agerman, K.; Juréus, A.; Svensson, S.; et al. Revisiting the Peripheral Sink Hypothesis: Inhibiting BACE1 Activity in the Periphery Does Not Alter β-Amyloid Levels in the CNS. J. Neurochem. 2015, 132, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.; Boche, D.; Wilkinson, D.; Yadegarfar, G.; Hopkins, V.; Bayer, A.; Jones, R.W.; Bullock, R.; Love, S.; Neal, J.W.; et al. Long-Term Effects of Aβ42 Immunisation in Alzheimer’s Disease: Follow-up of a Randomised, Placebo-Controlled Phase I Trial. Lancet 2008, 372, 216–223. [Google Scholar] [CrossRef]
- Marques, M.A.; Kulstad, J.J.; Savard, C.E.; Green, P.S.; Lee, S.P.; Craft, S.; Watson, G.S.; Cook, D.G. Peripheral Amyloid-β Levels Regulate Amyloid-β Clearance from the Central Nervous System. J. Alzheimer’s Dis. 2009, 16, 325–329. [Google Scholar] [CrossRef]
- Xiang, Y.; Bu, X.-L.; Liu, Y.-H.; Zhu, C.; Shen, L.-L.; Jiao, S.-S.; Zhu, X.-Y.; Giunta, B.; Tan, J.; Song, W.-H.; et al. Physiological Amyloid-Beta Clearance in the Periphery and Its Therapeutic Potential for Alzheimer’s Disease. Acta Neuropathol. 2015, 130, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Saito, M.; LaFrancois, J.; Saito, M.; Gaynor, K.; Olm, V.; Wang, L.; Casey, E.; Lu, Y.; Shiratori, C.; et al. Novel Therapeutic Approach for the Treatment of Alzheimer’s Disease by Peripheral Administration of Agents with an Affinity to Beta-Amyloid. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 29–33. [Google Scholar] [CrossRef]
- Urayama, A.; Moreno-Gonzalez, I.; Morales-Scheihing, D.; Kharat, V.; Pritzkow, S.; Soto, C. Preventive and Therapeutic Reduction of Amyloid Deposition and Behavioral Impairments in a Model of Alzheimer’s Disease by Whole Blood Exchange. Mol. Psychiatry 2022, 27, 4285–4296. [Google Scholar] [CrossRef]
- Ramirez, S.; Koerich, S.; Astudillo, N.; De Gregorio, N.; Al-Lahham, R.; Allison, T.; Rocha, N.P.; Wang, F.; Soto, C. Plasma Exchange Reduces Aβ Levels in Plasma and Decreases Amyloid Plaques in the Brain in a Mouse Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 17087. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.-S.; Shen, L.-L.; Bu, X.-L.; Zhang, W.-W.; Chen, S.-H.; Huang, Z.-L.; Xiong, J.-X.; Gao, C.-Y.; Dong, Z.; He, Y.-N.; et al. Peritoneal Dialysis Reduces Amyloid-Beta Plasma Levels in Humans and Attenuates Alzheimer-Associated Phenotypes in an APP/PS1 Mouse Model. Acta Neuropathol. 2017, 134, 207–220. [Google Scholar] [CrossRef]
- Sakai, K.; Senda, T.; Hata, R.; Kuroda, M.; Hasegawa, M.; Kato, M.; Abe, M.; Kawaguchi, K.; Nakai, S.; Hiki, Y.; et al. P2-039: Evidence Supporting a Therapeutic Strategy for Alzheimer’s Disease by Removal of Blood AB: Patients Who Have Undergone Hemodialysis Exhibit Lower AB Deposition in the Brain. Alzheimer’s Dement. 2016, 12, P622–P623. [Google Scholar] [CrossRef]
- Boada, M.; López, O.L.; Olazarán, J.; Núñez, L.; Pfeffer, M.; Paricio, M.; Lorites, J.; Piñol-Ripoll, G.; Gámez, J.E.; Anaya, F.; et al. A Randomized, Controlled Clinical Trial of Plasma Exchange with Albumin Replacement for Alzheimer’s Disease: Primary Results of the AMBAR Study. Alzheimer’s Dement. 2020, 16, 1412–1425. [Google Scholar] [CrossRef] [PubMed]
- Boada, M.; López, O.L.; Olazarán, J.; Núñez, L.; Pfeffer, M.; Puente, O.; Piñol-Ripoll, G.; Gámez, J.E.; Anaya, F.; Kiprov, D.; et al. Neuropsychological, Neuropsychiatric, and Quality-of-life Assessments in Alzheimer’s Disease Patients Treated with Plasma Exchange with Albumin Replacement from the Randomized AMBAR Study. Alzheimer’s Dement. 2022, 18, 1314–1324. [Google Scholar] [CrossRef]
- Bu, X.-L.; Xiang, Y.; Jin, W.-S.; Wang, J.; Shen, L.-L.; Huang, Z.-L.; Zhang, K.; Liu, Y.-H.; Zeng, F.; Liu, J.-H.; et al. Blood-Derived Amyloid-β Protein Induces Alzheimer’s Disease Pathologies. Mol. Psychiatry 2018, 23, 1948–1956. [Google Scholar] [CrossRef]
- Sun, H.-L.; Chen, S.-H.; Yu, Z.-Y.; Cheng, Y.; Tian, D.-Y.; Fan, D.-Y.; He, C.-Y.; Wang, J.; Sun, P.-Y.; Chen, Y.; et al. Blood Cell-Produced Amyloid-β Induces Cerebral Alzheimer-Type Pathologies and Behavioral Deficits. Mol. Psychiatry 2021, 26, 5568–5577. [Google Scholar] [CrossRef]
- Spuch, C.; Ortolano, S.; Navarro, C. LRP-1 and LRP-2 Receptors Function in the Membrane Neuron. Trafficking Mechanisms and Proteolytic Processing in Alzheimer’s Disease. Front. Physiol. 2012, 3, 269. [Google Scholar] [CrossRef]
- Shinohara, M.; Tachibana, M.; Kanekiyo, T.; Bu, G. Role of LRP1 in the Pathogenesis of Alzheimer’s Disease: Evidence from Clinical and Preclinical Studies. J. Lipid Res. 2017, 58, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Emonard, H.; Théret, L.; Bennasroune, A.H.; Dedieu, S. Regulation of LRP-1 Expression: Make the Point. Pathol. Biol. 2014, 62, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Storck, S.E.; Pietrzik, C.U. Endothelial LRP1—A Potential Target for the Treatment of Alzheimer’s Disease: Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla. Pharm. Res. 2017, 34, 2637–2651. [Google Scholar] [CrossRef] [PubMed]
- Lillis, A.P.; Van Duyn, L.B.; Murphy-Ullrich, J.E.; Strickland, D.K. LDL Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies. Physiol. Rev. 2008, 88, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Auderset, L.; Landowski, L.M.; Foa, L.; Young, K.M. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int. 2016, 2016, 2108495. [Google Scholar] [CrossRef] [PubMed]
- Neels, J.G.; Van Den Berg, B.M.M.; Lookene, A.; Olivecrona, G.; Pannekoek, H.; Van Zonneveld, A.-J. The Second and Fourth Cluster of Class A Cysteine-Rich Repeats of the Low Density Lipoprotein Receptor-Related Protein Share Ligand-Binding Properties. J. Biol. Chem. 1999, 274, 31305–31311. [Google Scholar] [CrossRef] [PubMed]
- Obermoeller-McCormick, L.M.; Li, Y.; Osaka, H.; FitzGerald, D.J.; Schwartz, A.L.; Bu, G. Dissection of Receptor Folding and Ligand-Binding Property with Functional Minireceptors of LDL Receptor-Related Protein. J. Cell Sci. 2001, 114, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Paz Marzolo, M.; Van Kerkhof, P.; Strous, G.J.; Bu, G. The YXXL Motif, but Not the Two NPXY Motifs, Serves as the Dominant Endocytosis Signal for Low Density Lipoprotein Receptor-Related Protein. J. Biol. Chem. 2000, 275, 17187–17194. [Google Scholar] [CrossRef]
- Krieger, M.; Krieger, J. Structures and Functions of Multiligand Lipoprotein Receptors: Macrophage Scavenger Receptors and LDL Receptor-Related Protein (LRP). Annu. Rev. Biochem. 1994, 63, 601–637. [Google Scholar] [CrossRef]
- Herz, J.; Hamann, U.; Rogne, S.; Myklebost, O.; Gausepohl, H.; Stanley, K.K. Surface Location and High Affinity for Calcium of a 500-Kd Liver Membrane Protein Closely Related to the LDL-Receptor Suggest a Physiological Role as Lipoprotein Receptor. EMBO J. 1988, 7, 4119–4127. [Google Scholar] [CrossRef] [PubMed]
- Moestrup, S.K.; Gliemann, J.; Pallesen, G. Distribution of the ?2-Macroglobulin Receptor/Low Density Lipoprotein Receptor-Related Protein in Human Tissues. Cell Tissue Res. 1992, 269, 375–382. [Google Scholar] [CrossRef]
- Quinn, K.A.; Grimsley, P.G.; Dai, Y.-P.; Tapner, M.; Chesterman, C.N.; Owensby, D.A. Soluble Low Density Lipoprotein Receptor-Related Protein (LRP) Circulates in Human Plasma. J. Biol. Chem. 1997, 272, 23946–23951. [Google Scholar] [CrossRef]
- Bu, G.; Maksymovitch, E.A.; Nerbonne, J.M.; Schwartz, A.L. Expression and Function of the Low Density Lipoprotein Receptor-Related Protein (LRP) in Mammalian Central Neurons. J. Biol. Chem. 1994, 269, 18521–18528. [Google Scholar] [CrossRef]
- William Rebeck, G.; Reiter, J.S.; Strickland, D.K.; Hyman, B.T. Apolipoprotein E in Sporadic Alzheimer’s Disease: Allelic Variation and Receptor Interactions. Neuron 1993, 11, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Wolf, B.B.; Lopes, M.B.; VandenBerg, S.R.; Gonias, S.L. Characterization and Immunohistochemical Localization of Alpha 2-Macroglobulin Receptor (Low-Density Lipoprotein Receptor-Related Protein) in Human Brain. Am. J. Pathol. 1992, 141, 37–42. [Google Scholar] [PubMed]
- Tooyama, I.; Kawamata, T.; Akiyama, H.; Kimura, H.; Moestrup, S.K.; Gliemann, J.; Matsuo, A.; McGeer, P.L. Subcellular Localization of the Low Density Lipoprotein Receptor-Related Protein (A2-Macroglobulin Receptor) in Human Brain. Brain Res. 1995, 691, 235–238. [Google Scholar] [CrossRef]
- Halliday, M.R.; Rege, S.V.; Ma, Q.; Zhao, Z.; Miller, C.A.; Winkler, E.A.; Zlokovic, B.V. Accelerated Pericyte Degeneration and Blood–Brain Barrier Breakdown in Apolipoprotein E4 Carriers with Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2016, 36, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Deane, R.; Wu, Z.; Sagare, A.; Davis, J.; Du Yan, S.; Hamm, K.; Xu, F.; Parisi, M.; LaRue, B.; Hu, H.W.; et al. LRP/Amyloid β-Peptide Interaction Mediates Differential Brain Efflux of Aβ Isoforms. Neuron 2004, 43, 333–344. [Google Scholar] [CrossRef]
- Donahue, J.E.; Flaherty, S.L.; Johanson, C.E.; Duncan, J.A.; Silverberg, G.D.; Miller, M.C.; Tavares, R.; Yang, W.; Wu, Q.; Sabo, E.; et al. RAGE, LRP-1, and Amyloid-Beta Protein in Alzheimer’s Disease. Acta Neuropathol. 2006, 112, 405–415. [Google Scholar] [CrossRef]
- Zhao, Z.; Sagare, A.P.; Ma, Q.; Halliday, M.R.; Kong, P.; Kisler, K.; Winkler, E.A.; Ramanathan, A.; Kanekiyo, T.; Bu, G.; et al. Central Role for PICALM in Amyloid-β Blood-Brain Barrier Transcytosis and Clearance. Nat. Neurosci. 2015, 18, 978–987. [Google Scholar] [CrossRef]
- Zlokovic, B.V.; Deane, R.; Sagare, A.P.; Bell, R.D.; Winkler, E.A. Low-density Lipoprotein Receptor-related Protein-1: A Serial Clearance Homeostatic Mechanism Controlling Alzheimer’s Amyloid Β-peptide Elimination from the Brain. J. Neurochem. 2010, 115, 1077–1089. [Google Scholar] [CrossRef] [PubMed]
- Potere, N.; Del Buono, M.G.; Mauro, A.G.; Abbate, A.; Toldo, S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front. Cardiovasc. Med. 2019, 6, 51. [Google Scholar] [CrossRef]
- Jeynes, B.; Provias, J. Evidence for Altered LRP/RAGE Expression in Alzheimer Lesion Pathogenesis. Curr. Alzheimer Res. 2008, 5, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Storelli, F.; Billington, S.; Kumar, A.R.; Unadkat, J.D. Abundance of P-Glycoprotein and Other Drug Transporters at the Human Blood-Brain Barrier in Alzheimer’s Disease: A Quantitative Targeted Proteomic Study. Clin. Pharmacol. Ther. 2021, 109, 667–675. [Google Scholar] [CrossRef]
- Qiu, Z.; Strickland, D.K.; Hyman, B.T.; Rebeck, G.W. Elevation of LDL Receptor-Related Protein Levels via Ligand Interactions in Alzheimer Disease and In Vitro. J. Neuropathol. Exp. Neurol. 2001, 60, 430–440. [Google Scholar] [CrossRef]
- Wolfe, M.S. Developing Therapeutics for Alzheimer’s Disease: Progress and Challenges; Academic Press is an imprint of Elsevier: London, UK, 2016; ISBN 978-0-12-802164-4. [Google Scholar]
- Provias, J.; Jeynes, B. The Role of the Blood-Brain Barrier in the Pathogenesis of Senile Plaques in Alzheimer’s Disease. Int. J. Alzheimer’s Dis. 2014, 2014, 191863. [Google Scholar] [CrossRef]
- Causevic, M.; Ramoz, N.; Haroutunian, V.; Davis, K.L.; Buxbaum, J.D. Lack of Association between the Levels of the Low-Density Lipoprotein Receptor-Related Protein (LRP) and Either Alzheimer Dementia or LRP Exon 3 Genotype. J. Neuropathol. Exp. Neurol. 2003, 62, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Utter, S.; Tamboli, I.Y.; Walter, J.; Upadhaya, A.R.; Birkenmeier, G.; Pietrzik, C.U.; Ghebremedhin, E.; Thal, D.R. Cerebral Small Vessel Disease-Induced Apolipoprotein E Leakage Is Associated With Alzheimer Disease and the Accumulation of Amyloid β-Protein in Perivascular Astrocytes. J. Neuropathol. Exp. Neurol. 2008, 67, 842–856. [Google Scholar] [CrossRef]
- Owen, J.B.; Sultana, R.; Aluise, C.D.; Erickson, M.A.; Price, T.O.; Bu, G.; Banks, W.A.; Butterfield, D.A. Oxidative Modification to LDL Receptor-Related Protein 1 in Hippocampus from Subjects with Alzheimer Disease: Implications for Aβ Accumulation in AD Brain. Free Radic. Biol. Med. 2010, 49, 1798–1803. [Google Scholar] [CrossRef]
- Shepherd, C.E.; Affleck, A.J.; Bahar, A.Y.; Carew-Jones, F.; Gregory, G.; Small, D.H.; Halliday, G.M. Alzheimer’s Amyloid-β and Tau Protein Accumulation Is Associated with Decreased Expression of the LDL Receptor-associated Protein in Human Brain Tissue. Brain Behav. 2020, 10, e01672. [Google Scholar] [CrossRef] [PubMed]
- Ruzali, W.A.W.; Kehoe, P.G.; Love, S. LRP1 Expression in Cerebral Cortex, Choroid Plexus and Meningeal Blood Vessels: Relationship to Cerebral Amyloid Angiopathy and APOE Status. Neurosci. Lett. 2012, 525, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.E.; Pietrzik, C.U.; Baum, L.; Chevallier, N.; Merriam, D.E.; Kounnas, M.Z.; Wagner, S.L.; Troncoso, J.C.; Kawas, C.H.; Katzman, R.; et al. Modulation of Amyloid β-Protein Clearance and Alzheimer’s Disease Susceptibility by the LDL Receptor–Related Protein Pathway. J. Clin. Investig. 2000, 106, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, J.; Jiang, Y.; Wei, S.; Shang, S.; Chen, C.; Dang, L.; Huo, K.; Deng, M.; Wang, J.; et al. Relationship Between Peripheral Transport Proteins and Plasma Amyloid-β in Patients with Alzheimer’s Disease Were Different from Cognitively Normal Controls: A Propensity Score Matching Analysis. J. Alzheimer’s Dis. 2020, 78, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Omori, K.; Ali, I.; Tachikawa, M.; Terasaki, T.; Brouwer, K.L.R.; Nicolazzo, J.A. Altered Expression of Small Intestinal Drug Transporters and Hepatic Metabolic Enzymes in a Mouse Model of Familial Alzheimer’s Disease. Mol. Pharm. 2018, 15, 4073–4083. [Google Scholar] [CrossRef] [PubMed]
- Mahaman, Y.A.R.; Feng, J.; Huang, F.; Salissou, M.T.M.; Wang, J.; Liu, R.; Zhang, B.; Li, H.; Zhu, F.; Wang, X. Moringa Oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022, 14, 4284. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ruganzu, J.B.; Zheng, Q.; Wu, X.; Jin, H.; Peng, X.; Ding, B.; Lin, C.; Ji, S.; Ma, Y.; et al. Silencing of LRP1 Exacerbates Inflammatory Response Via TLR4/NF-κB/MAPKs Signaling Pathways in APP/PS1 Transgenic Mice. Mol. Neurobiol. 2020, 57, 3727–3743. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-H.; Wan, C.; Zhang, L.-D.; Zhang, R.-R.; Peng, D.; Qiao, L.-J.; Zhang, S.-J.; Cai, Y.-F.; Huang, H.-Q. Sodium Tanshinone IIA Sulfonate Improves Cognitive Impairment via Regulating Aβ Transportation in AD Transgenic Mouse Model. Metab. Brain Dis. 2022, 37, 989–1001. [Google Scholar] [CrossRef]
- Sandoval-Hernández, A.G.; Restrepo, A.; Cardona-Gómez, G.P.; Arboleda, G. LXR Activation Protects Hippocampal Microvasculature in Very Old Triple Transgenic Mouse Model of Alzheimer’s Disease. Neurosci. Lett. 2016, 621, 15–21. [Google Scholar] [CrossRef]
- Hamdan, A.M.E.; Alharthi, F.H.J.; Alanazi, A.H.; El-Emam, S.Z.; Zaghlool, S.S.; Metwally, K.; Albalawi, S.A.; Abdu, Y.S.; Mansour, R.E.-S.; Salem, H.A.; et al. Neuroprotective Effects of Phytochemicals against Aluminum Chloride-Induced Alzheimer’s Disease through ApoE4/LRP1, Wnt3/β-Catenin/GSK3β, and TLR4/NLRP3 Pathways with Physical and Mental Activities in a Rat Model. Pharmaceuticals 2022, 15, 1008. [Google Scholar] [CrossRef]
- Hu, Q.; Yu, B.; Chen, Q.; Wang, Y.; Ling, Y.; Sun, S.; Shi, Y.; Zhou, C. Effect of Linguizhugan Decoction on Neuroinflammation and Expression Disorder of the Amyloid Β-related Transporters RAGE and LRP-1 in a Rat Model of Alzheimer’s Disease. Mol. Med. Rep. 2017, 17, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Seok, H.; Lee, M.; Shin, E.; Yun, M.R.; Lee, Y.; Moon, J.H.; Kim, E.; Lee, P.H.; Lee, B.-W.; Kang, E.S.; et al. Low-Dose Pioglitazone Can Ameliorate Learning and Memory Impairment in a Mouse Model of Dementia by Increasing LRP1 Expression in the Hippocampus. Sci. Rep. 2019, 9, 4414. [Google Scholar] [CrossRef] [PubMed]
- Gonzàlez-Marrero, I.; Giménez-Llort, L.; Johanson, C.E.; Carmona-Calero, E.M.; Castañeyra-Ruiz, L.; Brito-Armas, J.M.; Castañeyra-Perdomo, A.; Castro-Fuentes, R. Choroid Plexus Dysfunction Impairs Beta-Amyloid Clearance in a Triple Transgenic Mouse Model of Alzheimer’s Disease. Front. Cell. Neurosci. 2015, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Bachmeier, C.; Shackleton, B.; Ojo, J.; Paris, D.; Mullan, M.; Crawford, F. Apolipoprotein E Isoform-Specific Effects on Lipoprotein Receptor Processing. NeuroMol. Med. 2014, 16, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Gali, C.C.; Fanaee-Danesh, E.; Zandl-Lang, M.; Albrecher, N.M.; Tam-Amersdorfer, C.; Stracke, A.; Sachdev, V.; Reichmann, F.; Sun, Y.; Avdili, A.; et al. Amyloid-Beta Impairs Insulin Signaling by Accelerating Autophagy-Lysosomal Degradation of LRP-1 and IR-β in Blood-Brain Barrier Endothelial Cells in Vitro and in 3XTg-AD Mice. Mol. Cell. Neurosci. 2019, 99, 103390. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.; Somvanshi, R.K.; Kumar, U. Somatostatin Maintains Permeability and Integrity of Blood-Brain Barrier in β-Amyloid Induced Toxicity. Mol. Neurobiol. 2019, 56, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Qosa, H.; LeVine, H.; Keller, J.N.; Kaddoumi, A. Mixed Oligomers and Monomeric Amyloid-β Disrupts Endothelial Cells Integrity and Reduces Monomeric Amyloid-β Transport across hCMEC/D3 Cell Line as an in Vitro Blood–Brain Barrier Model. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2014, 1842, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, B.; Crawford, F.; Bachmeier, C. Inhibition of ADAM10 Promotes the Clearance of Aβ across the BBB by Reducing LRP1 Ectodomain Shedding. Fluids Barriers CNS 2016, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, B.; Ringland, C.; Abdullah, L.; Mullan, M.; Crawford, F.; Bachmeier, C. Influence of Matrix Metallopeptidase 9 on Beta-Amyloid Elimination Across the Blood-Brain Barrier. Mol. Neurobiol. 2019, 56, 8296–8305. [Google Scholar] [CrossRef]
- Bhargavan, B.; Woollard, S.M.; McMillan, J.E.; Kanmogne, G.D. CCR5 Antagonist Reduces HIV-Induced Amyloidogenesis, Tau Pathology, Neurodegeneration, and Blood-Brain Barrier Alterations in HIV-Infected Hu-PBL-NSG Mice. Mol. Neurodegener. 2021, 16, 78. [Google Scholar] [CrossRef]
- Bertram, L.; McQueen, M.B.; Mullin, K.; Blacker, D.; Tanzi, R.E. Systematic Meta-Analyses of Alzheimer Disease Genetic Association Studies: The AlzGene Database. Nat. Genet. 2007, 39, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Marioni, R.E.; Harris, S.E.; Zhang, Q.; McRae, A.F.; Hagenaars, S.P.; Hill, W.D.; Davies, G.; Ritchie, C.W.; Gale, C.R.; Starr, J.M.; et al. GWAS on Family History of Alzheimer’s Disease. Transl. Psychiatry 2018, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic Meta-Analysis of Diagnosed Alzheimer’s Disease Identifies New Risk Loci and Implicates Aβ, Tau, Immunity and Lipid Processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-Wide Meta-Analysis Identifies New Loci and Functional Pathways Influencing Alzheimer’s Disease Risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.E.; Saitoh, T.; Chen, X.; Xia, Y.; Masliah, E.; Hansen, L.A.; Thomas, R.G.; Thal, L.J.; Katzman, R. Genetic Association of the Low-Density Lipoprotein Receptor-Related Protein Gene (LRP), and Apolipoprotein E Receptor, with Late-Onset Alzheimer’s Disease. Neurology 1997, 49, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.-C.; Vrièze, F.W.-D.; Amouyel, P.; Chartier-Harlin, M.-C. Association at LRP Gene Locus with Sporadic Late-Onset Alzheimer’s Disease. Lancet 1998, 351, 1787–1788. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Wang, J.; Zhang, J.; Hua, Y.; Li, H.; Tan, H.; Kuai, B.; Wang, B.; Sheng, S. Association between LRP1 C766T Polymorphism and Alzheimer’s Disease Susceptibility: A Meta-Analysis. Sci. Rep. 2017, 7, 8435. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, A.; Harris, J.; Pritchard, C.W.; St. Clair, D.; Lemmon, H.; Lambert, J.-C.; Chartier-Harlin, M.-C.; Hayes, A.; Thaker, U.; Iwatsubo, T.; et al. Association Study and Meta-Analysis of Low-Density Lipoprotein Receptor Related Protein in Alzheimer’s Disease. Neurosci. Lett. 2005, 382, 221–226. [Google Scholar] [CrossRef] [PubMed]
- European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease (GERAD); Alzheimer’s Disease Genetic Consortium (ADGC); Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE); Lambert, J.-C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; et al. Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s Disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef]
- Thal, D.R.; Papassotiropoulos, A.; Saido, T.C.; Griffin, W.S.T.; Mrak, R.E.; Kölsch, H.; Tredici, K.D.; Attems, J.; Ghebremedhin, E. Capillary Cerebral Amyloid Angiopathy Identifies a Distinct APOE Ε4-Associated Subtype of Sporadic Alzheimer’s Disease. Acta Neuropathol. 2010, 120, 169–183. [Google Scholar] [CrossRef]
- Kamboh, M.I.; Ferrell, R.E.; DeKosky, S.T. Genetic Association Studies between Alzheimer’s Disease and Two Polymorphisms in the Low Density Lipoprotein Receptor-Related Protein Gene. Neurosci. Lett. 1998, 244, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Bullido, M.J.; Guallar-Castillón, P.; Artiga, M.J.; Ramos, M.C.; Sastre, I.; Aldudo, J.; Frank, A.; Coria, F.; Rodríguez-Artalejo, F.; Valdivieso, F. Alzheimer’s Risk Associated with Human Apolipoprotein E, Alpha-2 Macroglobulin and Lipoprotein Receptor Related Protein Polymorphisms: Absence of Genetic Interactions, and Modulation by Gender. Neurosci. Lett. 2000, 289, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Higuera, J.L.; Mateo, I.; Sánchez-Juan, P.; Rodríguez-Rodríguez, E.; Pozueta, A.; Infante, J.; Berciano, J.; Combarros, O. Genetic Interaction between Tau and the Apolipoprotein E Receptor LRP1 Increases Alzheimer’s Disease Risk. Dement. Geriatr. Cogn. Disord. 2009, 28, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Zang, F.; Zhu, Y.; Zhang, Q.; Tan, C.; Wang, Q.; Xie, C.; Alzheimer’s Disease Neuroimaging Initiative. APOE Genotype Moderates the Relationship between LRP1 Polymorphism and Cognition across the Alzheimer’s Disease Spectrum via Disturbing Default Mode Network. CNS Neurosci. Ther. 2021, 27, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Fernandes, B.S.; Citu, C.; Zhao, Z. Unraveling the Intercellular Communication Disruption and Key Pathways in Alzheimer’s Disease: An Integrative Study of Single-Nucleus Transcriptomes and Genetic Association. Alzheimer’s Res. Ther. 2024, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.M.; Zhou, H.; Zhang, Z.J.; Yu, H.; Bai, F.; Yuan, Y.G.; Deng, L.L.; Jia, J.P. Association of the LRP1 Gene and Cognitive Performance with Amnestic Mild Cognitive Impairment in Elderly Chinese. Int. Psychogeriatr. 2009, 21, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Kounnas, M.Z.; Moir, R.D.; Rebeck, G.W.; Bush, A.I.; Argraves, W.S.; Tanzi, R.E.; Hyman, B.T.; Strickland, D.K. LDL Receptor-Related Protein, a Multifunctional ApoE Receptor, Binds Secreted β-Amyloid Precursor Protein and Mediates Its Degradation. Cell 1995, 82, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Knauer, M.F.; Orlando, R.A.; Glabe, C.G. Cell Surface APP751 Forms Complexes with Protease Nexin 2 Ligands and Is Internalized via the Low Density Lipoprotein Receptor-Related Protein (LRP). Brain Res. 1996, 740, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Ulery, P.G.; Beers, J.; Mikhailenko, I.; Tanzi, R.E.; Rebeck, G.W.; Hyman, B.T.; Strickland, D.K. Modulation of β-Amyloid Precursor Protein Processing by the Low Density Lipoprotein Receptor-Related Protein (LRP). J. Biol. Chem. 2000, 275, 7410–7415. [Google Scholar] [CrossRef]
- Cam, J.A.; Zerbinatti, C.V.; Li, Y.; Bu, G. Rapid Endocytosis of the Low Density Lipoprotein Receptor-Related Protein Modulates Cell Surface Distribution and Processing of the β-Amyloid Precursor Protein. J. Biol. Chem. 2005, 280, 15464–15470. [Google Scholar] [CrossRef]
- Zerbinatti, C.V.; Wozniak, D.F.; Cirrito, J.; Cam, J.A.; Osaka, H.; Bales, K.R.; Zhuo, M.; Paul, S.M.; Holtzman, D.M.; Bu, G. Increased Soluble Amyloid-β Peptide and Memory Deficits in Amyloid Model Mice Overexpressing the Low-Density Lipoprotein Receptor-Related Protein. Proc. Natl. Acad. Sci. USA 2004, 101, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Lakshmana, M.K.; Chen, E.; Yoon, I.; Kang, D.E. C-terminal 37 Residues of LRP Promote the Amyloidogenic Processing of APP Independent of FE65. J. Cell. Mol. Med. 2008, 12, 2665–2674. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.-S.; Pietrzik, C.U.; Kang, D.E.; Koo, E.H. Sequences from the Low Density Lipoprotein Receptor-Related Protein (LRP) Cytoplasmic Domain Enhance Amyloid β Protein Production via the β-Secretase Pathway without Altering Amyloid Precursor Protein/LRP Nuclear Signaling. J. Biol. Chem. 2005, 280, 20140–20147. [Google Scholar] [CrossRef] [PubMed]
- Lleó, A.; Waldron, E.; Von Arnim, C.A.F.; Herl, L.; Tangredi, M.M.; Peltan, I.D.; Strickland, D.K.; Koo, E.H.; Hyman, B.T.; Pietrzik, C.U.; et al. Low Density Lipoprotein Receptor-Related Protein (LRP) Interacts with Presenilin 1 and Is a Competitive Substrate of the Amyloid Precursor Protein (APP) for γ-Secretase. J. Biol. Chem. 2005, 280, 27303–27309. [Google Scholar] [CrossRef] [PubMed]
- Van Gool, B.; Storck, S.E.; Reekmans, S.M.; Lechat, B.; Gordts, P.L.S.M.; Pradier, L.; Pietrzik, C.U.; Roebroek, A.J.M. LRP1 Has a Predominant Role in Production over Clearance of Aβ in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2019, 56, 7234–7245. [Google Scholar] [CrossRef]
- Pietrzik, C.; Jaeger, S. Functional Role of Lipoprotein Receptors in Alzheimers Disease. Curr. Alzheimer Res. 2008, 5, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Yamada, S.; Kumar, S.R.; Calero, M.; Bading, J.; Frangione, B.; Holtzman, D.M.; Miller, C.A.; Strickland, D.K.; Ghiso, J.; et al. Clearance of Alzheimer’s Amyloid-Β1-40 Peptide from Brain by LDL Receptor–Related Protein-1 at the Blood-Brain Barrier. J. Clin. Investig. 2000, 106, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, L.B.; Dohgu, S.; Hwang, M.C.; Farr, S.A.; Murphy, M.P.; Fleegal-DeMotta, M.A.; Lynch, J.L.; Robinson, S.M.; Niehoff, M.L.; Johnson, S.N.; et al. Testing the Neurovascular Hypothesis of Alzheimer’s Disease: LRP-1 Antisense Reduces Blood-Brain Barrier Clearance, Increases Brain Levels of Amyloid-β Protein, and Impairs Cognition. J. Alzheimer’s Dis. 2009, 17, 553–570. [Google Scholar] [CrossRef]
- Kanekiyo, T.; Cirrito, J.R.; Liu, C.-C.; Shinohara, M.; Li, J.; Schuler, D.R.; Shinohara, M.; Holtzman, D.M.; Bu, G. Neuronal Clearance of Amyloid-β by Endocytic Receptor LRP1. J. Neurosci. 2013, 33, 19276–19283. [Google Scholar] [CrossRef]
- Liu, C.-C.; Hu, J.; Zhao, N.; Wang, J.; Wang, N.; Cirrito, J.R.; Kanekiyo, T.; Holtzman, D.M.; Bu, G. Astrocytic LRP1 Mediates Brain Aβ Clearance and Impacts Amyloid Deposition. J. Neurosci. 2017, 37, 4023–4031. [Google Scholar] [CrossRef]
- Fujiyoshi, M.; Tachikawa, M.; Ohtsuki, S.; Ito, S.; Uchida, Y.; Akanuma, S.; Kamiie, J.; Hashimoto, T.; Hosoya, K.; Iwatsubo, T.; et al. Amyloid-β Peptide(1-40) Elimination from Cerebrospinal Fluid Involves Low-density Lipoprotein Receptor-related Protein 1 at the Blood-cerebrospinal Fluid Barrier. J. Neurochem. 2011, 118, 407–415. [Google Scholar] [CrossRef]
- Sagare, A.; Deane, R.; Bell, R.D.; Johnson, B.; Hamm, K.; Pendu, R.; Marky, A.; Lenting, P.J.; Wu, Z.; Zarcone, T.; et al. Clearance of Amyloid-β by Circulating Lipoprotein Receptors. Nat. Med. 2007, 13, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Sagare, A.P.; Deane, R.; Zetterberg, H.; Wallin, A.; Blennow, K.; Zlokovic, B.V. Impaired Lipoprotein Receptor-Mediated Peripheral Binding of Plasma Amyloid-β Is an Early Biomarker for Mild Cognitive Impairment Preceding Alzheimer’s Disease. J. Alzheimer’s Dis. 2011, 24, 25–34. [Google Scholar] [CrossRef]
- Wei, S.; Gao, L.; Jiang, Y.; Shang, S.; Chen, C.; Dang, L.; Zhao, B.; Zhang, J.; Wang, J.; Huo, K.; et al. Apolipoprotein E Ε4 Allele Is Associated With Plasma Amyloid Beta and Amyloid Beta Transporter Levels: A Cross-Sectional Study in a Rural Area of Xi’an, China. Am. J. Geriatr. Psychiatry 2020, 28, 194–204. [Google Scholar] [CrossRef]
- Hone, E.; Martins, I.J.; Fonte, J.; Martins, R.N. Apolipoprotein E Influences Amyloid-Beta Clearance from the Murine Periphery. J. Alzheimer’s Dis. 2003, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ghiso, J.; Shayo, M.; Calero, M.; Ng, D.; Tomidokoro, Y.; Gandy, S.; Rostagno, A.; Frangione, B. Systemic Catabolism of Alzheimer’s Aβ40 and Aβ42. J. Biol. Chem. 2004, 279, 45897–45908. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Tian, D.-Y.; Wang, Y.-J. Peripheral Clearance of Brain-Derived Aβ in Alzheimer’s Disease: Pathophysiology and Therapeutic Perspectives. Transl. Neurodegener. 2020, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, C.; Ohtsuki, S.; Iwatsubo, T.; Hashimoto, T.; Yamada, K.; Yabuki, C.; Terasaki, T. Major Involvement of Low-Density Lipoprotein Receptor-Related Protein 1 in the Clearance of Plasma Free Amyloid β-Peptide by the Liver. Pharm. Res. 2006, 23, 1407–1416. [Google Scholar] [CrossRef]
- Cheng, Y.; He, C.-Y.; Tian, D.-Y.; Chen, S.-H.; Ren, J.-R.; Sun, H.-L.; Xu, M.-Y.; Tan, C.-R.; Fan, D.-Y.; Jian, J.-M.; et al. Physiological β-Amyloid Clearance by the Liver and Its Therapeutic Potential for Alzheimer’s Disease. Acta Neuropathol. 2023, 145, 717–731. [Google Scholar] [CrossRef]
- Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania Somnifera Reverses Alzheimer’s Disease Pathology by Enhancing Low-Density Lipoprotein Receptor-Related Protein in Liver. Proc. Natl. Acad. Sci. USA 2012, 109, 3510–3515. [Google Scholar] [CrossRef]
- Rauch, J.N.; Luna, G.; Guzman, E.; Audouard, M.; Challis, C.; Sibih, Y.E.; Leshuk, C.; Hernandez, I.; Wegmann, S.; Hyman, B.T.; et al. LRP1 Is a Master Regulator of Tau Uptake and Spread. Nature 2020, 580, 381–385. [Google Scholar] [CrossRef]
- Cooper, J.M.; Lathuiliere, A.; Migliorini, M.; Arai, A.L.; Wani, M.M.; Dujardin, S.; Muratoglu, S.C.; Hyman, B.T.; Strickland, D.K. Regulation of Tau Internalization, Degradation, and Seeding by LRP1 Reveals Multiple Pathways for Tau Catabolism. J. Biol. Chem. 2021, 296, 100715. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Kim, H.J.; Yang, A.H.; Kim, H.M.; Lee, B.-W.; Kang, E.S.; Lee, H.C.; Cha, B.S. The Effect of Rosiglitazone on LRP1 Expression and Amyloid β Uptake in Human Brain Microvascular Endothelial Cells: A Possible Role of a Low-Dose Thiazolidinedione for Dementia Treatment. Int. J. Neuropsychopharmacol. 2012, 15, 135–142. [Google Scholar] [CrossRef]
- Zhao, H.; Zhuo, L.; Sun, Y.; Shen, P.; Lin, H.; Zhan, S. Thiazolidinedione Use Is Associated with Reduced Risk of Dementia in Patients with Type 2 Diabetes Mellitus: A Retrospective Cohort Study. J. Diabetes 2023, 15, 97–109. [Google Scholar] [CrossRef]
- Shinohara, M.; Sato, N.; Kurinami, H.; Takeuchi, D.; Takeda, S.; Shimamura, M.; Yamashita, T.; Uchiyama, Y.; Rakugi, H.; Morishita, R. Reduction of Brain β-Amyloid (Aβ) by Fluvastatin, a Hydroxymethylglutaryl-CoA Reductase Inhibitor, through Increase in Degradation of Amyloid Precursor Protein C-Terminal Fragments (APP-CTFs) and Aβ Clearance. J. Biol. Chem. 2010, 285, 22091–22102. [Google Scholar] [CrossRef] [PubMed]
- Zandl-Lang, M.; Fanaee-Danesh, E.; Sun, Y.; Albrecher, N.M.; Gali, C.C.; Čančar, I.; Kober, A.; Tam-Amersdorfer, C.; Stracke, A.; Storck, S.M.; et al. Regulatory Effects of Simvastatin and apoJ on APP Processing and Amyloid-β Clearance in Blood-Brain Barrier Endothelial Cells. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2018, 1863, 40–60. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, L.; Yang, H.; Li, L.; Liu, J.; Chen, L.; Hong, W.-J.; Wang, C.; Ma, J.-J.; Huang, J.; et al. Effect of High Cholesterol Regulation of LRP1 and RAGE on Aβ Transport Across the Blood-Brain Barrier in Alzheimer’s Disease. Curr. Alzheimer Res. 2021, 18, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Schultz, B.G.; Patten, D.K.; Berlau, D.J. The Role of Statins in Both Cognitive Impairment and Protection against Dementia: A Tale of Two Mechanisms. Transl. Neurodegener. 2018, 7, 5. [Google Scholar] [CrossRef]
- Anstey, K.J.; Ashby-Mitchell, K.; Peters, R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J. Alzheimer’s Dis. 2017, 56, 215–228. [Google Scholar] [CrossRef]
- Geifman, N.; Brinton, R.D.; Kennedy, R.E.; Schneider, L.S.; Butte, A.J. Evidence for Benefit of Statins to Modify Cognitive Decline and Risk in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2017, 9, 10. [Google Scholar] [CrossRef]
- Moon, J.H.; Kang, S.B.; Park, J.S.; Lee, B.W.; Kang, E.S.; Ahn, C.W.; Lee, H.C.; Cha, B.S. Up-Regulation of Hepatic Low-Density Lipoprotein Receptor–Related Protein 1: A Possible Novel Mechanism of Antiatherogenic Activity of Hydroxymethylglutaryl–Coenzyme A Reductase Inhibitor. Metabolism 2011, 60, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Qosa, H.; Batarseh, Y.S.; Mohyeldin, M.M.; El Sayed, K.A.; Keller, J.N.; Kaddoumi, A. Oleocanthal Enhances Amyloid-β Clearance from the Brains of TgSwDI Mice and in Vitro across a Human Blood-Brain Barrier Model. ACS Chem. Neurosci. 2015, 6, 1849–1859. [Google Scholar] [CrossRef] [PubMed]
- Bachmeier, C.; Beaulieu-Abdelahad, D.; Mullan, M.; Paris, D. Role of the Cannabinoid System in the Transit of Beta-Amyloid across the Blood–Brain Barrier. Mol. Cell. Neurosci. 2013, 56, 255–262. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petralla, S.; Panayotova, M.; Franchina, E.; Fricker, G.; Puris, E. Low-Density Lipoprotein Receptor-Related Protein 1 as a Potential Therapeutic Target in Alzheimer’s Disease. Pharmaceutics 2024, 16, 948. https://doi.org/10.3390/pharmaceutics16070948
Petralla S, Panayotova M, Franchina E, Fricker G, Puris E. Low-Density Lipoprotein Receptor-Related Protein 1 as a Potential Therapeutic Target in Alzheimer’s Disease. Pharmaceutics. 2024; 16(7):948. https://doi.org/10.3390/pharmaceutics16070948
Chicago/Turabian StylePetralla, Sabrina, Maria Panayotova, Elisa Franchina, Gert Fricker, and Elena Puris. 2024. "Low-Density Lipoprotein Receptor-Related Protein 1 as a Potential Therapeutic Target in Alzheimer’s Disease" Pharmaceutics 16, no. 7: 948. https://doi.org/10.3390/pharmaceutics16070948
APA StylePetralla, S., Panayotova, M., Franchina, E., Fricker, G., & Puris, E. (2024). Low-Density Lipoprotein Receptor-Related Protein 1 as a Potential Therapeutic Target in Alzheimer’s Disease. Pharmaceutics, 16(7), 948. https://doi.org/10.3390/pharmaceutics16070948