Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy
<p>Schematic representation of drug permeation routes across the skin.</p> "> Figure 2
<p>Schematic demonstration of various nanocarriers.</p> "> Figure 3
<p>Transdermal drug delivery technologies for dermatoses.</p> "> Figure 4
<p>Schematic illustration and characterization of nanoparticles for psoriasis treatment. (<b>A</b>) CLSM images of HaCaT cells treated with TCeO<sub>2</sub>-FNL/CeO<sub>2</sub>-FNL at predetermined time points (red: mitochondria; green: TCeO<sub>2</sub>-FNL/CeO<sub>2</sub>-FNL). Reprinted from Ref. [<a href="#B110-pharmaceutics-16-01384" class="html-bibr">110</a>]. (<b>B</b>) Scheme of the nanoparticle PLN-TPPS2a-TNF siRNA and PCI mechanism. Reprinted with permission from Ref. [<a href="#B111-pharmaceutics-16-01384" class="html-bibr">111</a>]. Copyright 2021 Elsevier. (<b>C</b>) H&E sections and immunohistochemical micrographs of skin of psoriasis mice model treated with HA-MTX-Lipo MN (Scare bar: 50 μm). Reprinted with permission from Ref. [<a href="#B112-pharmaceutics-16-01384" class="html-bibr">112</a>]. Copyright 2024 Elsevier.</p> "> Figure 5
<p>Schematic illustration and characterization of nanoparticles for vitiligo therapy. (<b>A</b>) Using Fontana–Masson silver staining, the B16F10 cell line’s melanin pigment is visible. Dark black staining of the melanin in various groups is shown by yellow arrows: (<b>A1</b>) Control, (<b>A2</b>) PSR-UDL, (<b>A3</b>) RSV-UDL, and (<b>A4</b>) PSR + RSV-UDL (Scare bar: 1000 μm). Reprinted with permission from Ref. [<a href="#B117-pharmaceutics-16-01384" class="html-bibr">117</a>]. Copyright 2017 Elsevier. (<b>B</b>) Schematic illustration of 5-MOP/8-MOP sol and Fontana–Masson silver staining to visualize melanin pigment in B16F10 cells where melanin is stained dark black in different groups: (<b>B1</b>) PSR Sol, (<b>B2</b>) 5-MOP Sol, (<b>B3</b>) 8-MOP Sol, (<b>B4</b>) PSR UDL, (<b>B5</b>) 5-MOP UDL, and (<b>B6</b>) 8-MOP UDL. Reprinted with permission from Ref. [<a href="#B119-pharmaceutics-16-01384" class="html-bibr">119</a>]. Copyright 2019 Elsevier. (<b>C</b>) The uptake, transport, and accumulation of MelNPs in HEka cells were analyzed using transmission electron microscopy and confocal optical microscopy. Reprinted from Ref. [<a href="#B120-pharmaceutics-16-01384" class="html-bibr">120</a>].</p> "> Figure 6
<p>(<b>A</b>) Representative images of the wound healing trace after the treatment of OBPG&MP NPs (Scar bar: 5 mm). Reprinted with permission from Ref. [<a href="#B121-pharmaceutics-16-01384" class="html-bibr">121</a>]. Copyright 2024 Wiley. (<b>B</b>) Histological evaluation of the regenerated skin via Masson staining treated with OBPG%MP NPs (Scar bar: 2 and 200 µm). Reprinted with permission from Ref. [<a href="#B121-pharmaceutics-16-01384" class="html-bibr">121</a>]. Copyright 2024 Wiley. (<b>C</b>) Representative images of immunohistochemistry staining of cytokeratin of wound tissues after the treatment of KGF-2/ aFGF-NPs MNs on Day 3 and Day 14. Reprinted with permission from Ref. [<a href="#B124-pharmaceutics-16-01384" class="html-bibr">124</a>]. Copyright 2024 Wiley.</p> "> Figure 7
<p>(<b>A</b>) Preparation and in vivo antitumor evaluation of Vem-TD-Lip. Reprinted with permission from Ref. [<a href="#B130-pharmaceutics-16-01384" class="html-bibr">130</a>]. Copyright 2018 Elsevier. (<b>B</b>) Design principle of the NIR light-activatable dissolving MN system (MN-pB/I) for multimodal theragnostic application in melanoma. Reprinted with permission from Ref. [<a href="#B131-pharmaceutics-16-01384" class="html-bibr">131</a>]. Copyright 2023 Springer Nature. (<b>C</b>) Scheme and in vivo antitumor evaluation of Cu-PDA-based synergistic comprehensive treatment for melanoma tumor model in Balb/c mice. Reprinted with permission from Ref. [<a href="#B132-pharmaceutics-16-01384" class="html-bibr">132</a>]. Copyright 2021 Elsevier.</p> ">
Abstract
:1. Introduction
2. Skin Penetration of Nanocarrier-Based Transdermal Delivery System
2.1. Routes of Penetration
2.1.1. Transcellular Route
2.1.2. Paracellular Route
2.1.3. Transfollicular Route
2.2. Mechanism of Enhanced Penetration of Nanocarrier-Based Transdermal Delivery System
2.2.1. Skin Hydration
2.2.2. System Deformability
2.2.3. Disruption of the SC
2.2.4. Surface Charge
2.2.5. Particle Size
3. Nanocarriers for Transdermal Delivery
3.1. Vesicular Nanocarriers
3.1.1. Liposome
3.1.2. Niosome
3.1.3. Transferosome
3.1.4. Ethosome
3.2. Lipid-Based Nanocarriers
3.2.1. Solid Lipid Nanoparticle (SLN)
3.2.2. Nanostructured Lipid Carrier (NLC)
3.3. Emulsion-Based Nanocarriers
3.3.1. Microemulsion
3.3.2. Nanoemulsion
3.4. Polymeric Nanocarriers
3.4.1. Polymeric Nanoparticle (PNP)
3.4.2. Polymeric Micelle (PM)
3.4.3. Dendrimer
3.5. Inorganic Nanoparticles
3.6. Inclusion Complexes
4. Nanocarrier-Based Transdermal Delivery Technology for Dermatological Therapy
4.1. Psoriasis
4.2. Vitiligo
4.3. Wound Healing
4.4. Skin Cancer
4.4.1. Melanoma
4.4.2. Keratinocyte Carcinoma
4.5. Others
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SC | Stratum corneum |
NLC | Nanostructured lipid carrier |
AmB | Amphotericin B |
NC | Nanocrystal |
CUR | Curcumin |
EA | Edge activator |
SLN | Solid lipid nanoparticle |
PNP | Polymeric nanoparticle |
PM | Polymeric micelle |
CMC | Critical micelle concentration |
AuNPs | Gold nanoparticles |
CD | Cyclodextrins |
TRA | Trans retinoic acid |
TPP | Tri-phenylphosphine |
MTX | Methotrexate |
EGCG | Epigallocatechin gallate |
NSO | Nigella sativa seed oil |
VCO | Virgin coconut oil |
PSR | Psoralen |
MOP | Methoxypsoralen |
aFGF | Acidic fibroblast growth factor |
DFO | Deferoxamine |
ICG | Indocyanine green |
ROS | Reactive oxygen species |
PDA | Polydopamine |
VSD | Vismodegib |
ETX | Etoricoxib |
DOX | Doxorubicin |
FDA | Food and drug administration |
UDL | Ultradeformable liposomes |
MelNPs | Melanin-like nanoparticles |
UV | Ultraviolet |
KGF-2 | Keratinocyte growth factor-2 |
MNs | Microneedles |
CSD | Cumulative sun damage |
KC | Keratinocyte carcinoma |
BCC | Basal cell carcinoma |
SCC | Squamous cell carcinoma |
AK | Actinic keratoses |
WHO | World Health Organization |
AD | Atopic dermatitis |
HA | Hyaluronic acid |
PHA | Poly hyaluronic acid |
TIMP-1 | Tissue inhibitor of metalloproteinases 1 |
References
- Munoz, L.D.; Sweeney, M.J.; Jameson, J.M. Skin Resident γδ T Cell Function and Regulation in Wound Repair. Int. J. Mol. Sci. 2020, 21, 9286. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Kim, M. Skin Barrier Function and the Microbiome. Int. J. Mol. Sci. 2022, 23, 13071. [Google Scholar] [CrossRef] [PubMed]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.X.; Liu, Z.J.; Xu, J.; Cheng, Y.; Yin, R.X.; Ma, L.; Li, H.L.; Qian, X.H.; Zhang, H.B. 3D skin models along with skin-on-a-chip systems: A critical review. Chin. Chem. Lett. 2023, 34, 107819. [Google Scholar] [CrossRef]
- Supe, S.; Takudage, P. Methods for evaluating penetration of drug into the skin: A review. Ski. Res. Technol. 2021, 27, 299–308. [Google Scholar] [CrossRef]
- Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv. 2020, 17, 145–155. [Google Scholar] [CrossRef]
- Quan, T. Molecular insights of human skin epidermal and dermal aging. J. Dermatol. Sci. 2023, 112, 48–53. [Google Scholar] [CrossRef]
- Li, Y.; Long, J.; Zhang, Z.; Yin, W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front. Physiol. 2024, 15, 1346612. [Google Scholar] [CrossRef]
- Cai, H.; Wen, H.; Li, J.; Lu, L.; Zhao, W.; Jiang, X.; Bai, R. Small-molecule agents for treating skin diseases. Eur. J. Med. Chem. 2024, 268, 116269. [Google Scholar] [CrossRef]
- Tang, L.; He, S.; Yin, Y.; Liu, H.; Hu, J.; Cheng, J.; Wang, W. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics 2021, 13, 1888. [Google Scholar] [CrossRef]
- Elmowafy, M. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf. B Biointerfaces 2021, 203, 111748. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, V.; Ganashalingam, Y.; Schesny, R.; Raab, C.; Sengupta, S.; Keck, C.M. Influence of Massage and Skin Hydration on Dermal Penetration Efficacy of Nile Red from Petroleum Jelly—An Unexpected Outcome. Pharmaceutics 2021, 13, 2190. [Google Scholar] [CrossRef] [PubMed]
- Joukhadar, R.; Nižić Nodilo, L.; Lovrić, J.; Hafner, A.; Pepić, I.; Jug, M. Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier. Gels 2024, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Waghule, T.; Gorantla, S.; Rapalli, V.K.; Shah, P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Emerging Trends in Topical Delivery of Curcumin through Lipid Nanocarriers: Effectiveness in Skin Disorders. AAPS PharmSciTech 2020, 21, 284. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.L.; Hao, Y.; Yuan, L.P.; Pradhan, S.; Shrestha, K.; Pradhan, O.; Liu, H.J.; Li, W. Nano-formulations for transdermal drug delivery: A review. Chin. Chem. Lett. 2018, 29, 1713–1724. [Google Scholar] [CrossRef]
- Aljuffali, I.A.; Lin, C.-H.; Yang, S.-C.; Alalaiwe, A.; Fang, J.-Y. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 2022, 23, 187. [Google Scholar] [CrossRef]
- Elmowafy, M.; Shalaby, K.; Ali, H.M.; Alruwaili, N.K.; Salama, A.; Ibrahim, M.F.; Akl, M.A.; Ahmed, T.A. Impact of nanostructured lipid carriers on dapsone delivery to the skin: In vitro and in vivo studies. Int. J. Pharm. 2019, 572, 118781. [Google Scholar] [CrossRef]
- Omar, M.M.; Hasan, O.A.; El Sisi, A.M. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int. J. Nanomed. 2019, 14, 1551–1562. [Google Scholar] [CrossRef]
- Souto, E.B.; Macedo, A.S.; Dias-Ferreira, J.; Cano, A.; Zielińska, A.; Matos, C.M. Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs). Int. J. Mol. Sci. 2021, 22, 9743. [Google Scholar] [CrossRef]
- Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004, 56, 675–711. [Google Scholar] [CrossRef]
- Carvalheiro, M.; Vieira, J.; Faria-Silva, C.; Marto, J.; Simões, S. Amphotericin B-loaded deformable lipid vesicles for topical treatment of cutaneous leishmaniasis skin lesions. Drug Deliv. Transl. Res. 2021, 11, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Malviya, N.; Prabakaran, A.; Alexander, A. Comparative study on ethosomes and transferosomes for enhancing skin permeability of sinapic acid. J. Mol. Liq. 2023, 383, 122098. [Google Scholar] [CrossRef]
- Babaie, S.; Del Bakhshayesh, A.R.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Invasome: A Novel Nanocarrier for Transdermal Drug Delivery. Nanomaterials 2020, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Zhengguang, L.; Jie, H.; Yong, Z.; Jiaojiao, C.; Xingqi, W.; Xiaoqin, C. Study on the transdermal penetration mechanism of ibuprofen nanoemulsions. Drug Dev. Ind. Pharm. 2018, 45, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Vedadghavami, A.; Zhang, C.Z.; Bajpayee, A.G. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. Nano Today 2020, 34, 100898. [Google Scholar] [CrossRef]
- Tupal, A.; Sabzichi, M.; Ramezani, F.; Kouhsoltani, M.; Hamishehkar, H. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. J. Microencapsul. 2016, 33, 372–380. [Google Scholar] [CrossRef]
- Qu, F.; Sun, Y.; Bi, D.; Peng, S.; Li, M.; Liu, H.; Zhang, L.; Tao, J.; Liu, Y.; Zhu, J. Regulating Size and Charge of Liposomes in Microneedles to Enhance Intracellular Drug Delivery Efficiency in Skin for Psoriasis Therapy. Adv. Healthc. Mater. 2023, 12, e2302314. [Google Scholar] [CrossRef]
- Wu, X.; Landfester, K.; Musyanovych, A.; Guy, R.H. Disposition of Charged Nanoparticles after Their Topical Application to the Skin. Ski. Pharmacol. Physiol. 2010, 23, 117–123. [Google Scholar] [CrossRef]
- Ternullo, S.; Basnet, P.; Holsæter, A.M.; Flaten, G.E.; de Weerd, L.; Škalko-Basnet, N. Deformable liposomes for skin therapy with human epidermal growth factor: The effect of liposomal surface charge. Eur. J. Pharm. Sci. 2018, 125, 163–171. [Google Scholar] [CrossRef]
- Nawaz, A.; Latif, M.S.; Shah, M.K.A.; Elsayed, T.M.; Ahmad, S.; Khan, H.A. Formulation and Characterization of Ethyl Cellulose-Based Patches Containing Curcumin-Chitosan Nanoparticles for the Possible Management of Inflammation via Skin Delivery. Gels 2023, 9, 201. [Google Scholar] [CrossRef]
- Yao, S.; Chen, N.; Sun, X.; Wang, Q.; Li, M.; Chen, Y. Size-dependence of the skin penetration of andrographolide nanosuspensions: In vitro release-ex vivo permeation correlation and visualization of the delivery pathway. Int. J. Pharm. 2023, 641, 123065. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Xu, S.; Zhang, W.; Li, Y.; Zhou, Y.; Miao, X. Skin permeation of curcumin nanocrystals: Effect of particle size, delivery vehicles, and permeation enhancer. Colloids Surf. B Biointerfaces 2023, 224, 113203. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Feng, X. Gold nanoparticles for skin drug delivery. Int. J. Pharm. 2022, 625, 122122. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, R.; Dash, A.K. Liposomes and Transferosomes: A Breakthrough in Topical and Transdermal Delivery. Ther. Deliv. 2021, 12, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. J. Pharm. 2018, 2018, 3420204. [Google Scholar] [CrossRef] [PubMed]
- Fadaei, M.S.; Fadaei, M.R.; Kheirieh, A.E.; Rahmanian-Devin, P.; Dabbaghi, M.M.; Nazari Tavallaei, K.; Shafaghi, A.; Hatami, H.; Baradaran Rahimi, V.; Nokhodchi, A.; et al. Amir Emad Kheirieh, Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI J. 2024, 212–263. [Google Scholar]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef]
- Sarangi, M.; Padhi, S. Novel herbal drug delivery system: An overview. Arch. Med. Health Sci. 2018, 6, 171. [Google Scholar] [CrossRef]
- Natsheh, H.; Touitou, E. Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020, 25, 2959. [Google Scholar] [CrossRef]
- Patel, D.; Chatterjee, B. Identifying Underlying Issues Related to the Inactive Excipients of Transfersomes based Drug Delivery System. Curr. Pharm. Des. 2021, 27, 971–980. [Google Scholar] [CrossRef]
- Esposito, E.; Calderan, L.; Galvan, A.; Cappellozza, E.; Drechsler, M.; Mariani, P.; Pepe, A.; Sguizzato, M.; Vigato, E.; Dalla Pozza, E.; et al. Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study. Int. J. Mol. Sci. 2022, 23, 15112. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.-Q.; Zhang, D.-P.; Bian, Q.; Feng, X.-F.; Li, H.; Rao, Y.-F.; Shen, Y.-M.; Geng, F.-N.; Yuan, A.-R.; Ying, X.-Y.; et al. Mechanism investigation of ethosomes transdermal permeation. Int. J. Pharm. X 2019, 1, 100027. [Google Scholar] [CrossRef] [PubMed]
- Abu-Huwaij, R.; Zidan, A.N. Unlocking the potential of cosmetic dermal delivery with ethosomes: A comprehensive review. J. Cosmet. Dermatol. 2023, 23, 17–26. [Google Scholar] [CrossRef]
- Wiemann, S.; Keck, C.M. Are lipid nanoparticles really superior? A holistic proof of concept study. Drug Deliv. Transl. Res. 2021, 12, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Andoyo, R.; Indiarto, R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants 2023, 12, 633. [Google Scholar] [CrossRef] [PubMed]
- Rosita, N.; Sultani, A.A.; Hariyadi, D.M. Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin. Sci. Rep. 2022, 12, 19365. [Google Scholar] [CrossRef] [PubMed]
- Ait-Touchente, Z.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Lebaz, N.; Fessi, H.; Elaissari, A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials 2023, 13, 1688. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef]
- Duarte, J.; Sharma, A.; Sharifi, E.; Damiri, F.; Berrada, M.; Khan, M.A.; Singh, S.K.; Dua, K.; Veiga, F.; Mascarenhas-Melo, F.; et al. Topical delivery of nanoemulsions for skin cancer treatment. Appl. Mater. Today 2023, 35, 102001. [Google Scholar] [CrossRef]
- Avramović, N.; Mandić, B.; Savić-Radojević, A.; Simić, T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics 2020, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Costa Lima, S.A.; Barbosa, A.I.; Nunes, C.; Yousef, I.; Reis, S. Synchrotron-based infrared microspectroscopy of polymeric nanoparticles and skin: Unveiling molecular interactions to enhance permeation. Chem. Phys. Lipids 2022, 249, 105254. [Google Scholar] [CrossRef] [PubMed]
- Chavoshy, F.; Makhmalzade, B. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J. Adv. Pharm. Technol. Res. 2018, 9, 2. [Google Scholar] [CrossRef]
- Song, H.; Cai, Y.; Nan, L.; Liu, J.; Wang, J.; Wang, X.; Liu, C.; Guo, J.; Fang, L. A Rhamnose-PEG-Modified Dendritic Polymer for Long-Term Efficient Transdermal Drug Delivery. ACS Appl. Mater. Interfaces 2024, 16, 9799–9815. [Google Scholar] [CrossRef]
- Lyu, Z.; Ding, L.; Huang, A.Y.T.; Kao, C.L.; Peng, L. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem. 2019, 13, 34–48. [Google Scholar] [CrossRef]
- Saweres-Argüelles, C.; Ramírez-Novillo, I.; Vergara-Barberán, M.; Carrasco-Correa, E.J.; Lerma-García, M.J.; Simó-Alfonso, E.F. Skin absorption of inorganic nanoparticles and their toxicity: A review. Eur. J. Pharm. Biopharm. 2023, 182, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Meng, X.; Zhang, S.; Chen, Y.; Zhang, Z.; Zhang, Y. Recent Progress in Transdermal Nanocarriers and Their Surface Modifications. Molecules 2021, 26, 3093. [Google Scholar] [CrossRef]
- Singpanna, K.; Pornpitchanarong, C.; Patrojanasophon, P.; Rojanarata, T.; Ngawhirunpat, T.; Li, S.K.; Opanasopit, P. Gold nanoparticles and their applications in transdermal drug delivery: A review. J. Drug Deliv. Sci. Technol. 2023, 90, 105174. [Google Scholar] [CrossRef]
- Crini, G.; Fenyvesi, É.; Szente, L. Outstanding contribution of Professor Jozsef Szejtli to cyclodextrin applications in foods, cosmetics, drugs, chromatography and biotechnology: A review. Environ. Chem. Lett. 2021, 19, 2619–2641. [Google Scholar] [CrossRef]
- Ji, X.Y.; Zou, Y.X.; Lei, H.F.; Bi, Y.; Yang, R.; Tang, J.H.; Jin, Q.R. Advances in Cyclodextrins and Their Derivatives in Nano-Delivery Systems. Pharmaceutics 2024, 16, 1054. [Google Scholar] [CrossRef]
- Petitjean, M.; García-Zubiri, I.X.; Isasi, J.R. History of cyclodextrin-based polymers in food and pharmacy: A review. Environ. Chem. Lett. 2021, 19, 3465–3476. [Google Scholar] [CrossRef] [PubMed]
- Dahabra, L.; Broadberry, G.; Le Gresley, A.; Najlah, M.; Khoder, M. Sunscreens Containing Cyclodextrin Inclusion Complexes for Enhanced Efficiency: A Strategy for Skin Cancer Prevention. Molecules 2021, 26, 1698. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Nair, A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res. 2018, 79, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Rukavina, Z.; Šegvić Klarić, M.; Filipović-Grčić, J.; Lovrić, J.; Vanić, Ž. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections. Int. J. Pharm. 2018, 553, 109–119. [Google Scholar] [CrossRef] [PubMed]
- de Gier, J.; Mandersloot, J.G.; van Deenen, L.L. Lipid composition and permeability of liposomes. Biochim. Biophys. Acta 1968, 150, 666–675. [Google Scholar] [CrossRef]
- Jain, S.; Kale, D.P.; Swami, R.; Katiyar, S.S. Codelivery of Benzoyl Peroxide & Adapalene Using Modified Liposomal Gel for Improved Acne Therapy. Nanomedicine 2018, 13, 1481–1493. [Google Scholar]
- Maniyar, M.G.; Kokare, C.R. Formulation and evaluation of spray dried liposomes of lopinavir for topical application. J. Pharm. Investig. 2019, 49, 259–270. [Google Scholar] [CrossRef]
- Peralta, M.F.; Guzmán, M.L.; Pérez, A.P.; Apezteguia, G.A.; Fórmica, M.L.; Romero, E.L.; Olivera, M.E.; Carrer, D.C. Liposomes can both enhance or reduce drugs penetration through the skin. Sci. Rep. 2018, 8, 13253. [Google Scholar] [CrossRef]
- Castañeda-Reyes, E.D.; Perea-Flores, M.d.J.; Davila-Ortiz, G.; Lee, Y.; Gonzalez de Mejia, E. Development, Characterization and Use of Liposomes as Amphipathic Transporters of Bioactive Compounds for Melanoma Treatment and Reduction of Skin Inflammation: A Review. Int. J. Nanomed. 2020, 15, 7627–7650. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vihol, D.; Mehta, B.; Shah, D.; Patel, M.; Vora, L.K.; Pereira-Silva, M.; Paiva-Santos, A.C. Phytochemical-Loaded Liposomes for Anticancer Therapy: An Updated Review. Nanomedicine 2022, 17, 547–568. [Google Scholar] [CrossRef]
- Tang, L.; Yin, Y.; Cao, Y.; Fu, C.; Liu, H.; Feng, J.; Wang, W.; Liang, X.J. Extracellular Vesicles-Derived Hybrid Nanoplatforms for Amplified CD47 Blockade-Based Cancer Immunotherapy. Adv. Mater. 2023, 35, e2303835. [Google Scholar] [CrossRef] [PubMed]
- Moammeri, A.; Chegeni, M.M.; Sahrayi, H.; Ghafelehbashi, R.; Memarzadeh, F.; Mansouri, A.; Akbarzadeh, I.; Abtahi, M.S.; Hejabi, F.; Ren, Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Today Bio 2023, 23, 100837. [Google Scholar] [CrossRef] [PubMed]
- Moghtaderi, M.; Sedaghatnia, K.; Bourbour, M.; Fatemizadeh, M.; Salehi Moghaddam, Z.; Hejabi, F.; Heidari, F.; Quazi, S.; Farasati Far, B. Niosomes: A novel targeted drug delivery system for cancer. Med. Oncol. 2022, 39, 240. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta (BBA)-Biomembr. 1992, 1104, 226–232. [Google Scholar] [CrossRef]
- Cevc, G. Transfersomes, Liposomes and Other Lipid Suspensions on the Skin: Permeation Enhancement, Vesicle Penetration, and Transdermal Drug Delivery. Crit. Rev.™ Ther. Drug Carr. Syst. 1996, 13, 257–388. [Google Scholar] [CrossRef]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef]
- Oyarzún, P.; Gallardo-Toledo, E.; Morales, J.; Arriagada, F. Transfersomes as Alternative Topical Nanodosage Forms for The Treatment of Skin Disorders. Nanomedicine 2021, 16, 2465–2489. [Google Scholar] [CrossRef]
- Miatmoko, A.; Marufah, N.A.; Nada, Q.; Rosita, N.; Erawati, T.; Susanto, J.; Purwantari, K.E.; Nurkanto, A.; Purwati; Soeratri, W. The effect of surfactant type on characteristics, skin penetration and anti-aging effectiveness of transfersomes containing amniotic mesenchymal stem cells metabolite products in UV-aging induced mice. Drug Deliv. 2022, 29, 3443–3453. [Google Scholar]
- Touitou, E.; Godin, B.; Weiss, C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res. 2000, 50, 406–415. [Google Scholar] [CrossRef]
- Jafari, A.; Daneshamouz, S.; Ghasemiyeh, P.; Mohammadi-Samani, S. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization. J. Liposome Res. 2022, 33, 34–52. [Google Scholar] [CrossRef]
- Hameed, H.; Faheem, S.; Khan, M.A.; Hameed, A.; Ereej, N.; Ihsan, H. Ethosomes: A potential nanovesicular carrier to enhancing the drug delivery against skin barriers. J. Microencapsul. 2024, 41, 204–225. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Dobreva, M.; Stefanov, S.; Andonova, V. Natural Lipids as Structural Components of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Topical Delivery. Curr. Pharm. Des. 2020, 26, 4524–4535. [Google Scholar] [CrossRef] [PubMed]
- Eroğlu, C.; Sinani, G.; Ulker, Z. Current State of Lipid Nanoparticles (SLN and NLC) for Skin Applications. Curr. Pharm. Des. 2023, 29, 1632–1644. [Google Scholar] [CrossRef]
- Chutoprapat, R.; Kopongpanich, P.; Chan, L.W. A Mini-Review on Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Topical Delivery of Phytochemicals for the Treatment of Acne Vulgaris. Molecules 2022, 27, 3460. [Google Scholar] [CrossRef]
- Stefanov, S.R.; Andonova, V.Y. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals 2021, 14, 1083. [Google Scholar] [CrossRef]
- Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2018, 535, 1–17. [Google Scholar] [CrossRef]
- Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L.; Severino, P.; Paganelli, M.O.; Chaud, M.V.; Silva, A.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022, 8, e08938. [Google Scholar] [CrossRef]
- Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A Novel Drug Delivery Approach for Enhancement of Bioavailability. Recent Pat. Nanotechnol. 2020, 14, 276–293. [Google Scholar] [CrossRef]
- Hoar, T.P.; Schulman, J.H. Transparent Water-in-Oil Dispersions: The Oleopathic Hydro-Micelle. Nature 1943, 152, 102–103. [Google Scholar] [CrossRef]
- Gradzielski, M.; Duvail, M.; de Molina, P.M.; Simon, M.; Talmon, Y.; Zemb, T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem. Rev. 2021, 121, 5671–5740. [Google Scholar] [CrossRef] [PubMed]
- Onaizi, S.A. Demulsification of crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant using enzymes and pH-swing. Sep. Purif. Technol. 2021, 259, 118060. [Google Scholar] [CrossRef]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Madawi, E.A.; Al Jayoush, A.R.; Rawas-Qalaji, M.; Thu, H.E.; Khan, S.; Sohail, M.; Mahmood, A.; Hussain, Z. Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases. Pharmaceutics 2023, 15, 657. [Google Scholar] [CrossRef] [PubMed]
- Cabral, H.; Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release 2014, 190, 465–476. [Google Scholar] [CrossRef]
- Tang, L.; Li, J.; Zhao, Q.; Pan, T.; Zhong, H.; Wang, W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021, 13, 1151. [Google Scholar] [CrossRef]
- Parra, A.; Jarak, I.; Santos, A.; Veiga, F.; Figueiras, A. Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery. Materials 2021, 14, 7278. [Google Scholar] [CrossRef]
- Yotsumoto, K.; Ishii, K.; Kokubo, M.; Yasuoka, S. Improvement of the skin penetration of hydrophobic drugs by polymeric micelles. Int. J. Pharm. 2018, 553, 132–140. [Google Scholar] [CrossRef]
- Operti, M.C.; Bernhardt, A.; Grimm, S.; Engel, A.; Figdor, C.G.; Tagit, O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm. 2021, 605, 120807. [Google Scholar] [CrossRef]
- Li, H.; Zha, S.; Li, H.; Liu, H.; Wong, K.L.; All, A.H. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. Small 2022, 18, e2203629. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, W.; Ma, Q.; Gao, Y.; Wang, W.; Zhang, X.; Dong, Y.; Zhang, T.; Liang, Y.; Han, S.; et al. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Adv. 2023, 5, 1527–1558. [Google Scholar] [CrossRef] [PubMed]
- Koushki, K.; Varasteh, A.-R.; Shahbaz, S.K.; Sadeghi, M.; Mashayekhi, K.; Ayati, S.H.; Moghadam, M.; Sankian, M. Dc-specific aptamer decorated gold nanoparticles: A new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. Int. J. Pharm. 2020, 584, 119403. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.; Mahmoudi, E.; Fauzi, M.B. Applications of drug delivery systems, organic, and inorganic nanomaterials in wound healing. Discov. Nano 2023, 18, 104. [Google Scholar] [CrossRef] [PubMed]
- Szente, L. Highly soluble cyclodextrin derivatives: Chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 1999, 36, 17–28. [Google Scholar] [CrossRef]
- Chulurks, S.; Jitapunkul, K.; Katanyutanon, S.; Toochinda, P.; Lawtrakul, L. Stability Enhancement and Skin Permeation Application of Nicotine by Forming Inclusion Complex with β-Cyclodextrin and Methyl-β-Cyclodextrin. Sci. Pharm. 2021, 89, 43. [Google Scholar] [CrossRef]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release 2022, 351, 361–380. [Google Scholar] [CrossRef]
- Yang, D.; Chen, M.; Sun, Y.; Jin, Y.; Lu, C.; Pan, X.; Quan, G.; Wu, C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021, 121, 119–133. [Google Scholar] [CrossRef]
- Sabbagh, F.; Kim, B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022, 341, 132–146. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.; Yang, C.; Li, F.; Qiu, B.; Ding, W. Enhanced transdermal efficiency of curcumin-loaded peptide-modified liposomes for highly effective antipsoriatic therapy. J. Mater. Chem. B 2021, 9, 4846–4856. [Google Scholar] [CrossRef]
- Wang, W.; Xu, X.; Song, Y.; Lan, L.; Wang, J.; Xu, X.; Du, Y. Nano transdermal system combining mitochondria-targeting cerium oxide nanoparticles with all-trans retinoic acid for psoriasis. Asian J. Pharm. Sci. 2023, 18, 100846. [Google Scholar] [CrossRef]
- Suzuki, I.L.; de Araujo, M.M.; Bagnato, V.S.; Bentley, M.V.L.B. TNFα siRNA delivery by nanoparticles and photochemical internalization for psoriasis topical therapy. J. Control. Release 2021, 338, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zheng, X.; Dong, X.; Fang, M.; Wan, A.; Zhu, T.; Yang, Q.; Xie, J.; Yan, Q. Methotrexate-loaded hyaluronan-modified liposomes integrated into dissolving microneedles for the treatment of psoriasis. Eur. J. Pharm. Sci. 2024, 195, 106711. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Goodyear, B.; Haq, A.; Puri, V.; Michniak-Kohn, B. Evaluations of Quality by Design (QbD) Elements Impact for Developing Niosomes as a Promising Topical Drug Delivery Platform. Pharmaceutics 2020, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- He, E.; Li, H.; Li, X.; Wu, X.; Lei, K.; Diao, Y. Transdermal Delivery of Indirubin-Loaded Microemulsion Gel: Preparation, Characterization and Anti-Psoriatic Activity. Int. J. Mol. Sci. 2022, 23, 3798. [Google Scholar] [CrossRef]
- Silva, M.I.; Barbosa, A.I.; Costa Lima, S.A.; Costa, P.; Torres, T.; Reis, S. Freeze-Dried Softisan® 649-Based Lipid Nanoparticles for Enhanced Skin Delivery of Cyclosporine A. Nanomaterials 2020, 10, 986. [Google Scholar] [CrossRef]
- Chamcheu, J.C.; Siddiqui, I.A.; Adhami, V.M.; Esnault, S.; Bharali, D.J.; Babatunde, A.S.; Adame, S.; Massey, R.J.; Wood, G.S.; Longley, B.J.; et al. Chitosan-based nanoformulated (–)-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. Int. J. Nanomed. 2018, 13, 4189–4206. [Google Scholar] [CrossRef]
- Doppalapudi, S.; Mahira, S.; Khan, W. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J. Photochem. Photobiol. B Biol. 2017, 174, 44–57. [Google Scholar] [CrossRef]
- Saxena, S.; Kushwaha, P.; Shukla, B.; Ahmad, M. Design and characterization of dual-pronged liposome-embedded gel for enhanced dermal delivery. J. Surfactants Deterg. 2023, 26, 867–879. [Google Scholar] [CrossRef]
- Mahira, S.; Kommineni, N.; Doppalapudi, S.; Khan, W. Edge activated ultradeformable liposomes of psoralen and its derivatives: Development and comparative evaluation for vitiligo therapy. J. Drug Deliv. Sci. Technol. 2019, 52, 83–95. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Hu, Z.; Yue, X.; Proetto, M.T.; Jones, Y.; Gianneschi, N.C. Mimicking Melanosomes: Polydopamine Nanoparticles as Artificial Microparasols. ACS Cent. Sci. 2017, 3, 564–569. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Gong, H.; Xiong, Y.; Chen, Y.; Li, L.; Zhi, B.; Lv, S.; Peng, T.; Zhang, H. A Multifunctional Herb-Derived Glycopeptide Hydrogel for Chronic Wound Healing. Small 2024, 20, e2400516. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; He, Y.; Nan, S.; Li, J.; Pi, A.; Yan, L.; Xu, J.; Hao, Y. Therapeutic effect of propolis nanoparticles on wound healing. J. Drug Deliv. Sci. Technol. 2023, 82, 104284. [Google Scholar] [CrossRef]
- Kazemi, M.; Mombeiny, R.; Tavakol, S.; Keyhanvar, P.; Mousavizadeh, K. A combination therapy of nanoethosomal piroxicam formulation along with iontophoresis as an anti-inflammatory transdermal delivery system for wound healing. Int. Wound J. 2019, 16, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Huang, W.; Zhang, S.; Li, J.; Zhang, J.; Li, B.; Xu, J.; Luo, Y.; Shi, H.; Li, Y.; et al. Microneedle Patch for Transdermal Sequential Delivery of KGF-2 and aFGF to Enhance Burn Wound Therapy. Small 2024, 20, e2307485. [Google Scholar] [CrossRef]
- Qin, K.; Gui, Y.; Li, Y.; Li, X.; Meng, F.; Han, D.; Du, L.; Li, S.; Wang, Y.; Zhou, H.; et al. Biodegradable Microneedle Array-Mediated Transdermal Delivery of Dimethyloxalylglycine-Functionalized Zeolitic Imidazolate Framework-8 Nanoparticles for Bacteria-Infected Wound Treatment. ACS Appl. Mater. Interfaces 2023, 15, 6338–6353. [Google Scholar] [CrossRef]
- El-Gizawy, S.A.; Nouh, A.; Saber, S.; Kira, A.Y. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J. Drug Deliv. Sci. Technol. 2020, 58, 101732. [Google Scholar] [CrossRef]
- Gupta, P.; Sheikh, A.; Abourehab, M.A.S.; Kesharwani, P. Amelioration of Full-Thickness Wound Using Hesperidin Loaded Dendrimer-Based Hydrogel Bandages. Biosensors 2022, 12, 462. [Google Scholar] [CrossRef]
- Guo, H.; Ran, W.; Jin, X.; Huang, Y.; Long, F.; Xiao, Y.; Gan, R.-Y.; Wu, Y.; Gao, H. Development of pectin/chitosan-based electrospun biomimetic nanofiber membranes loaded with dihydromyricetin inclusion complexes for wound healing application. Int. J. Biol. Macromol. 2024, 278, 134526. [Google Scholar] [CrossRef]
- Lee, E.-H.; Lim, S.-J.; Lee, M.-K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr. Polym. 2019, 224, 115143. [Google Scholar] [CrossRef]
- Zou, L.; Ding, W.; Zhang, Y.; Cheng, S.; Li, F.; Ruan, R.; Wei, P.; Qiu, B. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin. Biomaterials 2018, 182, 1–12. [Google Scholar] [CrossRef]
- Liu, F.; Cheng, Z.; Yi, H. NIR light-activatable dissolving microneedle system for melanoma ablation enabled by a combination of ROS-responsive chemotherapy and phototherapy. J. Nanobiotechnol. 2023, 21, 61. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Sun, Y.; Liu, T.; Zhang, X.; Zeng, Z.; Wang, R.; Li, P.; Li, C.; Jiang, G. Transdermal delivery of Cu-doped polydopamine using microneedles for photothermal and chemodynamic synergistic therapy against skin melanoma. Chem. Eng. J. 2021, 426, 130790. [Google Scholar] [CrossRef]
- Kandekar, S.G.; Singhal, M.; Sonaje, K.B.; Kalia, Y.N. Polymeric micelle nanocarriers for targeted epidermal delivery of the hedgehog pathway inhibitor vismodegib: Formulation development and cutaneous biodistribution in human skin. Expert Opin. Drug Deliv. 2019, 16, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Darade, A.R.; Lapteva, M.; Ling, V.; Kalia, Y.N. Polymeric micelles for cutaneous delivery of the hedgehog pathway inhibitor TAK-441: Formulation development and cutaneous biodistribution in porcine and human skin. Int. J. Pharm. 2023, 644, 123349. [Google Scholar] [CrossRef]
- Zhu, J.J.; Tang, C.H.; Luo, F.C.; Yin, S.W.; Yang, X.Q. Topical application of zein-silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis. Mater. Today Chem. 2022, 24, 100802. [Google Scholar] [CrossRef]
- Abuelella, K.E.; Abd-Allah, H.; Soliman, S.M.; Abdel-Mottaleb, M.M.A. Skin targeting by chitosan/hyaluronate hybrid nanoparticles for the management of irritant contact dermatitis: In vivo therapeutic efficiency in mouse-ear dermatitis model. Int. J. Biol. Macromol. 2023, 232, 123458. [Google Scholar] [CrossRef]
- Jiang, K.; Zhao, D.; Ye, R.; Liu, X.; Gao, C.; Guo, Y.; Zhang, C.; Zeng, J.; Wang, S.; Song, J. Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy. Nanoscale 2022, 14, 1834–1846. [Google Scholar] [CrossRef]
- Singh, R.; Koppu, S.; Perche, P.O.; Feldman, S.R. The Cytokine Mediated Molecular Pathophysiology of Psoriasis and Its Clinical Implications. Int. J. Mol. Sci. 2021, 22, 12793. [Google Scholar] [CrossRef]
- Iznardo, H.; Puig, L. Beyond plaque psoriasis—Pathogenesis and treatment of other psoriasis phenotypes. Curr. Opin. Rheumatol. 2022, 34, 225–234. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, E.; Mao, T.; Zhu, Y.; Ni, S.; Li, Y.; Liu, C.; Fang, Y.; Ni, K.; Lu, Y.; et al. Macrophage P2Y6R activation aggravates psoriatic inflammation through IL-27-mediated Th1 responses. Acta Pharm. Sin. B 2024, 14, 4360–4377. [Google Scholar] [CrossRef]
- Vičić, M.; Kaštelan, M.; Brajac, I.; Sotošek, V.; Massari, L.P. Current Concepts of Psoriasis Immunopathogenesis. Int. J. Mol. Sci. 2021, 22, 11574. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.D.; Zhao, Q.X.; Wang, X.Y.; Zhou, H.; Hu, J.; Gu, L.N.; Hu, Y.W.; Zeng, F.L.; Zhao, F.L.; Yue, C.C.; et al. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J. Autoimmun. 2022, 133, 102916. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Elmamoun, M.; Chandran, V. Role of Methotrexate in the Management of Psoriatic Arthritis. Drugs 2018, 78, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhai, Y.Y.; Sun, L.; Wang, Z.; Xia, X.; Yao, Q.; Kou, L. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian J. Pharm. Sci. 2022, 17, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Frisoli, M.L.; Essien, K.; Harris, J.E. Vitiligo: Mechanisms of Pathogenesis and Treatment. Annu. Rev. Immunol. 2020, 38, 621–648. [Google Scholar] [CrossRef]
- LeWitt, T.M.; Kundu, R.V. Vitiligo. JAMA Dermatol. 2021, 157, 1136. [Google Scholar] [CrossRef]
- Giri, P.; Desai, D.; Dwivedi, M. Animal models unraveling the complexity of vitiligo pathogenesis. Autoimmun. Rev. 2024, 23, 103515. [Google Scholar] [CrossRef]
- Seneschal, J.; Boniface, K.; D’Arino, A.; Picardo, M. An update on Vitiligo pathogenesis. Pigment Cell Melanoma Res. 2020, 34, 236–243. [Google Scholar] [CrossRef]
- Bergqvist, C.; Ezzedine, K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J. Dermatol. 2021, 48, 252–270. [Google Scholar] [CrossRef]
- Farag, A.G.A.; Hammam, M.A.; Habib, M.S.; Elnaidany, N.F.; Kamh, M.E. Macrophage migration inhibitory factor as an incriminating agent in vitiligo. An. Bras. Dermatol. 2018, 93, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.S.; Mistry, J.; Dwivedi, M.; Jurisic, V. Meta-Analysis of Alterations in Regulatory T Cells’ Frequency and Suppressive Capacity in Patients with Vitiligo. J. Immunol. Res. 2022, 16, 6952299. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, T.; Wang, Z.; Li, Z.; Wei, J.; Han, H.; Yuan, D.; Cai, M.; Shi, J. MC1R Peptide Agonist Self-Assembles into a Hydrogel That Promotes Skin Pigmentation for Treating Vitiligo. ACS Nano 2023, 17, 8723–8733. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Vukmanovic-Stejic, M. Skin barrier immunity and ageing. Immunology 2019, 160, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tang, L.; Yin, Y.; Cao, Y.; Fu, C.; Feng, J.; Shen, Y.; Wang, W. Photoresponsive Multirole Nanoweapon Camouflaged by Hybrid Cell Membrane Vesicles for Efficient Antibacterial Therapy of Pseudomonas aeruginosa-Infected Pneumonia and Wound. Adv. Sci. 2024, 11, 2403101. [Google Scholar] [CrossRef]
- Singh, K.; Camera, E.; Krug, L.; Basu, A.; Pandey, R.K.; Munir, S.; Wlaschek, M.; Kochanek, S.; Schorpp-Kistner, M.; Picardo, M.; et al. JunB defines functional and structural integrity of the epidermo-pilosebaceous unit in the skin. Nat. Commun. 2018, 9, 3425. [Google Scholar] [CrossRef]
- Flynn, K.; Mahmoud, N.N.; Sharifi, S.; Gould, L.J.; Mahmoudi, M. Chronic Wound Healing Models. ACS Pharmacol. Transl. Sci. 2023, 6, 783–801. [Google Scholar] [CrossRef]
- Ma, J.; Wu, C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. Exploration 2022, 2, 20210083. [Google Scholar] [CrossRef]
- He, L.; Di, D.; Chu, X.; Liu, X.; Wang, Z.; Lu, J.; Wang, S.; Zhao, Q. Photothermal antibacterial materials to promote wound healing. J. Control. Release 2023, 363, 180–200. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B.A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 9656. [Google Scholar] [CrossRef] [PubMed]
- Naskar, A.; Kim, K.-S. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics 2020, 12, 499. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswami, V.; Raju, N.S.; Alagarsamy, S.; Kandasamy, R. Novel Nanocarriers for the Treatment of Wound Healing. Curr. Pharm. Des. 2020, 26, 4591–4600. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, M.; Yang, Y.; Qiao, L.; Xu, H.; Guo, B. pH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS Nano 2022, 16, 3194–3207. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Z.; Pan, Z.; Liu, Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021, 1, 20210089. [Google Scholar] [CrossRef]
- Chen, K.; Wang, F.; Liu, S.; Wu, X.; Xu, L.; Zhang, D. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int. J. Biol. Macromol. 2020, 148, 501–509. [Google Scholar] [CrossRef]
- Liu, W.; Zu, L.; Wang, S.; Li, J.; Fei, X.; Geng, M.; Zhu, C.; Shi, H. Tailored biomedical materials for wound healing. Burn. Trauma 2023, 11, tkad040. [Google Scholar] [CrossRef]
- Geng, Z.; Cao, Z.; Liu, J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration 2023, 3, 20210117. [Google Scholar] [CrossRef]
- Cullen, J.K.; Simmons, J.L.; Parsons, P.G.; Boyle, G.M. Topical treatments for skin cancer. Adv. Drug Deliv. Rev. 2020, 153, 54–64. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Tang, L.; Fu, C.; Liu, H.; Yin, Y.; Cao, Y.; Feng, J.; Zhang, A.; Wang, W. Chemoimmunotherapeutic Nanogel for Pre- and Postsurgical Treatment of Malignant Melanoma by Reprogramming Tumor-Associated Macrophages. Nano Lett. 2024, 24, 1717–1728. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.C.; Lee, E.; Hibler, B.P.; Giordano, C.N.; Barker, C.A.; Mori, S.; Cordova, M.; Nehal, K.S.; Rossi, A.M. Basal cell carcinoma. J. Am. Acad. Dermatol. 2019, 80, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Dika, E.; Scarfì, F.; Ferracin, M.; Broseghini, E.; Marcelli, E.; Bortolani, B.; Campione, E.; Riefolo, M.; Ricci, C.; Lambertini, M. Basal Cell Carcinoma: A Comprehensive Review. Int. J. Mol. Sci. 2020, 21, 5572. [Google Scholar] [CrossRef]
- Knackstedt, T.J.; Knackstedt, R.W.; Djohan, M.; Djohan, R.; Gastman, B.R.; Crowe, D.R. New Developments in the Management of Cutaneous Squamous Cell Carcinoma. Plast. Reconstr. Surg. 2021, 147, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Shivashankarappa, A.; Sanjay, K.R. Photodynamic therapy on skin melanoma and epidermoid carcinoma cells using conjugated 5-aminolevulinic acid with microbial synthesised silver nanoparticles. J. Drug Target. 2018, 27, 434–441. [Google Scholar] [CrossRef]
Category | Composition | Preparation Methods | Advantages | Limitations | References |
---|---|---|---|---|---|
Liposome | Phospholipids, cholesterol | Thin film hydration method, reverse phase evaporation and solvent injection method, detergent depletion method | Low toxicity, good biocompatibility and biodegradability | Poor stability | [34] |
Niosome | Nonionic surfactants, cholesterol | Ether injection method, reverse phase evaporation method, thin film hydration method, microfluidization method, hand-shaking method, the “bubble” method, sonication method, heating method, freeze and thaw method, dehydration rehydration method, proniosome technology | High stability, low toxicity | High temperatures tend to destroy structures | [35,36,37] |
Transferosome | Phospholipids, edge activators | Rotary film evaporation, thin film hydration, reverse-phase evaporation, vortexing sonication, ethanol injection, freeze–thaw | Highly elastic, deformable | Skin irritation, low stability | [38,39,40] |
Ethosome | Phospholipids, high concentrations of ethanol | Cold injection method, hot injection method, vortex/sonication method, rotary film evaporation | Smaller dimensions, excellent elasticity and deformability | Skin irritation | [41,42,43] |
Solid lipid nanoparticle | Solid lipids, surfactants, co-surfactants | High shear homogenization, solvent emulsification/evaporation, spray drying method, micro-emulsion, solvent diffusion and solvent injection, ultrasonication | High stability, low toxicity, good flexibility | Low drug loading; low stability | [44] |
Nanostructured lipid carrier | Solid lipid, liquid lipid, surfactants, co-surfactants | The high shear homogenization method, solvent dispersion method, film-ultrasonic method, ultrasonic emulsion evaporation method | High drug-loading capacity, high stability, high biodegradability | Tend to gel | [45,46] |
Microemulsion | Water, oil, surfactants, and co-surfactants (generally alcohols of medium chain length) | Polymerization in emulsion method, interfacial polymerization, precipitation of pre-formed polymer, solvent extraction method | Thermodynamic stability | Toxicity | [47] |
Nanoemulsion | Oil, water, emulsifiers | Ultrasonication, microfluidic homogenization, rotor-stator homogenization, phase inversion composition, phase inversion temperature, solvent evaporation | Improve solubility, enhanced permeability | Low stability | [48,49,50] |
Polymeric nanoparticle | Natural/synthesis polymers | Nanoprecipitation, emulsification-solvent evaporation, emulsification solvent diffusion, salting-out technique, emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization | High stability | Difficulties in large-scale production | [51,52] |
Polymeric micelle | Polymers preferably, polyethylene glycol, aqueous solution, ligands | Dialysis method, solvent evaporation method, high-pressure emulsification solvent evaporation | Accurate release | Difficulties in large-scale production | [53] |
Dendrimer | Core molecule, surface units, monomers | Divergent synthesis, convergent synthesis, combined divergent/convergent synthesis | Increase the solubility of high lipophilic drugs | Difficulties in large-scale production | [54,55] |
Inorganic nanoparticles | Inorganic compound | Chemical method, biological method, green synthesis | Low cytotoxicity, controllable particle size | Low biocompatibility | [33,56,57,58] |
Inclusion complexes | Cyclodextrins, drugs | Kneading or slurry method, solution or co-precipitation method, solvent evaporation, dry mixture, damp mixing, extrusion | Significant enhancement of drug solubility and stability | Kidney toxicity | [59,60,61,62,63] |
Disease | Drug Delivery System | Loaded Drug | Characterization Parameter | Advantages of Nanocarriers | References | ||
---|---|---|---|---|---|---|---|
Drug Properties | Advantages of Penetration and Accumulation | Efficacy | |||||
Psoriasis | Liposome | Curcumin (Cur) | 94 nm, EE% = 97% | Cur can be incorporated into liposomes, which markedly improves the solubility and stability of the drug | In vitro permeation experiments demonstrated that the skin permeation of curcumin in the liposome group increased by approximately 60% within 24 h and that the enhanced transdermal effect increased with time | In vivo study showed that liposomes had better anti-psoriasis efficacy in terms of skin inflammation scores, visible skin symptoms, skin pathology sections and skin cytokine mRNA levels | [109] |
Liposome | All-trans retinoic acid (TRA), triphenylphosphine (TPP)-modified cerium oxide (CeO2) | 60–70 nm, EE% > 96% | TRA loaded into liposomal can improve the solubility and irritation of the drug | Liposomal gel further showed sustained drug release behaviors, great transdermal permeation ability, and greater skin retention than the free TRA | Liposomal gel eradicates excess ROS and achieves satisfactory anti-inflammatory and antioxidant capabilities. | [110] | |
Lipid nanoparticle | siRNA | 142.1 nm, EE% = 99.5% | Loading siRNA in Nanostructured lipid carrier protects siRNA from biodegradation | The results from the skin permeation and retention studies showed that the nanostructured lipid carrier enhanced the retention of siRNA in the skin layers | A 1.38-fold knockdown of TNFα was observed with nanostructured lipid carrier compared to the psoriasis group, suggesting that it enhanced the preventive effect of psoriatic plaques | [111] | |
Liposome | Methotrexate (MTX) | 200 nm | MTX loaded into liposomal can improve the solubility and irritation of the drug | Skin permeation study indicated the increase in permeation of MTX with liposomal carriers | Liposome-loaded microneedles inhibit the progression of psoriasis and reduce erythema, scaling, and thickening of the skin by down-regulating the expression of mRNA levels of pro-inflammatory cytokines IL-23 and TNF-α | [112] | |
Niosome | Desoximeta-sone | 374.80 ± 9.48 nm, PDI 0.289 ± 0.01, zeta potential −63.83 ± 4.26 mV | Encapsulation of corticosteroids in an appropriate carrier system can improve therapeutic efficacy and drug targeting by reducing adverse effects and increasing patient compliance | Desoximeta-sone loaded into niosomes increased the skin permeability of Desoximeta-sone compared to the raw drug | Niosome can used to treat a variety of skin conditions such as allergic reactions, eczema, and psoriasis | [113] | |
Microemulsion | Indirubin | 84.37 nm, PDI < 0.2, zeta potential 0~−20 mV | Indirubin is loaded into microemulsions to increase its solubility and bioavailability | The transdermal flux and skin retention of indirubin at 24 h were 47.34 ± 3.59 μg/cm2 and 8.77 ± 1.26 μg/cm2, respectively | Results showed that this preparation can improve psoriasis symptoms by down-regulating the expression of IL-17A, Ki67, and CD4+T | [114] | |
Solid lipid nanoparticle | Cyclosporine A | 216 ± 5 nm | Cyclosporine A is loaded into solid lipid nanoparticle to increase its solubility | Skin permeation studies using pig ear as a model revealed about 1.0 mg of cyclosporine A was delivered to the skin with transdermal permeation. | It can be used for topical administration of cyclosporine A to avoid its systemic side effects | [115] | |
Metal nanoparticle | Epigallocatechin gallate (EGCG) | 211.3 nm, PDI 0.132 | EGCG is loaded into metal nanoparticle to increase its solubility and bioavailability | Results showed that a controlled release rate of EGCG from metal nanoparticle peaked at about 50% within 6 h, approaching a maximal release of 100% after 24 h | Like free EGCG, metal nanoparticle treatment induced differentiation, and decreased proliferation and inflammatory responses in cultured keratinocytes, but with a 4-fold dose advantage | [116] | |
Vitiligo | Liposome | Psoralen, resveratrol | 120–130 nm, EE% > 74% | Enhancement of transdermal permeability of psoralen and solubility of resveratrol by loading psoralen and resveratrol into liposomes | Co-loaded liposome showed 65.11 ± 7.57% release of PSR and 72.56 ± 12.85% release of resveratrol in 18 h | Combination of PSR and resveratrol acts through dual mechanisms of action viz., stimulation of pigmentation and restoration of redox balance by free radical scavenging activity for effective treatment of vitiligo | [117] |
Liposome | Nigella sativa seed oil (NSO), virgin coconut oil (VCO) | 206 nm, zeta potential −33 mV | Liposomes improve skin penetration of drugs | The drug release after 24 h was found to be 76.18% (NSO) and 73.12% (VCO) for liposomal dispersions, achieving a slow drug release | The co-entrapment of NSO and VCO into liposomal carriers may offer therapeutic advantages such as controlled release, enhanced drug penetration, and improved efficiency, suggesting its potential as an effective drug delivery system for dermatological problems | [118] | |
Liposome | Psoralen (PSR), 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP) | PSR UDL: 98.6 nm, 5-MOP UDL: 125.4 nm, 8-MOP UDL: 113.1 nm | PSR loaded into liposomal can improve the irritation of the drug | PSR liposomes showed 73.30 ± 0.41% drug release in 8 h. Results showed that developed UDL carrier has the capability to sustain the release of drugs over prolonged period of time | Data showed that liposomes up-regulated the melanin and tyrosinase levels than other groups at low dose | [119] | |
Polymeric nanoparticle | Dopamine | 200 nm | Liposomes enhance the efficacy of drugs | No relevant research data in the article | Polymeric nanoparticles with UV photoprotective properties prevent DNA damage and have the potential to be used as artificial melanosomes to develop new therapies | [120] | |
Wound Healing | Micelle | Paeoniflorin | 96 nm, zeta potential −8.4 mV | Paeoniflorin loaded into micelle can improve the solubility and stability of the drug | Data showed a sustained release of paeoniflorin at least 72 h could be achieved | Micelle adapts responsively to the inflammatory microenvironment of chronic wounds, sequentially releasing therapeutic agents to eradicate bacterial infection and suppress inflammation and ECM remodeling, playing a critical role across the inflammatory and remodeling phases of wound healing. | [121] |
Polymeric nanoparticle | Propolis | 117 nm, zeta potential −9 mV | Propolis loaded into micelle can improve the stability of the drug | The results showed that propolis has a certain slow-release effect after preparation of nanoparticles | Polymeric nanoparticle affected the expression of several inflammatory mediator genes and antioxidant genes, and significantly accelerated the wound healing process by inducing more blood vessel and collagen formation | [122] | |
Ethosome | Piroxicam | 88.8 ± 8.37 nm, zeta potential −11 mV | Iontophoresis significantly enhanced ethosomal piroxicam permeation compared with the free drug | Ex vivo permeation evaluation showed the permeation of ethosomal ones in 1 hour (14.27 ± 2.05%) | Iontophoresis significantly enhanced ethosomal piroxicam permeation and transdermal ethosomal piroxicam along with iontophoresis seems to be promising in wound healing | [123] | |
Polymeric nanoparticle | Acidic fibroblast growth factor (aFGF) | 297.8 ± 32.17 nm, zeta potential −15.8 ± 1.40 mV | Polymeric nanoparticles enhance skin delivery efficiency of aFGF | Drug exhibited a burst release of ≈1.0 µg/mL (≈40%) from the microneedle in the first four hours | Polymeric nanoparticles MNs achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization | [124] | |
Polymeric nanoparticle | Dimethyloxalylglycine | 125 nm, zeta potential 23.40 ± 2.85 | Dimethyloxalylglycine loaded into polymeric nanoparticle can improve the stability of the drug | Polymeric nanoparticles improve skin penetration and retention behavior of Dimethyloxalylglycine | Polymeric nanoparticle arrays would not only exhibit excellent antibacterial activity against pathogenic bacteria but also enhance angiogenesis within wound bed by up-regulating the expression of HIF-1α, leading to a significant therapeutic efficiency on bacteria-infected cutaneous wound healing | [125] | |
Transferosome | Deferoxamine (DFO) | 109.2 ± 2.04 nm to 265.67 ± 2.41 nm | In vitro study revealed that the DFO-loaded transferosomal gel was found effective in sustaining DFO release | In vitro study revealed that the DFO-loaded transferosomal gel was found effective in sustaining DFO release | The DFO-loaded transferosomal gel increases the rate of neovascularization and increases collagen fiber production | [126] | |
Dendrimer | Hesperidin | encapsulation efficiency and drug loading of 20% and 3.33% | Dendritic polymers improve water solubility and bioavailability of drugs | Rat skin treated with hesperidin showed maximum intensity at the skin surface of 0–5 μm, while dendrimer showed a deposition of drug in the epidermis up to 15–25 μm | In vivo results showed that the preparation had better wound contraction activity compared to the control group; after 14 days, the control group had 79 ± 1.41, while the 10% of formulation had 98.9 ± 0.42 | [127] | |
Inclusion complex | Dihydromyricetin | a spherical shape with cavities or fragments of cavities | Inclusion complex enhances the stability of dihydromyricetin | Inclusion complex exhibited a gradual release in PBS solution at 37 °C, reaching a steady release after approximately 120 min | Inclusion complex significantly reduced the M1 phenotypic transition in RAW264.7 cells, effectively restoring M2 polarization, thereby shortening the inflammatory period. | [128] | |
Skin Cancer | Liposome | Indocyanine green (ICG) | 257 ± 42 nm, zeta potential −65.8 ± 1.9 mV | ICG loaded into liposome can improve the stability of the drug | Skin permeation experiments revealed that the liposomes significantly improved skin permeation of ICG | Liposomes facilitated the cellular uptake, photo-cytotoxicity, and skin permeation of ICG | [129] |
Liposome | Vemurafenib | 105.66 ± 12.38 nm, EE% = 98.92 ± 2.36%, zeta potential −4.75 ± 0.86 mV | Liposomes overcome the low solubility of Vemurafenib | In vitro permeation showed that the quantity of Vem penetrating to the receptor of the Franz Diffusion Cell System was significantly higher in the liposome group than Vemurafenib | In vivo experiments confirmed the effective antitumor ability of liposomes delivered via the skin | [130] | |
Liposome | ROS-responsive doxorubicin prodrug (pB-DOX), ICG | 600 μm in height and 300 μm in diameter | ICG loaded into liposome can improve the stability of the drug | Data showed that after 5 min, the drug content in skin reached 92.20% | The growth of the tumors in the liposome MNs was inhibited by 93.5%, providing a promising candidate for clinical melanoma therapy | [131] | |
Polymeric nanoparticle | Polydopamine (PDA) | 100 ± 10 nm | Polymeric nanoparticles improve drug bioavailability and skin permeability | Polymeric nanoparticles improve skin penetration and retention behavior of PDA | Polymeric nanoparticle accumulates the high photothermal effect of Cu-PDA NPs (~50.40%) to acquire the energy from NIR irradiation, leading to the generation of a new minimally invasive synergistic therapy. | [132] | |
Polymeric micelle | Vismodegib (VSD) | 20–30 nm | Polymeric micelles improve Skin Delivery and Biodistribution of Drugs | Application of micelle solution and micelle gel to human skin for 12 h under infinite dose conditions resulted in statistically equivalent VSD deposition (0.62 ± 0.11 and 0.67 ± 0.14 μg/cm2, respectively) | Cutaneous delivery of VSD from micelle-based formulations might enable targeted, topical treatment of superficial BCC with minimal risk of systemic exposure | [133] | |
Polymeric micelle | TAK-441 | 10–15 nm | Polymeric micelles improve the solubility of the TAK-441 | Finite dose experiments using human skin demonstrated that this formulation resulted in significantly greater cutaneous deposition of TAK-441 after 12 h than a non-micelle control formulation | Polymeric micelles reduce the risk of systemic side effects in vivo for the treatment of basal cell carcinoma | [134] | |
Others | Zein nanoparticle | Cur | 330–400 nm, zeta potential −22 mV | Cur can be incorporated into nanoparticles, which improves the solubility and stability of the drug | Transdermal delivery experiments and porcine skin fluorescence imaging indicated that nanoparticles facilitate the penetration of Cur across the epidermis layer of skin to reach deep-seated sites | Cur-loaded nanoparticles down-regulated the generation of inflammatory cytokines and chemokines in keratinocytes through suppression of the nuclear translocation of NF-κBp65 and hence exerted an anti-dermatitis effect | [135] |
Polymeric nanoparticle | Etoricoxib (ETX) | 267.9 ± 9.4 nm, EE% = 95 ± 0.2%, zeta potential 32.9 ± 0.47 mV | Chitosan and hyaluronic acid delivered ETX to the deeper skin layers | Polymeric nanoparticle showed efficient dermal targeting by significantly enhanced percentage of ETX permeated and retained in the various skin layers in comparison to ETX | Polymeric nanoparticle exhibited superior anti-inflammatory properties in vivo compared to ETX in dithranol-induced mice ear dermatitis | [136] | |
Polymeric nanoparticle | DOX | 129.1 nm, EE% = 23.6% | DOX can be incorporated into nanoparticles, which improves the solubility of the drug | Study shows polymer nanoparticles significantly promote skin penetration | Polymeric nanoparticles facilitated the apoptosis of hypertrophic scar cells, and reduced the burden and progression of hypertrophic scars in a xenografted mouse model | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Zhang, S.; Wang, G.; Yan, Z.; Wu, G.; Tang, L.; Wang, W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024, 16, 1384. https://doi.org/10.3390/pharmaceutics16111384
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics. 2024; 16(11):1384. https://doi.org/10.3390/pharmaceutics16111384
Chicago/Turabian StyleKang, Yunxiang, Sunxin Zhang, Guoqi Wang, Ziwei Yan, Guyuan Wu, Lu Tang, and Wei Wang. 2024. "Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy" Pharmaceutics 16, no. 11: 1384. https://doi.org/10.3390/pharmaceutics16111384
APA StyleKang, Y., Zhang, S., Wang, G., Yan, Z., Wu, G., Tang, L., & Wang, W. (2024). Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics, 16(11), 1384. https://doi.org/10.3390/pharmaceutics16111384