[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders

Key Points

  • The blood–brain barrier (BBB) protects neurons from factors present in the systemic circulation and maintains the highly regulated brain internal milieu, which is required for proper synaptic and neuronal functioning

  • BBB breakdown facilitates entry into the brain of neurotoxic blood-derived products, cells and pathogens and is associated with inflammatory and immune responses, which can initiate multiple neurodegenerative pathways

  • Neuroimaging studies have demonstrated early BBB dysfunction in Alzheimer disease and other neurodegenerative disorders, which is also supported by biofluid biomarker data and is consistently observed in post-mortem tissue

  • BBB dysfunction in neurodegenerative disorders includes increased BBB permeability, microbleeds, impaired glucose transport, impaired P-glycoprotein 1 function, perivascular deposits of blood-derived products, cellular infiltration and degeneration of pericytes and endothelial cells

Abstract

The blood–brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The blood–brain barrier.
Figure 2: Key transport properties of the capillary endothelium.
Figure 3: Blood–brain barrier breakdown promotes neurodegeneration.
Figure 4: Blood–brain barrier dysfunction — implications for drug delivery.

Similar content being viewed by others

References

  1. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    CAS  PubMed  Google Scholar 

  4. Pardridge, W. M. Targeted delivery of protein and gene medicines through the blood–brain barrier. Clin. Pharmacol. Ther. 97, 347–361 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood–brain barrier. Cell 163, 1064–1078 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mann, G. E., Zlokovic, B. V. & Yudilevich, D. L. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Biochim. Biophys. Acta 819, 241–248 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Friese, M. A., Schattling, B. & Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10, 225–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Montagne, A., Zhao, Z. & Zlokovic, B. Alzheimer's disease: a matter of blood–brain barrier dysfunction? J. Exp. Med. 214, 3151–3169 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sakadžic, S. et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (2014).

    Article  PubMed  CAS  Google Scholar 

  13. Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509, 507–511 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mokgokong, R., Wang, S., Taylor, C. J., Barrand, M. A. & Hladky, S. B. Ion transporters in brain endothelial cells that contribute to formation of brain interstitial fluid. Pflugers Arch. 466, 887–901 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Vazana, U. et al. Glutamate-mediated blood–brain barrier opening: implications for neuroprotection and drug delivery. J. Neurosci. 36, 7727–7739 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shibata, M. et al. Clearance of Alzheimer's amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J. Clin. Invest. 106, 1489–1499 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Deane, R. et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43, 333–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Bell, R. D. et al. Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Deane, R. et al. apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zlokovic, B. V. Neurodegeneration and the neurovascular unit. Nat. Med. 16, 1370–1371 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Storck, S. E. et al. Endothelial LRP1 transports amyloid-β1–42 across the blood–brain barrier. J. Clin. Invest. 126, 123–136 (2016).

    Article  PubMed  Google Scholar 

  25. Zhao, Z. et al. Central role for PICALM in amyloid-β blood–brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Saito, S. & Ihara, M. Interaction between cerebrovascular disease and Alzheimer pathology. Curr. Opin. Psychiatry 29, 168–173 (2016).

    Article  PubMed  Google Scholar 

  27. Tarasoff-Conway, J. M. et al. Clearance systems in the brain — implications for Alzheimer disease. Nat. Rev. Neurol. 12, 248 (2016).

    Article  PubMed  Google Scholar 

  28. Bakker, E. N. et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell. Mol. Neurobiol. 36, 181–194 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bradbury, M. W., Cserr, H. F. & Westrop, R. J. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am. J. Physiol. 240, F329–F336 (1981).

    CAS  PubMed  Google Scholar 

  30. Ichimura, T., Fraser, P. A. & Cserr, H. F. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 545, 103–113 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Engelhardt, B. et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 132, 317–338 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K. & Grady, P. A. Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326, 47–63 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jessen, N. A., Munk, A. S. F., Lundgaard, I. & Nedergaard, M. The glymphatic system: a beginner's guide. Neurochem. Res. 40, 2583–2599 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Smith, A. J., Yao, X., Dix, J. A., Jin, B.-J. & Verkman, A. S. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6, e27679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl Acad. Sci. USA 114, 9894–9899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hladky, S. B. & Barrand, M. A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spector, R., Robert Snodgrass, S. & Johanson, C. E. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp. Neurol. 273, 57–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Asgari, N., Berg, C. T., Mørch, M. T., Khorooshi, R. & Owens, T. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier. Ann. Clin. Transl Neurol. 2, 857–863 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Asgari, M., de Zélicourt, D. & Kurtcuoglu, V. Glymphatic solute transport does not require bulk flow. Sci. Rep. 6, 38635 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jin, B.-J., Smith, A. J. & Verkman, A. S. Spatial model of convective solute transport in brain extracellular space does not support a 'glymphatic' mechanism. J. Gen. Physiol. 148, 489–501 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Montagne, A. et al. Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathol. 131, 687–707 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nelson, A. R., Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim. Biophys. Acta 1862, 887–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J. Cereb. Blood Flow Metab. 35, 1055–1068 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Bennett, D. A. & Schneider, J. A. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 15, 934–943 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Toledo, J. B. et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain J. Neurol. 136, 2697–2706 (2013).

    Article  Google Scholar 

  53. Rosenberg, G. A. Blood–brain barrier permeability in aging and Alzheimer's disease. J. Prev. Alzheimers Dis. 1, 138–139 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 12, 383–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Montine, T. J. et al. Recommendations of the Alzheimer's Disease-Related Dementias Conference. Neurology 83, 851–860 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Snyder, H. M. et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. J. 11, 710–717 (2015).

    Google Scholar 

  58. Hachinski, V. & World Stroke Organization. Stroke and potentially preventable dementias proclamation: updated World Stroke Day proclamation. Stroke 46, 3039–3040 (2015).

    Article  PubMed  Google Scholar 

  59. Malek, N. et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease. Mov. Disord. 31, 1518–1526 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Drouin-Ouellet, J. et al. Cerebrovascular and blood–brain barrier impairments in Huntington's disease: potential implications for its pathophysiology. Ann. Neurol. 78, 160–177 (2015).

    Article  PubMed  Google Scholar 

  61. Lin, C.-Y. et al. Neurovascular abnormalities in humans and mice with Huntington's disease. Exp. Neurol. 250, 20–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Winkler, E. A. et al. Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 111–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Doherty, C. P. et al. Blood–brain barrier dysfunction as a hallmark pathology in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 75, 656–662 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Strazza, M., Pirrone, V., Wigdahl, B. & Nonnemacher, M. R. Breaking down the barrier: the effects of HIV-1 on the blood–brain barrier. Brain Res. 1399, 96–115 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Barnes, S. R. et al. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med. Imag. 15, 19 (2015).

    Article  Google Scholar 

  66. Barnes, S. R. et al. Optimal acquisition and modeling parameters for accurate assessment of low K trans blood–brain barrier permeability using dynamic contrast-enhanced MRI. Magn. Reson. Med. 75, 1967–1977 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Sagare, A. P., Sweeney, M. D., Makshanoff, J. & Zlokovic, B. V. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci. Lett. 607, 97–101 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Whitwell, J. L. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case–control study. Lancet Neurol. 11, 868–877 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Apostolova, L. G. et al. Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal. Neurobiol. Aging 31, 1077–1088 (2010).

    Article  PubMed  Google Scholar 

  70. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Winkler, E. A., Sengillo, J. D., Bell, R. D., Wang, J. & Zlokovic, B. V. Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability. J. Cereb. Blood Flow Metab. 32, 1841–1852 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Winkler, E. A. et al. Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc. Natl Acad. Sci. USA 111, E1035–E1042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van de Haar, H. J. et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281, 527–535 (2016).

    Article  PubMed  Google Scholar 

  75. van de Haar, H. J. et al. Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging. Neurobiol. Aging 45, 190–196 (2016).

    Article  PubMed  Google Scholar 

  76. van de Haar, H. J. et al. Subtle blood–brain barrier leakage rate and spatial extent: considerations for dynamic contrast-enhanced MRI. Med. Phys. 44, 4112–4125 (2017).

    Article  PubMed  Google Scholar 

  77. Wang, H., Golob, E. J. & Su, M.-Y. Vascular volume and blood–brain barrier permeability measured by dynamic contrast enhanced MRI in hippocampus and cerebellum of patients with MCI and normal controls. J. Magn. Reson. Imag. 24, 695–700 (2006).

    Article  Google Scholar 

  78. Starr, J. M., Farrall, A. J., Armitage, P., McGurn, B. & Wardlaw, J. Blood–brain barrier permeability in Alzheimer's disease: a case–control MRI study. Psychiatry Res. 171, 232–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Al-Bachari, S. MRI assessment of neurovascular changes in idiopathic Parkinson's disease. Thesis, Univ. Manchester (2016).

    Google Scholar 

  80. Taheri, S., Gasparovic, C., Shah, N. J. & Rosenberg, G. A. Quantitative measurement of blood–brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magn. Reson. Med. 65, 1036–1042 (2011).

    Article  PubMed  Google Scholar 

  81. Cramer, S. P., Simonsen, H., Frederiksen, J. L., Rostrup, E. & Larsson, H. B. W. Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin. 4, 182–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Cramer, S. P., Modvig, S., Simonsen, H. J., Frederiksen, J. L. & Larsson, H. B. W. Permeability of the blood–brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain J. Neurol. 138, 2571–2583 (2015).

    Article  Google Scholar 

  83. Gaitán, M. I. et al. Evolution of the blood–brain barrier in newly forming multiple sclerosis lesions. Ann. Neurol. 70, 22–29 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ingrisch, M. et al. Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T. Invest. Radiol. 47, 252–258 (2012).

    Article  PubMed  Google Scholar 

  85. Fainardi, E. et al. Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult. Scler. 12, 294–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Goos, J. D. C. et al. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 40, 3455–3460 (2009).

    Article  PubMed  Google Scholar 

  87. Brundel, M. et al. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer's disease. J. Alzheimers Dis. 31, 259–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Uetani, H. et al. Prevalence and topography of small hypointense foci suggesting microbleeds on 3T susceptibility-weighted imaging in various types of dementia. AJNR Am. J. Neuroradiol. 34, 984–989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zonneveld, H. I. et al. Prevalence of cortical superficial siderosis in a memory clinic population. Neurology 82, 698–704 (2014).

    Article  PubMed  Google Scholar 

  90. Olazarán, J. et al. Pattern of and risk factors for brain microbleeds in neurodegenerative dementia. Am. J. Alzheimers Dis. Other Demen. 29, 263–269 (2014).

    Article  PubMed  Google Scholar 

  91. Heringa, S. M. et al. Multiple microbleeds are related to cerebral network disruptions in patients with early Alzheimer's disease. J. Alzheimers Dis. 38, 211–221 (2014).

    Article  PubMed  Google Scholar 

  92. Shams, S. et al. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis — the Karolinska Imaging Dementia Study. AJNR Am. J. Neuroradiol. 36, 661–666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Poliakova, T., Levin, O., Arablinskiy, A., Vasenina, E. & Zerr, I. Cerebral microbleeds in early Alzheimer's disease. J. Neurol. 263, 1961–1968 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Yates, P. A. et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 82, 1266–1273 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Greenberg, S. M. et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 8, 165–174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Viswanathan, A. & Greenberg, S. M. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70, 871–880 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hanyu, H., Tanaka, Y., Shimizu, S., Takasaki, M. & Abe, K. Cerebral microbleeds in Alzheimer's disease. J. Neurol. 250, 1496–1497 (2003).

    Article  PubMed  Google Scholar 

  98. Pettersen, J. A. et al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch. Neurol. 65, 790–795 (2008).

    Article  PubMed  Google Scholar 

  99. Kantarci, K. et al. Focal hemosiderin deposits and β-amyloid load in the ADNI cohort. Alzheimers Dement. 9, S116–S123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Feldman, H. H. et al. Superficial siderosis: a potential diagnostic marker of cerebral amyloid angiopathy in Alzheimer disease. Stroke 39, 2894–2897 (2008).

    Article  PubMed  Google Scholar 

  101. Charidimou, A. et al. Cortical superficial siderosis in memory clinic patients: further evidence for underlying cerebral amyloid angiopathy. Cerebrovasc. Dis. 41, 156–162 (2016).

    Article  PubMed  CAS  Google Scholar 

  102. Shams, S. et al. Cortical superficial siderosis: prevalence and biomarker profile in a memory clinic population. Neurology 87, 1110–1117 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Blair, G. W., Hernandez, M. V., Thrippleton, M. J., Doubal, F. N. & Wardlaw, J. M. Advanced neuroimaging of cerebral small vessel disease. Curr. Treat. Opt. Cardiovasc. Med. 19, 56 (2017).

    Article  Google Scholar 

  104. Shams, S. & Wahlund, L.-O. Cerebral microbleeds as a biomarker in Alzheimer's disease? A review in the field. Biomark. Med. 10, 9–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Ham, J. H. et al. Cerebral microbleeds in patients with Parkinson's disease. J. Neurol. 261, 1628–1635 (2014).

    Article  PubMed  Google Scholar 

  106. Janelidze, S. et al. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 85, 1834–1842 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kwan, J. Y. et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology. PLoS ONE 7, e35241 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977).

    Article  CAS  PubMed  Google Scholar 

  110. McDougal, D. B. et al. Use of nonradioactive 2-deoxyglucose to study compartmentation of brain glucose metabolism and rapid regional changes in rate. Proc. Natl Acad. Sci. USA 87, 1357–1361 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cunnane, S. et al. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 27, 3–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Crane, R. K. & Sols, A. The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds. J. Biol. Chem. 210, 597–606 (1954).

    CAS  PubMed  Google Scholar 

  113. Rokka, J., Grönroos, T. J., Viljanen, T., Solin, O. & Haaparanta-Solin, M. HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 1048, 140–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Southworth, R., Parry, C. R., Parkes, H. G., Medina, R. A. & Garlick, P. B. Tissue-specific differences in 2-fluoro-2-deoxyglucose metabolism beyond FDG-6-P: a 19F NMR spectroscopy study in the rat. NMR Biomed. 16, 494–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Hers, H. G. & De Duve, C. The hexosephosphatase system; partition of activity of glucose-6-phosphatase in the tissues [French]. Bull. Soc. Chim. Biol. (Paris) 32, 20–29 (1950).

    CAS  Google Scholar 

  116. Sokoloff, L. Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain. Adv. Exp. Med. Biol. 291, 21–42 (1991).

    Article  CAS  PubMed  Google Scholar 

  117. Huang, M. T. & Veech, R. L. Metabolic fluxes between [14C]2-deoxy-D-glucose and [14C]2-deoxy-D-glucose-6-phosphate in brain in vivo. J. Neurochem. 44, 567–573 (1985).

    Article  CAS  PubMed  Google Scholar 

  118. Simpson, I. A., Chundu, K. R., Davies-Hill, T., Honer, W. G. & Davies, P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease. Ann. Neurol. 35, 546–551 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Mooradian, A. D., Chung, H. C. & Shah, G. N. GLUT-1 expression in the cerebra of patients with Alzheimer's disease. Neurobiol. Aging 18, 469–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Kalaria, R. N. & Harik, S. I. Reduced glucose transporter at the blood–brain barrier and in cerebral cortex in Alzheimer disease. J. Neurochem. 53, 1083–1088 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. Horwood, N. & Davies, D. C. Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer's disease. Virchows Arch. 425, 69–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hunt, A. et al. Reduced cerebral glucose metabolism in patients at risk for Alzheimer's disease. Psychiatry Res. 155, 147–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Samuraki, M. et al. Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imag. 34, 1658–1669 (2007).

    Article  Google Scholar 

  125. Mosconi, L. et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J. Nucl. Med. 49, 390–398 (2008).

    Article  PubMed  Google Scholar 

  126. Mosconi, L. et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J. Nucl. Med. 47, 1778–1786 (2006).

    CAS  PubMed  Google Scholar 

  127. Landau, S. M. et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging 32, 1207–1218 (2011).

    Article  PubMed  Google Scholar 

  128. Bailly, M. et al. Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer's disease and mild cognitive impairment: MRI and 18F-FDG PET quantitative analysis using FreeSurfer. Biomed. Res. Int. 2015, 583931 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ossenkoppele, R. et al. Differential effect of APOE genotype on amyloid load and glucose metabolism in AD dementia. Neurology 80, 359–365 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Protas, H. D. et al. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 70, 320–325 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mosconi, L. et al. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer's parents. Neurobiol. Aging 34, 22–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Landau, S. M. et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75, 230–238 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Mosconi, L. et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imag. 36, 811–822 (2009).

    Article  CAS  Google Scholar 

  134. Niwa, K., Kazama, K., Younkin, S. G., Carlson, G. A. & Iadecola, C. Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol. Dis. 9, 61–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Jagust, W. J. et al. Diminished glucose transport in Alzheimer's disease: dynamic PET studies. J. Cereb. Blood Flow Metab. 11, 323–330 (1991).

    Article  CAS  PubMed  Google Scholar 

  136. Piert, M., Koeppe, R. A., Giordani, B., Berent, S. & Kuhl, D. E. Diminished glucose transport and phosphorylation in Alzheimer's disease determined by dynamic FDG-PET. J. Nucl. Med. 37, 201–208 (1996).

    CAS  PubMed  Google Scholar 

  137. Cirrito, J. R. et al. P-Glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J. Clin. Invest. 115, 3285–3290 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wang, W., Bodles-Brakhop, A. M. & Barger, S. W. A role for P-glycoprotein in clearance of Alzheimer amyloid β -peptide from the brain. Curr. Alzheimer Res. 13, 615–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. McInerney, M. P., Short, J. L. & Nicolazzo, J. A. Neurovascular alterations in Alzheimer's disease: transporter expression profiles and CNS drug access. AAPS J. 19, 940–956 (2017).

    Article  PubMed  Google Scholar 

  140. van Assema, D. M. E. et al. Blood–brain barrier P-glycoprotein function in Alzheimer's disease. Brain J. Neurol. 135, 181–189 (2012).

    Article  Google Scholar 

  141. Deo, A. K. et al. Activity of P-glycoprotein, a β-amyloid transporter at the blood–brain barrier, is compromised in patients with mild Alzheimer disease. J. Nucl. Med. 55, 1106–1111 (2014).

    Article  PubMed  CAS  Google Scholar 

  142. Kortekaas, R. et al. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol 57, 176–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Gerwien, H. et al. Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood–brain barrier. Sci. Transl Med. 8, 364ra152 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Zamboni, P. et al. The value of cerebral Doppler venous haemodynamics in the assessment of multiple sclerosis. J. Neurol. Sci. 282, 21–27 (2009).

    Article  PubMed  Google Scholar 

  145. Marshall, O. et al. Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol. 71, 1275–1281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cullen, K. M., Kócsi, Z. & Stone, J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J. Cereb. Blood Flow Metab. 25, 1656–1667 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Hultman, K., Strickland, S. & Norris, E. H. The APOEε4/ε4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer's disease patients. J. Cereb. Blood Flow Metab. 33, 1251–1258 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Zenaro, E. et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Fiala, M. et al. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer's disease brain and damage the blood–brain barrier. Eur. J. Clin. Invest. 32, 360–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Persidsky, Y. et al. Rho-mediated regulation of tight junctions during monocyte migration across the blood–brain barrier in HIV-1 encephalitis (HIVE). Blood 107, 4770–4780 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Omalu, B. I., Fitzsimmons, R. P., Hammers, J. & Bailes, J. Chronic traumatic encephalopathy in a professional American wrestler. J. Forens. Nurs. 6, 130–136 (2010).

    Article  Google Scholar 

  152. Zipser, B. D. et al. Microvascular injury and blood–brain barrier leakage in Alzheimer's disease. Neurobiol. Aging 28, 977–986 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Ryu, J. K. & McLarnon, J. G. A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer's disease brain. J. Cell. Mol. Med. 13, 2911–2925 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Cortes-Canteli, M. et al. Fibrinogen and β-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer's disease. Neuron 66, 695–709 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Sengillo, J. D. et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease. Brain Pathol. 23, 303–310 (2013).

    Article  PubMed  Google Scholar 

  156. Halliday, M. R. et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J. Cereb. Blood Flow Metab. 36, 216–227 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Miners, J. S., Schulz, I. & Love, S. Differing associations between Aβ accumulation, hypoperfusion, blood–brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X17690761 (2017).

    Article  Google Scholar 

  158. Salloway, S. et al. Effect of APOE genotype on microvascular basement membrane in Alzheimer's disease. J. Neurol. Sci. 203–204, 183–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Sagare, A. P. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932 (2013).

    Article  PubMed  CAS  Google Scholar 

  160. Park, L. et al. Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA 110, 3089–3094 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kelly, P. et al. Restoration of cerebral and systemic microvascular architecture in APP/PS1 transgenic mice following treatment with Liraglutide. Microcirculation 22, 133–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Park, J.-C. et al. Annexin A1 restores Aβ1–42-induced blood–brain barrier disruption through the inhibition of RhoA–ROCK signaling pathway. Aging Cell 16, 149–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Alata, W., Ye, Y., St-Amour, I., Vandal, M. & Calon, F. Human apolipoprotein E ε4 expression impairs cerebral vascularization and blood–brain barrier function in mice. J. Cereb. Blood Flow Metab. 35, 86–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Nishitsuji, K., Hosono, T., Nakamura, T., Bu, G. & Michikawa, M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood–brain barrier model. J. Biol. Chem. 286, 17536–17542 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Gray, M. T. & Woulfe, J. M. Striatal blood–brain barrier permeability in Parkinson's disease. J. Cereb. Blood Flow Metab. 35, 747–750 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Pienaar, I. S. et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease. Neurobiol. Dis. 74, 392–405 (2015).

    Article  PubMed  Google Scholar 

  167. Loeffler, D. A. et al. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J. Neurochem. 65, 710–724 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Garbuzova-Davis, S. et al. Impaired blood–brain/spinal cord barrier in ALS patients. Brain Res. 1469, 114–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat. Neurosci. 11, 420–422 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Kirk, J., Plumb, J., Mirakhur, M. & McQuaid, S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J. Pathol. 201, 319–327 (2003).

    Article  PubMed  Google Scholar 

  171. Omalu, B. I. et al. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57, 128–134 (2005).

    Article  PubMed  Google Scholar 

  172. Farkas, E. & Luiten, P. G. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Baloyannis, S. J. & Baloyannis, I. S. The vascular factor in Alzheimer's disease: a study in Golgi technique and electron microscopy. J. Neurol. Sci. 322, 117–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Niu, F., Yao, H., Zhang, W., Sutliff, R. L. & Buch, S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J. Neurosci. 34, 11812–11825 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Kokjohn, T. A. et al. Neurochemical profile of dementia pugilistica. J. Neurotrauma 30, 981–997 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bailey, T. L., Rivara, C. B., Rocher, A. B. & Hof, P. R. The nature and effects of cortical microvascular pathology in aging and Alzheimer's disease. Neurol. Res. 26, 573–578 (2004).

    Article  PubMed  Google Scholar 

  180. Wu, Z. et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat. Med. 11, 959–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Grammas, P., Tripathy, D., Sanchez, A., Yin, X. & Luo, J. Brain microvasculature and hypoxia-related proteins in Alzheimer's disease. Int. J. Clin. Exp. Pathol. 4, 616–627 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Henkel, J. S., Beers, D. R., Wen, S., Bowser, R. & Appel, S. H. Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72, 1614–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Miyazaki, K. et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J. Neurosci. Res. 89, 718–728 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Yamamoto, M. et al. Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am. J. Pathol. 172, 521–533 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Kumar, D. K. V. et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci. Transl Med. 8, 340ra72 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Soscia, S. J. et al. The Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE 5, e9505 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Wada, K. et al. Expression levels of vascular endothelial growth factor and its receptors in Parkinson's disease. Neuroreport 17, 705–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Desai Bradaric, B., Patel, A., Schneider, J. A., Carvey, P. M. & Hendey, B. Evidence for angiogenesis in Parkinson's disease, incidental Lewy body disease, and progressive supranuclear palsy. J. Neural Transm. 119, 59–71 (2012).

    Article  PubMed  Google Scholar 

  189. Hill, K. K. et al. Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson's disease. Exp. Neurol. 241, 105–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Donahue, J. E. et al. RAGE, LRP-1, and amyloid-β protein in Alzheimer's disease. Acta Neuropathol. 112, 405–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Miller, M. C. et al. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer's disease. Brain Res. 1230, 273–280 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Sagare, A. P., Deane, R. & Zlokovic, B. V. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol. Ther. 136, 94–105 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M. & Holtzman, D. M. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295, 2264–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02008357 (2017).

  196. Deane, R. et al. RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685–691 (1996).

    Article  CAS  PubMed  Google Scholar 

  198. Mackic, J. B. et al. Human blood–brain barrier receptors for Alzheimer's amyloid-β1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102, 734–743 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Deane, R. et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Invest. 122, 1377–1392 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02916056 (2017).

  201. Halliday, M. R. et al. Relationship between cyclophilin A levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood–brain barrier breakdown. JAMA Neurol. 70, 1198–1200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Conejero-Goldberg, C. et al. APOE2 enhances neuroprotection against Alzheimer's disease through multiple molecular mechanisms. Mol. Psychiatry 19, 1243–1250 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Zeuzem, S. et al. Randomised clinical trial: alisporivir combined with peginterferon and ribavirin in treatment-naive patients with chronic HCV genotype 1 infection (ESSENTIAL II). Aliment. Pharmacol. Ther. 42, 829–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Langford, D. et al. Altered P-glycoprotein expression in AIDS patients with HIV encephalitis. J. Neuropathol. Exp. Neurol. 63, 1038–1047 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Cicchetti, F. et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann. Neurol. 76, 31–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Erickson, M. A. & Banks, W. A. Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J. Cereb. Blood Flow Metab. 33, 1500–1513 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Nuzzo, D. et al. Inflammatory mediators as biomarkers in brain disorders. Inflammation 37, 639–648 (2014).

    CAS  PubMed  Google Scholar 

  208. Skoog, I. et al. A population study on blood–brain barrier function in 85-year-olds: relation to Alzheimer's disease and vascular dementia. Neurology 50, 966–971 (1998).

    Article  CAS  PubMed  Google Scholar 

  209. Janelidze, S. et al. Increased blood–brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol. Aging 51, 104–112 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Skillback, T. et al. CSF/serum albumin ratio in dementias: a cross-sectional study on 1,861 patients. Neurobiol. Aging 59, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Blennow, K. et al. Blood–brain barrier disturbance in patients with Alzheimer's disease is related to vascular factors. Acta Neurol. Scand. 81, 323–326 (1990).

    Article  CAS  PubMed  Google Scholar 

  212. Wallin, A., Blennow, K. & Rosengren, L. Cerebrospinal fluid markers of pathogenetic processes in vascular dementia, with special reference to the subcortical subtype. Alzheimer Dis. Assoc. Disord. 13 (Suppl. 3), S102–S105 (1999).

    PubMed  Google Scholar 

  213. Blennow, K., Wallin, A., Uhlemann, C. & Gottfries, C. G. White-matter lesions on CT in Alzheimer patients: relation to clinical symptomatology and vascular factors. Acta Neurol. Scand. 83, 187–193 (1991).

    Article  CAS  PubMed  Google Scholar 

  214. Bowman, G. L., Kaye, J. A. & Quinn, J. F. Dyslipidemia and blood–brain barrier integrity in Alzheimer's disease. Curr. Gerontol. Geriatr. Res. 2012, 184042 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Faraco, G. & Iadecola, C. Hypertension: a harbinger of stroke and dementia. Hypertension 62, 810–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Ivens, S. et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130, 535–547 (2007).

    Article  PubMed  Google Scholar 

  217. Braganza, O. et al. Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling. Epilepsia 53, 1898–1906 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. LeVine, S. M. Albumin and multiple sclerosis. BMC Neurol. 16, 47 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Silverberg, G. D. et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer's type. Neurology 57, 1763–1766 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Craig-Schapiro, R. et al. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis. PLoS ONE 6, e18850 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Hanzel, C. E. et al. Analysis of matrix metallo-proteases and the plasminogen system in mild cognitive impairment and Alzheimer's disease cerebrospinal fluid. J. Alzheimers Dis. 40, 667–678 (2014).

    Article  CAS  PubMed  Google Scholar 

  222. Pisani, V. et al. Increased blood–cerebrospinal fluid transfer of albumin in advanced Parkinson's disease. J. Neuroinflamm. 9, 188 (2012).

    Article  CAS  Google Scholar 

  223. Liguori, C. et al. Cerebrospinal-fluid Alzheimer's disease biomarkers and blood–brain barrier integrity in a natural population of cognitive intact Parkinson's disease patients. CNS Neurol. Disord. Drug Targets 16, 339–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Brettschneider, J., Petzold, A., Süssmuth, S. D., Ludolph, A. C. & Tumani, H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66, 852–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Jessen Krut, J. et al. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS ONE 9, e88591 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Chen, Z. L. & Strickland, S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925 (1997).

    Article  CAS  PubMed  Google Scholar 

  227. Mhatre, M. et al. Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol. Aging 25, 783–793 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. Chen, B., Cheng, Q., Yang, K. & Lyden, P. D. Thrombin mediates severe neurovascular injury during ischemia. Stroke 41, 2348–2352 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Schachtrup, C. et al. Fibrinogen inhibits neurite outgrowth via β3 integrin-mediated phosphorylation of the EGF receptor. Proc. Natl Acad. Sci. USA 104, 11814–11819 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Paul, J., Strickland, S. & Melchor, J. P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J. Exp. Med. 204, 1999–2008 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Akassoglou, K. et al. Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multiple sclerosis. Proc. Natl Acad. Sci. USA 101, 6698–6703 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ryu, J. K. et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat. Commun. 6, 8164 (2015).

    Article  PubMed  Google Scholar 

  233. Bardehle, S., Rafalski, V. A. & Akassoglou, K. Breaking boundaries — coagulation and fibrinolysis at the neurovascular interface. Front. Cell. Neurosci. 9, 354 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Zhong, Z. et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J. Clin. Invest. 119, 3437–3449 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  235. Sui, Y.-T., Bullock, K. M., Erickson, M. A., Zhang, J. & Banks, W. A. α-Synuclein is transported into and out of the brain by the blood–brain barrier. Peptides 62, 197–202 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  237. Matsumoto, J. et al. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood–brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease? Acta Neuropathol. Commun. 5, 71 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Shi, M. et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol. 128, 639–650 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Calderón-Garcidueñas, L. et al. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration. J. Alzheimers Dis. 43, 1039–1058 (2015).

    Article  CAS  PubMed  Google Scholar 

  240. Pardridge, W. M. Drug transport across the blood–brain barrier. J. Cereb. Blood Flow Metab. 32, 1959–1972 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Bray, N. Biologics: Transferrin' bispecific antibodies across the blood–brain barrier. Nat. Rev. Drug Discov. 14, 14–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  242. Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  243. Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood–brain barrier in nonhuman primates. Sci. Transl Med. 6, 261ra154 (2014).

    Article  CAS  PubMed  Google Scholar 

  244. Yemisci, M. et al. Systemically administered brain-targeted nanoparticles transport peptides across the blood–brain barrier and provide neuroprotection. J. Cereb. Blood Flow Metab. 35, 469–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  245. Burgess, A. & Hynynen, K. Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv. Exp. Med. Biol. 880, 293–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  246. Poon, C., McMahon, D. & Hynynen, K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology 120, 20–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  247. Wang, D., Kranz-Eble, P. & De Vivo, D. C. Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Hum. Mutat. 16, 224–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  248. Alakbarzade, V. et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 47, 814–817 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Guemez-Gamboa, A. et al. Inactivating mutations in MFSD2A, required for ω3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47, 809–813 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Novara, F. et al. Clinical and molecular characteristics of SLC16A2 (MCT8) mutations in three families with the Allan–Herndon–Dudley syndrome. Hum. Mutat. 38, 260–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. Abdel-Hamid, M. S., Abdel-Salam, G. M. H., Issa, M. Y., Emam, B. A. & Zaki, M. S. Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. J. Hum. Genet. 62, 553–559 (2017).

    Article  CAS  PubMed  Google Scholar 

  252. Akawi, N. A. et al. Delineation of the clinical, molecular and cellular aspects of novel JAM3 mutations underlying the autosomal recessive hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Hum. Mutat. 34, 498–505 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Keller, A. et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat. Genet. 45, 1077–1082 (2013).

    Article  CAS  PubMed  Google Scholar 

  254. Nicolas, G. et al. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 80, 181–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  255. Vemuri, P. & Schöll, M. Linking amyloid-β and tau deposition in Alzheimer disease. JAMA Neurol. 74, 766–768 (2017).

    Article  PubMed  Google Scholar 

  256. He, L. et al. Analysis of the brain mural cell transcriptome. Sci. Rep. 6, 35108 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work of B.V.Z. is supported by the National Institutes of Health grants R01AG023084, R01NS090904, R01NS034467, R01AG039452, R01NS100459 and 5P01AG052350 in addition to the Cure Alzheimer's Fund, Alzheimer's Association and the Foundation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease reference number 16 CVD 05.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the literature search and to writing the manuscript. B.V.Z. worked closely with M.D.S. and A.P.S. to write the article and design the figures and tables.

Corresponding author

Correspondence to Berislav V. Zlokovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Blood–brain barrier

(BBB). The continuous endothelial membrane of the brain vasculature, which has sealed cell-to-cell contacts and is sheathed by vascular mural cells and perivascular astrocyte end-feet; it functions to separate the circulating blood and brain compartments and strictly regulates blood-to-brain and brain-to-blood transport of solutes.

Pericytes

Mural cells that wrap the brain capillary endothelium and are important for formation and maintenance of the blood–brain barrier.

Neurodegeneration

Progressive neuronal dysfunction that causes neuronal degenerative changes and loss of neurons in various regions of the CNS in different neurodegenerative diseases.

Tight junctions

Endothelial proteins that tightly connect brain endothelial cells and provide the anatomical blood–brain barrier with its low paracellular permeability and high transendothelial electrical resistance.

Transmembrane diffusion

A type of passive transport across a cellular membrane in which the net movement of molecules occurs down their respective concentration gradients.

Carrier-mediated transport

(CMT). Transport of molecules across the blood–brain barrier down their concentration gradients via specific membrane carrier proteins.

Receptor-mediated transcytosis

(RMT). Transport of molecules across the blood–brain barrier in a highly specific fashion via membrane receptors that become internalized with the ligand during transendothelial transcytosis.

Cerebrospinal fluid

(CSF). A fluid continually produced in the choroid plexus that flows throughout the brain's ventricular system; it functions as a clearance pathway, maintains intraventricular intracranial pressure in the brain and is often analysed to measure levels of brain-derived biomarkers of disease.

Cerebral amyloid angiopathy

(CAA). In Alzheimer disease, amyloid deposition in the walls of small arteries and capillaries in the brain causes vascular degeneration and lobar microbleeds, which contribute to blood–brain barrier breakdown, infarcts, white matter changes and cognitive impairment.

Two-hit vascular hypothesis of AD

Blood vessel damage is thought to be the initial insult through which blood–brain barrier dysfunction and/or diminished brain perfusion lead directly to amyloid-β (Aβ)-independent secondary neuronal injury (first hit) and Aβ accumulation (second hit) in the brain owing to faulty Aβ clearance and increased antibody production.

E4 allele of apolipoprotein E

(APOE*ε4). This allele is the major genetic risk factor for sporadic late-onset Alzheimer disease.

Dynamic contrast-enhanced (DCE) MRI

A dynamic MRI sequence used to quantify regional blood–brain barrier permeability to a gadolinium contrast agent.

T2*-weighted and susceptibility-weighted imaging

(SWI). An MRI sequence in which haemosiderin deposits yield a hypointense signal, which enables regional in vivo measurement of cerebral microbleeds in the human brain.

18F-fluorodeoxyglucose

(FDG). An 18F-radiolabelled analogue of glucose that (unlike glucose) is not metabolized in the brain; FDG is used as a surrogate for glucose in PET studies to provide an estimate of glucose uptake by the brain across the blood–brain barrier via solute carrier family 2, facilitated glucose transporter member 1 (GLUT1).

LDL receptor-related protein 1

(LRP1). The major efflux transporter for amyloid-β (Aβ) at the blood–brain barrier; it is responsible for brain-to-blood Aβ clearance.

Verapamil

An 11C-radiolabelled PET ligand that enables the in vivo detection of P-glycoprotein 1 function at the blood–brain barrier in the living human brain.

Receptor for advanced glycosylation end products

(RAGE). The major influx transporter of amyloid-β (Aβ) at the blood–brain barrier; it contributes to Aβ accumulation in the brain, the inflammatory response, suppression of blood flow and blood–brain barrier breakdown.

RNA sequencing

A transcriptomic approach to reveal the presence and quantity of RNA transcripts in a biological sample.

Induced pluripotent stem cells

(iPSCs). Adult cells reprogrammed to induce an embryonic-like pluripotent state for the purposes of inducing differentiation into a cell type of interest for research studies and/or potential therapeutic efforts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweeney, M., Sagare, A. & Zlokovic, B. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14, 133–150 (2018). https://doi.org/10.1038/nrneurol.2017.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing