[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Function and therapeutic value of astrocytes in neurological diseases

Abstract

Astrocytes are abundant glial cells in the central nervous system (CNS) that perform diverse functions in health and disease. Astrocyte dysfunction is found in numerous diseases, including multiple sclerosis, Alzheimer disease, Parkinson disease, Huntington disease and neuropsychiatric disorders. Astrocytes regulate glutamate and ion homeostasis, cholesterol and sphingolipid metabolism and respond to environmental factors, all of which have been implicated in neurological diseases. Astrocytes also exhibit significant heterogeneity, driven by developmental programmes and stimulus-specific cellular responses controlled by CNS location, cell–cell interactions and other mechanisms. In this Review, we highlight general mechanisms of astrocyte regulation and their potential as therapeutic targets, including drugs that alter astrocyte metabolism, and therapies that target transporters and receptors on astrocytes. Emerging ideas, such as engineered probiotics and glia-to-neuron conversion therapies, are also discussed. We further propose a concise nomenclature for astrocyte subsets that we use to highlight the roles of astrocytes and specific subsets in neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astrocyte roles in CNS inflammation.
Fig. 2: Targeting astrocyte signalling in Alzheimer disease.
Fig. 3: Targeting astrocyte signalling in Huntington disease.

Similar content being viewed by others

References

  1. Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Freeman, M. R. Specification and morphogenesis of astrocytes. Science 330, 774–778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Virchow, R. Gesammelte Abhandlungen zur Wissenschaftlichen Medizin (Meidinger Sohn & Co., 1856).

  4. Golgi, C. Contribuzione alla fina Anatomia Degli Organi Centrali del Sistema Nervosos (Tipi Fava e Garagnani, 1871).

  5. Kölliker, A. Handbuch der Gewebelehre des Menschen (Wilhelm Engelmann, 1889).

  6. Andriezen, W. L. The neuroglia elements in the human brain. BMJ 2, 227–230 (1893).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Marin, V., Garcia-Lopez, P. & Freire, M. Cajal’s contributions to glia research. Trends Neurosci. 30, 479–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020). This paper was the first to identify heterogeneity among astrocytes in neurological disease in an unsupervised manner using scRNA-seq and by validating a disease-associated astrocyte subset.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020). Detailed analysis of disease-associated astrocytes in AD.

    Article  CAS  PubMed  Google Scholar 

  11. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bayraktar, O. A. et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 23, 500–509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021). This paper describes the development of RABID-seq as a method for the study of astrocyte interactions in vivo using molecular barcoding and scRNA-seq. Astrocyte interactions can be mapped at single-cell resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Lanjakornsiripan, D. et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat. Commun. 9, 1623 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mayo, L. et al. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain 139, 1939–1957 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018). This work demonstrates for the first time that astrocyte–microglia interactions during CNS inflammation are regulated by the gut commensal flora.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016). First report of the control of astrocyte transcriptional programmes in CNS inflammation by the GBA via specific microbial metabolites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giovannoni, F. & Quintana, F. J. The role of astrocytes in CNS inflammation. Trends Immunol. 41, 805–819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wheeler, M. A. & Quintana, F. J. Regulation of astrocyte functions in multiple sclerosis. Cold Spring Harb. Perspect. Med. 9, a029009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rothhammer, V. & Quintana, F. J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol. 37, 625–638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596.e518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itoh, N. et al. Cell-specific and region-specific transcriptomics in the multiple sclerosis model: focus on astrocytes. Proc. Natl Acad. Sci. USA 115, E302–E309 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Spence, R. D. et al. Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERalpha signaling on astrocytes but not through ERbeta signaling on astrocytes or neurons. J. Neurosci. 33, 10924–10933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Booth, H. D. E., Hirst, W. D. & Wade-Martins, R. The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci. 40, 358–370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khakh, B. S. et al. Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci. 40, 422–437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 17, 694–703 (2014). A molecularly defined validation of a disease-associated astrocyte subset in a HD model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, Z. et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat. Commun. 11, 1105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diaz-Castro, B., Gangwani, M. R., Yu, X., Coppola, G. & Khakh, B. S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl. Med. 11, eaaw8546 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, X. et al. Context-specific striatal astrocyte molecular responses are phenotypically exploitable. Neuron 108, 1146–1162 e1110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187 e1179 (2018). Comprehensive report demonstrating the role of astrocyte calcium signalling in controlling behaviour and neural activity in the striatum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin-Fernandez, M. et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 20, 1540–1548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71.e14 (2018). First report of bona fide astrocyte control over memory by potentiating synaptic transmission in the hippocampus.

    Article  CAS  PubMed  Google Scholar 

  41. Nagai, J. et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177, 1280–1292.e1220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Molofsky, A. V. & Deneen, B. Astrocyte development: a guide for the perplexed. Glia 63, 1320–1329 (2015).

    Article  PubMed  Google Scholar 

  44. Ge, W. P., Miyawaki, A., Gage, F. H., Jan, Y. N. & Jan, L. Y. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Alvarez, J. I., Katayama, T. & Prat, A. Glial influence on the blood brain barrier. Glia 61, 1939–1958 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4, eaav0492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Owens, T., Bechmann, I. & Engelhardt, B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropathol. Exp. Neurol. 67, 1113–1121 (2008).

    Article  PubMed  Google Scholar 

  53. Engelhardt, B. & Coisne, C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8, 4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Alvarez, J. I. et al. The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334, 1727–1731 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Argaw, A. T. et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122, 2454–2468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Argaw, A. T., Gurfein, B. T., Zhang, Y., Zameer, A. & John, G. R. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc. Natl Acad. Sci. USA 106, 1977–1982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Chung, W. S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Martin, R., Bajo-Graneras, R., Moratalla, R., Perea, G. & Araque, A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349, 730–734 (2015). This study validates functional astrocyte heterogeneity in the context of striatal microcircuit regulation and implicates defined pathways that controlled astrocyte–neuron communication.

    Article  CAS  PubMed  Google Scholar 

  61. Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shigetomi, E., Patel, S. & Khakh, B. S. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 26, 300–312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Volterra, A., Liaudet, N. & Savtchouk, I. Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15, 327–335 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Halassa, M. M. & Haydon, P. G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72, 335–355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Somjen, G. G. Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8, 254–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Silver, I. A., Deas, J. & Erecinska, M. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78, 589–601 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Hu, Z. L. et al. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav. Immun. 81, 509–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, M. M., Hu, Z. L., Ding, J. H., Du, R. H. & Hu, G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson’s disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav. Immun. 95, 310–320 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Duan, S., Anderson, C. M., Stein, B. A. & Swanson, R. A. Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J. Neurosci. 19, 10193–10200 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anderson, C. M. & Swanson, R. A. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Schousboe, A. & Waagepetersen, H. S. Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox. Res. 8, 221–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Dong, X.-X., Wang, Y. & Qin, Z.-H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 30, 379–387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maragakis, N. J. & Rothstein, J. D. Glutamate transporters: animal models to neurologic disease. Neurobiol. Dis. 15, 461–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Soni, N., Reddy, B. V. & Kumar, P. GLT-1 transporter: an effective pharmacological target for various neurological disorders. Pharmacol. Biochem. Behav. 127, 70–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81, 163–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Pitt, D., Werner, P. & Raine, C. S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 6, 67–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Santello, M. & Volterra, A. TNFalpha in synaptic function: switching gears. Trends Neurosci. 35, 638–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Fiacco, T. A. & McCarthy, K. D. Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54, 676–690 (2006).

    Article  PubMed  Google Scholar 

  80. Zorec, R. et al. Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4, e00080 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee, S. et al. Channel-mediated tonic GABA release from glia. Science 330, 790–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Queiroz, G., Gebicke-Haerter, P. J., Schobert, A., Starke, K. & von Kugelgen, I. Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation. Neuroscience 78, 1203–1208 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Stout, C. E., Costantin, J. L., Naus, C. C. & Charles, A. C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem. 277, 10482–10488 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu, Z., Guo, Z., Gearing, M. & Chen, G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat. Commun. 5, 4159 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Bélanger, M., Allaman, I. & Magistretti, J. P. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738 (2011).

    Article  PubMed  CAS  Google Scholar 

  88. Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Sonninen, T. M. et al. Metabolic alterations in Parkinson’s disease astrocytes. Sci. Rep. 10, 14474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Merlini, M., Meyer, E. P., Ulmann-Schuler, A. & Nitsch, R. M. Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol. 122, 293–311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Polyzos, A. A. et al. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in huntington mice. Cell Metab. 29, 1258–1273 e1211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Acuña, A. I. et al. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice. Nature Commun. 4, 2917 (2013).

    Article  CAS  Google Scholar 

  93. Chao, C. C. et al. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179, 1483–1498.e1422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ferraiuolo, L. et al. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134, 2627–2641 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021). A recent consensus statement defining the hallmarks and open questions that surround astrocyte heterogeneity and reactivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Anderson, M. A., Ao, Y. & Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Safieh-Garabedian, B., Mayasi, Y. & Saade, N. E. Targeting neuroinflammation for therapeutic intervention in neurodegenerative pathologies: a role for the peptide analogue of thymulin (PAT). Expert Opin. Ther. Targets 16, 1065–1073 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Farina, C., Aloisi, F. & Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Colombo, E. & Farina, C. Astrocytes: key regulators of neuroinflammation. Trends Immunol. 37, 608–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016). Seminal study describing molecular mechanisms by which astrocytes control regeneration following SCI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tak, P. P. & Firestein, G. S. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mattson, M. P. & Camandola, S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247–254 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kang, Z. et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32, 414–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, J. & Du, L. PERK pathway is involved in oxygen-glucose-serum deprivation-induced NF-kB activation via ROS generation in spinal cord astrocytes. Biochem. Biophys. Res. Commun. 467, 197–203 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Kawai, T. & Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Brambilla, R. et al. Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 202, 145–156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brambilla, R. et al. Transgenic inhibition of astroglial NF-κB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis. J. Neuroinflammation 9, 213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brambilla, R. et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J. Immunol. 182, 2628–2640 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Brambilla, R. et al. Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia 62, 452–467 (2014).

    Article  PubMed  Google Scholar 

  112. van Loo, G. et al. Inhibition of transcription factor NF-kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat. Immunol. 7, 954–961 (2006).

    Article  PubMed  CAS  Google Scholar 

  113. Carrero, I. et al. Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κB mechanism in the rat brain. Exp. Neurol. 236, 215–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Lian, H. et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85, 101–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Hsiao, H. Y., Chen, Y. C., Chen, H. M., Tu, P. H. & Chern, Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Hum. Mol. Genet. 22, 1826–1842 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Ben Haim, L. et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci. 35, 2817–2829 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ceyzeriat, K., Abjean, L., Carrillo-de Sauvage, M. A., Ben Haim, L. & Escartin, C. The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? Neuroscience 330, 205–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Zhong, Z., Wen, Z. & Darnell, J. E. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc. Natl Acad. Sci. USA 91, 4806–4810 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. He, F. et al. A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat. Neurosci. 8, 616–625 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shibata, N. et al. Activation of signal transducer and activator of transcription-3 in the spinal cord of sporadic amyotrophic lateral sclerosis patients. Neurodegener. Dis. 6, 118–126 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Shibata, N. et al. Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1-mutated amyotrophic lateral sclerosis. Neuropathology 30, 353–360 (2010).

    Article  PubMed  Google Scholar 

  122. Reichenbach, N. et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol. Med. 11, e9665 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Haroon, F. et al. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J. Immunol. 186, 6521–6531 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Lu, H. C. et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc. Natl Acad. Sci. USA 117, 5430–5441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lu, J. Q., Power, C., Blevins, G., Giuliani, F. & Yong, V. W. The regulation of reactive changes around multiple sclerosis lesions by phosphorylated signal transducer and activator of transcription. J. Neuropathol. Exp. Neurol. 72, 1135–1144 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Klee, C. B., Crouch, T. H. & Krinks, M. H. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl Acad. Sci. USA 76, 6270–6273 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hogan, P. G. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Furman, J. L. & Norris, C. M. Calcineurin and glial signaling: neuroinflammation and beyond. J. Neuroinflammation 11, 158 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Serrano-Perez, M. C. et al. Response of transcription factor NFATc3 to excitotoxic and traumatic brain insults: identification of a subpopulation of reactive astrocytes. Glia 59, 94–107 (2011).

    Article  PubMed  Google Scholar 

  130. Furman, J. L. et al. Blockade of astrocytic calcineurin/NFAT signaling helps to normalize hippocampal synaptic function and plasticity in a rat model of traumatic brain injury. J. Neurosci. 36, 1502–1515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Abdul, H. M., Furman, J. L., Sama, M. A., Mathis, D. M. & Norris, C. M. NFATs and Alzheimer’s disease. Mol. Cell Pharmacol. 2, 7–14 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Caraveo, G. et al. Calcineurin determines toxic versus beneficial responses to α-synuclein. Proc. Natl Acad. Sci. USA 111, E3544–E3552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Furman, J. L. et al. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J. Neurosci. 32, 16129–16140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sompol, P. et al. Calcineurin/NFAT signaling in activated astrocytes drives network hyperexcitability in Aβ-bearing mice. J. Neurosci. 37, 6132–6148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Choe, J. Y., Park, K. Y., Park, S. H., Lee, S. I. & Kim, S. K. Regulatory effect of calcineurin inhibitor, tacrolimus, on IL-6/sIL-6R-mediated RANKL expression through JAK2-STAT3-SOCS3 signaling pathway in fibroblast-like synoviocytes. Arthritis Res. Ther. 15, R26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hirano, K. et al. Differential effects of calcineurin inhibitors, tacrolimus and cyclosporin a, on interferon-induced antiviral protein in human hepatocyte cells. Liver Transpl. 14, 292–298 (2008).

    Article  PubMed  Google Scholar 

  137. Manukyan, I., Galatioto, J., Mascareno, E., Bhaduri, S. & Siddiqui, M. A. Cross-talk between calcineurin/NFAT and Jak/STAT signalling induces cardioprotective alphaB-crystallin gene expression in response to hypertrophic stimuli. J. Cell Mol. Med. 14, 1707–1716 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Mencarelli, A. et al. Calcineurin B in CD4+ T cells prevents autoimmune colitis by negatively regulating the JAK/STAT pathway. Front. Immunol. 9, 261 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Filippi, M. et al. Multiple sclerosis. Nat. Rev. Dis. Prim. 4, 43 (2018).

    Article  PubMed  Google Scholar 

  140. Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. JM, C. Histologie de la sclérose en plaque [Histology of multiple sclerosis]. Gaz. des. Hôpitaux 41, 554–555 (1868).

    Google Scholar 

  142. Liedtke, W., Edelmann, W., Chiu, F. C., Kucherlapati, R. & Raine, C. S. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am. J. Pathol. 152, 251–259 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Voskuhl, R. R. et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J. Neurosci. 29, 11511–11522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Toft-Hansen, H., Fuchtbauer, L. & Owens, T. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia 59, 166–176 (2011).

    Article  PubMed  Google Scholar 

  145. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Farez, M. F. et al. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10, 958–964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Moreno, M. et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J. Neurosci. 34, 8175–8185 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Kim, R. Y. et al. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J. Neuroimmunol. 274, 53–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Locatelli, G. et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat. Neurosci. 21, 1196–1208 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Mills Ko, E. et al. Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J. Neuroinflammation 11, 105 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Krumbholz, M. et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211 (2006).

    Article  PubMed  Google Scholar 

  152. Wang, X., Haroon, F., Karray, S., Martina, D. & Schluter, D. Astrocytic Fas ligand expression is required to induce T-cell apoptosis and recovery from experimental autoimmune encephalomyelitis. Eur. J. Immunol. 43, 115–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Becher, B., Tugues, S. & Greter, M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963–973 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Croxford, A. L. et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+monocytes and licenses autoimmunity. Immun. 43, 502–514 (2015).

    Article  CAS  Google Scholar 

  155. Komuczki, J. et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity 50, 1289–1304 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Wicks, I. P. & Roberts, A. W. Targeting GM-CSF in inflammatory diseases. Nat. Rev. Rheumatol. 12, 37–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Wheeler, M. A., Rothhammer, V. & Quintana, F. J. Control of immune-mediated pathology via the aryl hydrocarbon receptor. J. Biol. Chem. 292, 12383–12389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Scheper, W. & Hoozemans, J. J. M. The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol. 130, 315–331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Smith, H. L. et al. Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration. Neuron 105, 855–866.e855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Alaamery, M. et al. Role of sphingolipid metabolism in neurodegeneration. J. Neurochem. 158, 25–35 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Choi, J. W. et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl Acad. Sci. USA 108, 751–756 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Rothhammer, V. et al. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc. Natl Acad. Sci. USA 114, 2012–2017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, W. et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell 178, 176–189.e115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Janke, R., Dodson, A. E. & Rine, J. Metabolism and epigenetics. Annu. Rev. Cell Dev. Biol. 31, 473–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Huynh, J. L. & Casaccia, P. Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. Lancet Neurol. 12, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Huynh, J. L. et al. Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat. Neurosci. 17, 121–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Li, X., Xiao, B. & Chen, X.-S. DNA methylation: a new player in multiple sclerosis. Mol. Neurobiol. 54, 4049–4059 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Fan, G. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345–3356 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Hatada, I. et al. Astrocyte-specific genes are generally demethylated in neural precursor cells prior to astrocytic differentiation. PLoS ONE 3, e3189 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Katsuoka, F. & Yamamoto, M. Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene 586, 197–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Polanco, J. C. et al. Amyloid-beta and tau complexity — towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 14, 22–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Itagaki, S., McGeer, P. L., Akiyama, H., Zhu, S. & Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173–182 (1989).

    Article  CAS  PubMed  Google Scholar 

  183. Nalivaeva, N. N., Beckett, C., Belyaev, N. D. & Turner, A. J. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? J. Neurochem. 120, 167–185 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Yan, P. et al. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J. Biol. Chem. 281, 24566–24574 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Yin, K.-J. et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J. Neurosci. 26, 10939–10948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lesne, S. et al. Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J. Biol. Chem. 278, 18408–18418 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Leuba, G. et al. Neuronal and nonneuronal quantitative BACE immunocytochemical expression in the entorhinohippocampal and frontal regions in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 19, 171–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Blasko, I. et al. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Aβ1-40 and Aβ1-42 by human astrocytes. Neurobiol. Dis. 7, 682–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Zhao, J., O’Connor, T. & Vassar, R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J. Neuroinflammation 8, 150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hur, J. Y. et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 586, 735–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 e1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e569 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Meldrum, B. S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S–1015S (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Hynd, M. R., Scott, H. L. & Dodd, P. R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 45, 583–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Masliah, E., Alford, M., DeTeresa, R., Mallory, M. & Hansen, L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann. Neurol. 40, 759–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  196. Mookherjee, P. et al. GLT-1 loss accelerates cognitive deficit onset in an Alzheimer’s disease animal model. J. Alzheimer’s Dis. 26, 447–455 (2011).

    Article  CAS  Google Scholar 

  197. Matos, M. et al. Astrocytic adenosine A2A receptors control the amyloid-beta peptide-induced decrease of glutamate uptake. J. Alzheimers Dis. 31, 555–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Huang, S. et al. Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Res. 1678, 129–137 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Liang, Z., Valla, J., Sefidvash-Hockley, S., Rogers, J. & Li, R. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J. Neurochem. 80, 807–814 (2002).

    Article  PubMed  Google Scholar 

  200. Hefendehl, J. K. et al. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat. Commun. 7, 13441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rothstein, J. D. et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Abramov, A. Y., Canevari, L. & Duchen, M. R. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 23, 5088–5095 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lee, L., Kosuri, P. & Arancio, O. Picomolar amyloid-β peptides enhance spontaneous astrocyte calcium transients. J. Alzheimers Dis. 38, 49–62 (2013).

    Article  Google Scholar 

  204. Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T. & Bacskai, B. J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Samakashvili, S. et al. Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis 32, 2757–2764 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Yoshiike, Y. et al. GABAA receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS ONE 3, e3029 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J. Lipid Res. 50, S183–S188 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer’s disease. Neuron 63, 287–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Verghese, P. B., Castellano, J. M. & Holtzman, D. M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 10, 241–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Holtzman, D. M., Herz, J. & Bu, G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006312 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Kanekiyo, T., Xu, H. & Bu, G. ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron 81, 740–754 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Thambisetty, M., Beason-Held, L., An, Y., Kraut, M. A. & Resnick, S. M. APOE ε4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 67, 93–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Sheline, Y. I. et al. APOE4 Allele Disrupts Resting State fMRI connectivity in the absence of amyloid plaques or decreased CSF A 42. J. Neurosci. 30, 17035–17040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Reiman, E. M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl Acad. Sci. USA 101, 284–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Methia, N. et al. ApoE deficiency compromises the blood brain barrier especially after injury. Mol. Med. 7, 810–815 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hafezi-Moghadam, A., Thomas, K. L. & Wagner, D. D. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am. J. Physiol. Cell Physiol. 292, C1256–C1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  218. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

    Article  PubMed  Google Scholar 

  219. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Damier, P., Hirsch, E. C., Zhang, P., Agid, Y. & Javoy-Agid, F. Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52, 1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  222. Ciesielska, A. et al. The impact of age and gender on the striatal astrocytes activation in murine model of Parkinson’s disease. Inflamm. Res. 58, 747–753 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Morales, I., Sanchez, A., Rodriguez-Sabate, C. & Rodriguez, M. The astrocytic response to the dopaminergic denervation of the striatum. J. Neurochem. 139, 81–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chan, C. S., Gertler, T. S. & Surmeier, D. J. Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci. 32, 249–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Prim. 1, 15005 (2015).

    Article  PubMed  Google Scholar 

  227. Ghosh, R. & Tabrizi, S. J. Clinical features of Huntington’s disease. Adv. Exp. Med. Biol. 1049, 1–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Hebb, M. O., Denovan-Wright, E. M. & Robertson, H. A. Expression of the Huntington’s disease gene is regulated in astrocytes in the arcuate nucleus of the hypothalamus of postpartum rats. FASEB J. 13, 1099–1106 (1999).

    Article  CAS  PubMed  Google Scholar 

  229. Shin, J. Y. et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171, 1001–1012 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bradford, J. et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl Acad. Sci. USA 106, 22480–22485 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wood, T. E. et al. Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum. Mol. Genet. 28, 487–500 (2019).

    CAS  PubMed  Google Scholar 

  232. Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol. Commun. 8, 19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Jiang, R., Diaz-Castro, B., Looger, L. L. & Khakh, B. S. Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J. Neurosci. 36, 3453–3470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Mochel, F. & Haller, R. G. Energy deficit in Huntington disease: why it matters. J. Clin. Invest. 121, 493–499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Manoharan, S. et al. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid. Med. Cell Longev. 2016, 8590578 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Kumar, A. & Ratan, R. R. Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. J. Huntingtons Dis. 5, 217–237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Leenders, K. L., Frackowiak, R. S., Quinn, N. & Marsden, C. D. Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Mov. Disord. 1, 69–77 (1986).

    Article  CAS  PubMed  Google Scholar 

  239. Kuwert, T. et al. Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113, 1405–1423 (1990).

    Article  PubMed  Google Scholar 

  240. May, J. M., Qu, Z. C. & Mendiratta, S. Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch. Biochem. Biophys. 349, 281–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  241. Rebec, G. V., Barton, S. J. & Ennis, M. D. Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington’s disease gene. J. Neurosci. 22, RC202 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rebec, G. V., Barton, S. J., Marseilles, A. M. & Collins, K. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. Neuroreport 14, 1263–1265 (2003).

    Article  CAS  PubMed  Google Scholar 

  243. Rebec, G. V., Conroy, S. K. & Barton, S. J. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 137, 327–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  244. Schonfeld, P. & Reiser, G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow. Metab. 33, 1493–1499 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Barber, C. N. & Raben, D. M. Lipid metabolism crosstalk in the brain: glia and neurons. Front.Cell. Neurosci. 13, 212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Polyzos, A. et al. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum. Mol. Genet. 25, 1792–1802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Bostan, A. C. & Strick, P. L. The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19, 338–350 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kreitzer, A. C. & Malenka, R. C. Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Liu, C., Goel, P. & Kaeser, P. S. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 22, 345–358 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Horga, G. & Abi-Dargham, A. An integrative framework for perceptual disturbances in psychosis. Nat. Rev. Neurosci. 20, 763–778 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    Article  CAS  PubMed  Google Scholar 

  252. Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl Acad. Sci. USA 106, 13939–13944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zhang, Y. V., Ormerod, K. G. & Littleton, J. T. Astrocyte Ca2+ influx negatively regulates neuronal activity. eNeuro 4, ENEURO.0340-16.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Lee, J. H. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590, 612–617 (2021). Groundbreaking study reporting that astrocytes, not microglia, are primarily responsible for activity-induced synaptic pruning controlling memory in the adult hippocampus.

    Article  CAS  PubMed  Google Scholar 

  255. Nguyen, P. T. et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 182, 388–403.e315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  258. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Yilmaz, M. et al. Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat. Neurosci. 24, 214–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  261. Pfau, M. L., Menard, C. & Russo, S. J. Inflammatory mediators in mood disorders: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 58, 411–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  262. Hodes, G. E., Kana, V., Menard, C., Merad, M. & Russo, S. J. Neuroimmune mechanisms of depression. Nat. Neurosci. 18, 1386–1393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Fan, K. Q. et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 179, 864–879.e819 (2019).

    Article  CAS  PubMed  Google Scholar 

  264. Kol, A. et al. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat. Neurosci. 23, 1229–1239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Ii Timberlake, M. & Dwivedi, Y. Linking unfolded protein response to inflammation and depression: potential pathologic and therapeutic implications. Mol. Psychiatry 24, 987–994 (2019).

    Article  PubMed  CAS  Google Scholar 

  266. Cruz-Pereira, J. S. et al. Depression’s unholy trinity: dysregulated stress, immunity, and the microbiome. Annu. Rev. Psychol. 71, 49–78 (2020).

    Article  PubMed  Google Scholar 

  267. Leng, L. et al. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 100, 551–563.e557 (2018).

    Article  CAS  PubMed  Google Scholar 

  268. DiSabato, D. J. et al. Interleukin-1 receptor on hippocampal neurons drives social withdrawal and cognitive deficits after chronic social stress. Mol. Psychiatry 26, 4770–4782 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Zhang, F., Lin, Y. A., Kannan, S. & Kannan, R. M. Targeting specific cells in the brain with nanomedicines for CNS therapies. J. Control. Rel. 240, 212–226 (2016).

    Article  CAS  Google Scholar 

  270. Wang, Y. C. et al. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 29, 4546–4553 (2008).

    Article  CAS  PubMed  Google Scholar 

  271. Nance, E. et al. Systemic dendrimer-drug treatment of ischemia-induced neonatal white matter injury. J. Control. Rel. 214, 112–120 (2015).

    Article  CAS  Google Scholar 

  272. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Venier, R. E. & Igdoura, S. A. Miglustat as a therapeutic agent: prospects and caveats. J. Med. Genet. 49, 591–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  274. Peterschmitt, M. J. et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of oral venglustat in healthy volunteers. Clin. Pharmacol. Drug Dev. 10, 86–98 (2021).

    Article  CAS  PubMed  Google Scholar 

  275. Arun, S., Liu, L. & Donmez, G. Mitochondrial biology and neurological diseases. Curr. Neuropharmacol. 14, 143–154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Witte, M. E., Mahad, D. J., Lassmann, H. & van Horssen, J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol. Med. 20, 179–187 (2014).

    Article  PubMed  Google Scholar 

  277. Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    Article  CAS  PubMed  Google Scholar 

  278. Pasqual, G. et al. Monitoring T cell-dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Turczyk, B. M. et al. Spatial sequencing: a perspective. J. Biomol. Tech. 31, 44–46 (2020).

    PubMed  PubMed Central  Google Scholar 

  280. Cisse, M. et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  281. Nkiliza, A. et al. RNA-binding disturbances as a continuum from spinocerebellar ataxia type 2 to Parkinson disease. Neurobiol. Dis. 96, 312–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  282. Chung, E. K., Chen, L. W., Chan, Y. S. & Yung, K. K. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J. Comp. Neurol. 511, 421–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  283. Chotibut, T. et al. Ceftriaxone reduces L-dopa-induced dyskinesia severity in 6-hydroxydopamine Parkinson’s disease model. Mov. Disord. 32, 1547–1556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Zhang, Y. et al. Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis. 8, e2574 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Khakh, B. S. & McCarthy, K. D. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb. Perspect. Biol. 7, a020404 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Lublin, F. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075–1084 (2016).

    Article  CAS  PubMed  Google Scholar 

  287. Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018).

    Article  CAS  PubMed  Google Scholar 

  288. Grassi, S. et al. Sphingosine 1-phosphate receptors and metabolic enzymes as druggable targets for brain diseases. Front. Pharmacol. 10, 807 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Wei, Z. D. & Shetty, A. K. Treating Parkinson’s disease by astrocyte reprogramming: progress and challenges. Sci. Adv. 7, eabg3198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Guo, Z. et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14, 188–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  291. Qian, H. et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582, 550–556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Zhou, H. et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181, 590–603.e516 (2020).

    Article  CAS  PubMed  Google Scholar 

  293. Xue, Y. et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Xue, Y. et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat. Neurosci. 19, 807–815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Wang, L. L. et al. Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184, 5465–5481 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. Blackshaw, S. et al. Ptbp1 deletion does not induce glia-to-neuron conversion in adult mouse retina and brain. bioRxiv https://doi.org/10.1101/2021.10.04.462784 (2021).

    Article  Google Scholar 

  297. Needham, B. D., Kaddurah-Daouk, R. & Mazmanian, S. K. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 21, 717–731 (2020).

    Article  CAS  PubMed  Google Scholar 

  298. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e1412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Aho, V. T. E. et al. Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine 44, 691–707 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Yang, D. et al. The role of the gut microbiota in the pathogenesis of Parkinson’s disease. Front. Neurol. 10, 1155 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).

    Article  CAS  PubMed  Google Scholar 

  302. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Aggarwal, N., Breedon, A. M. E., Davis, C. M., Hwang, I. Y. & Chang, M. W. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr. Opin. Biotechnol. 65, 171–179 (2020).

    Article  CAS  PubMed  Google Scholar 

  304. Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  305. Hochstim, C., Deneen, B., Lukaszewicz, A., Zhou, Q. & Anderson, D. J. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133, 510–522 (2008). An early report of transcriptional programmes that regionally specify the establishment of astrocyte subsets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Molofsky, A. V. et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509, 189–194 (2014). This work shows that spinal cord astrocytes exhibit dorsal–ventral heterogeneity, which dictates the patterning of sensory and motor neuron projections to the spinal cord.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Tsai, H. H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012). Functional validation of regionally defined astrocyte subsets that contribute to the establishment of CNS domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549.e539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Khakh, B. S. & Deneen, B. The emerging nature of astrocyte diversity. Annu. Rev. Neurosci. 42, 187–207 (2019).

    Article  CAS  PubMed  Google Scholar 

  310. Mews, P. et al. Alcohol metabolism contributes to brain histone acetylation. Nature 574, 717–721 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21, 1049–1060 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Wendeln, A.-C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  314. Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple Sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  317. Selkoe, D. J. Alzheimer disease and aducanumab: adjusting our approach. Nat. Rev. Neurol. 15, 365–366 (2019).

    Article  PubMed  Google Scholar 

  318. Gu, X. L. et al. Astrocytic expression of Parkinson’s disease-related A53T α-synuclein causes neurodegeneration in mice. Mol. Brain 3, 12 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Arzberger, T., Krampfl, K., Leimgruber, S. & Weindl, A. Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease–an in situ hybridization study. J. Neuropathol. Exp. Neurol. 56, 440–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  320. Kofuji, P. & Newman, E. A. Potassium buffering in the central nervous system. Neuroscience 129, 1045–1056 (2004).

    Article  CAS  PubMed  Google Scholar 

  321. Guttenplan, K. A. W. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021). A recent study reporting that long-chain saturated lipids are one mechanism of astrocyte-induced neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Quintana lab is supported by grants NS102807, ES02530, ES029136, AI126880 and AI149699 from the NIH; RG4111A1 from the National Multiple Sclerosis Society (to F.J.Q.), and PA-1604-08459 from the International Progressive MS Alliance. H.-G.L. was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14039088). M.A.W. was supported by the NIH (1K99NS114111, F32NS101790), a training grant from the NIH and Dana-Farber Cancer Institute (T32CA207201), a travelling neuroscience fellowship from the Program in Interdisciplinary Neuroscience at Brigham and Women’s Hospital, and the Women’s Brain Initiative at Brigham and Women’s Hospital.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Francisco J. Quintana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Jason Plemel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tripartite synapses

Bidirectional interactions established by astrocytes with pre- and post-synaptic nerve terminals.

Excitotoxicity

Neuronal dysfunction and death caused by the accumulation of excess neurotransmitters, primarily glutamate, in synapses.

Relapsing–remitting mutiple sclerosis

(RRMS). The most common phenotype of multiple sclerosis, which is characterized by relapses followed by periods of partial or complete recovery. Most patients with RRMS will eventually develop secondary progressive multiple sclerosis.

Secondary progressive multiple sclerosis

(SPMS). A phase of multiple sclerosis characterized by the progressive, irreversible accumulation of neurological disability, which shows limited response to available therapies.

Gut–brain axis

(GBA). Bidirectional communication between the gut microbiota and the brain.

Astrocyte–neuron lactate shuttle

Mechanism by which lactate released by astrocytes from glycolysis is used as a metabolic substrate for neurons under normal physiological conditions.

Designer receptors exclusively activated by designer drugs

(DREADDs). Widely used tool for selectively manipulating neuronal activity indirectly through G protein-coupled receptor (GPCR)-dependent signalling pathways.

Medium spiny neuron

(MSN). Class of inhibitory GABAergic neurons that represents ~95% of the neuronal population in the mammalian striatum.

Synaptic pruning

Neurodevelopmental process of eliminating neurons and synaptic connections in the brain.

Photoactivatable Ca2+ uncaging

Covalent attachment of a photochemical group to a biomolecule to render it inert until light irradiation releases the bond. In the case of Ca2+ uncaging, the photochemical group is attached to a Ca2+ chelator, such as EGTA.

Poly(lactic-co-glycolic acid) nanoparticles

(PLGA nanoparticles). FDA-approved biodegradable polymeric nanoparticle extensively used in drug delivery systems owing to its biocompatibility and low toxicity.

Polyamidoamine dendrimers

(PAMAM dendrimers). A class of dendrimers, hyperbranched macromolecules with numerous functional amine groups on the surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HG., Wheeler, M.A. & Quintana, F.J. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 21, 339–358 (2022). https://doi.org/10.1038/s41573-022-00390-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00390-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing