Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review
<p>The Three Temporal Characteristics of a Discontinuous Ultrasound Wave.</p> "> Figure 2
<p>The shape and the three sections of an ultrasound beam (adapted from reference [<a href="#B12-pharmaceutics-16-01383" class="html-bibr">12</a>]).</p> "> Figure 3
<p>Sonic shadows produced by two adjacent bones in the rib cage. The ultrasound image shows two neighboring ribs (vertical arrows), a hyperechogenic pleural line (horizontal arrow), and acoustic shadows below (oblique arrows) (Retrieved with open access permission from reference [<a href="#B20-pharmaceutics-16-01383" class="html-bibr">20</a>]).</p> "> Figure 4
<p>Stable and inertial cavitation. Stable cavitation shows repetitive pulses around an equilibrium. It is characterized by larger bubbles and lower pressures. Inertial cavitation shows unstable growth and a violent collapse. It is characterized by smaller bubbles and higher pressures. Image created using the <a href="http://www.biorender.com" target="_blank">www.biorender.com</a> (Adapted from Reference [<a href="#B29-pharmaceutics-16-01383" class="html-bibr">29</a>]).</p> "> Figure 5
<p>Ultrasound responsive nanocarriers can either be made of organic or inorganic materials. This figure shows the types of organic and inorganic nanoparticles discussed in this review (Image created using the Biorender Web Application (<a href="http://www.biorender.com" target="_blank">www.biorender.com</a>)).</p> ">
Abstract
:1. Introduction
2. Physics of Ultrasound Waves
2.1. Ultrasound Parameters
2.1.1. Frequency
2.1.2. Intensity and Exposure Duration
- SPTP (Spatial Peak Temporal Peak Intensity) is the highest intensity measured at the sound beam’s focal zone during an ultrasound peak pulse.
- SPTA (Spatial Peak Temporal Average Intensity) measures the average intensity at the sound beam’s focal zone over a pulse repetition period. It corresponds to the thermal effect of ultrasound waves.
- SPPA (Spatial Peak Pulse Average Intensity) measures the average intensity at the sound beam’s focal zone over a pulse’s duration. It is connected to the ultrasonic waves’ mechanical and cavitation effects.
- SATP (Spatial Average Temporal Peak Intensity) is the highest intensity measured during an ultrasound pulse, averaged across the entire sound beam.
- SATA (Spatial Average Temporal Average Intensity) measures the averaged ultrasound wave intensity over a pulse repetition period and across the entire sound beam.
- SAPA (Spatial Average Pulse Average Intensity) measures the averaged intensity of ultrasound waves throughout a pulse and across the entire sound beam.
2.1.3. Focused and Unfocused Ultrasound
3. Biological Ultrasound Effects
3.1. Thermal Effects
3.1.1. Mild Hyperthermia
3.1.2. Strong Hyperthermia
3.2. Mechanical Effects
3.2.1. Cavitation
3.2.2. Acoustic Radiation Forces
3.3. Chemical Effects
3.3.1. Free Radical Formation
3.3.2. Endocytosis
3.4. Ultrasound Effects on Vascular Tissue
4. Nanoparticles Used with Ultrasound
4.1. Ultrasound Interaction with Nanoparticles and Drug Release Mechanisms
4.1.1. Ultrasound-Induced Drug Release
4.1.2. Improved Extracellular Transport of Drugs and Nanoparticles
4.1.3. Improved Cellular Drug Transport
4.2. Different Types of Ultrasound Sensitive Nanoparticles
4.2.1. Liposomes
4.2.2. Polymeric Micelles
4.2.3. Mesoporous Silica Nanoparticles
4.2.4. Super Magnetic Iron Oxide Nanoparticles
4.2.5. Gold Nanoparticles
4.2.6. Microbubbles
4.2.7. Exosomes
5. Challenges Facing Ultrasound Responsive Nanocarriers in Cancer Treatment
5.1. Challenges Associated with Nanoparticle Toxicity
5.2. Challenges Associated with Clinical Adoption of Nanoparticles
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
U.S. | Ultrasound |
PUS | Pulsed Ultrasound |
HIFU | High-Intensity Focused Ultrasound |
LIFU | Low-Intensity Focused Ultrasound |
SPTP | Spatial Peak Temporal Peak Intensity |
SPTA | Spatial Peak Temporal Average Intensity |
SPPA | Spatial Peak Pulse Average Intensity |
SATP | Spatial Average Temporal Peak Intensity |
SATA | Spatial Average Temporal Average Intensity |
SAPA | Spatial Average Pulse Average Intensity |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
MHz | Megahertz |
W/cm2 | Watts per square centimeter |
MPa | Megapascal |
Hz | Hertz |
FDA | Food and Drug Administration |
kHz | Kilohertz |
DOX | Doxorubicin |
MBs | Microbubbles |
TSL | Temperature-Sensitive Liposomes |
bFGF | Basic Fibroblast Growth Factor |
MI | Myocardial Infarction |
RES | Reticuloendothelial System |
PEO | Polyethylene Oxide |
MSNs | Mesoporous Silica Nanoparticles |
ROS | Reactive Oxygen Species |
SPIONs | Superparamagnetic Iron Oxide Nanoparticles |
RGD | Arg-Gly-Asp Peptide |
PFC | Perfluorocarbon |
GNPs | Gold Nanoparticles |
TAMs | Tumor-Associated Macrophages |
IV | Intravenous |
DNA | Deoxyribonucleic Acid |
RNA | Ribonucleic Acid |
BBB | Blood Brain Barrier |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization. World Cancer Day 2023: Close the Care Gap-PAHO/WHO. Available online: https://www.paho.org/en/campaigns/world-cancer-day-2023-close-care-gap (accessed on 2 July 2024).
- Katzung, B.G. Basic and Clinical Pharmacology, 14th ed.; Mcgraw-Hill Education: New York, NY, USA, 2018; p. 962. [Google Scholar]
- Altun, I.; Sonkaya, A. The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotheapy. Iran. J. Public Health 2018, 47, 1218–1219. [Google Scholar]
- Blum, A.P.; Kammeyer, J.K.; Rush, A.M.; Callmann, C.E.; Hahn, M.E.; Gianneschi, N.C. Stimuli-Responsive Nanomaterials for Biomedical Applications. J. Am. Chem. Soc. 2015, 137, 2140–2154. [Google Scholar] [CrossRef]
- Ruttala, H.B.; Ramasamy, T.; Madeshwaran, T.; Hiep, T.T.; Kandasamy, U.; Oh, K.T.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch. Pharmacal Res. 2018, 41, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, S.; Gupta, G.K.; Avci, P.; Chandran, R.; Sadasivam, M.; Jorge, A.E.S.; Hamblin, M.R. Physical energy for drug delivery; poration, concentration and activation. Adv. Drug Deliv. Rev. 2014, 71, 98–114. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Low, S.S.; Lim, C.N.; Yew, M.; Chai, W.S.; Low, L.E.; Manickam, S.; Tey, B.T.; Show, P.L. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. Ultrason. Sonochem. 2021, 80, 105805. [Google Scholar] [CrossRef]
- Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J. Control. Release 2016, 241, 144–163. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Li, H.; Yang, T.; Deng, Z.-H.; Yang, Y.; Zhang, Y.; Ding, X.; Lei, G.-H. Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: A systematic review and network meta-analysis. Osteoarthr. Cartil. 2014, 22, 1090–1099. [Google Scholar] [CrossRef]
- Blair, J.E.A.; Rigolin, V.H. Echocardiography. In Practical Signal and Image Processing in Clinical Cardiology; Springer: Cham, Switzerland, 2010; pp. 187–217. [Google Scholar] [CrossRef]
- Khan, D.; Rahman, A.U.; Kumam, P.; Watthayu, W.; Sitthithakerngkiet, K.; Galal, A.M. Thermal analysis of different shape nanoparticles on hyperthermia therapy on breast cancer in a porous medium: A fractional model. Heliyon 2022, 8, e10170. [Google Scholar] [CrossRef]
- Deb, P.K.; Odetallah, H.M.A.; Al-Jaidi, B.; Akkinepalli, R.R.; Al-Aboudi, A.; Tekade, R.K. Biomaterials and nanoparticles for hyperthermia therapy; Biomaterials and Bionanotechnology: Academic Press, MA, USA, 2019; pp. 375–413. [Google Scholar]
- Roti, J.L.R. Cellular responses to hyperthermia (40–46 °C): Cell killing and molecular events. Int. J. Hyperth. 2008, 24, 3–15. [Google Scholar] [CrossRef]
- Landon, C.D.; Park, J.-Y.; Needham, D.; Dewhirst, M.W. Nanoscale Drug Delivery and Hyperthermia: The Materials Design and Preclinical and Clinical Testing of Low Temperature-Sensitive Liposomes Used in Combination with Mild Hyperthermia in the Treatment of Local Cancer. Open Nanomed. J. 2011, 3, 24–37. [Google Scholar] [CrossRef]
- Kong, G.; Braun, R.D.; Dewhirst, M.W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60, 4440–4445. [Google Scholar] [PubMed]
- Kong, G.; Braun, R.D.; Dewhirst, M.W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001, 61, 3027–3032. [Google Scholar] [PubMed]
- Dewey, W.C. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperth. 2009, 25, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Rogoza, K.; Kosiak, W. Usefulness of Lung Ultrasound in Diagnosing Causes of Exacerbation in Patients with Chronic Dyspnea. Pneumonol. Alergol. Pol. 2016, 84, 38–46. [Google Scholar] [CrossRef]
- Huber, P.E.; Jenne, J.W.; Rastert, R.; Simiantonakis, I.; Sinn, H.P.; Strittmatter, H.J.; von Fournier, D.; Wannenmacher, M.F.; Debus, J. A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res. 2001, 61, 8441–8447. [Google Scholar]
- Arvanitis, C.D.; Bazan-Peregrino, M.; Rifai, B.; Seymour, L.W.; Coussios, C.C. Cavitation-Enhanced Extravasation for Drug Delivery. Ultrasound Med. Biol. 2011, 37, 1838–1852. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Lee, T.; Willmann, J.K. Ultrasound-guided drug delivery in cancer. Ultrasonography 2017, 36, 171–184. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Ahmadi, F.; McLoughlin, I.V.; Chauhan, S.; Ter-Haar, G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog. Biophys. Mol. Biol. 2012, 108, 119–138. [Google Scholar] [CrossRef]
- Chung, Y.E.; Kim, K.W. Contrast-enhanced ultrasonography: Advance and current status in abdominal imaging. Ultrasonography 2014, 34, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Flint, E.B.; Suslick, K.S. The Temperature of Cavitation. Science 1991, 253, 1397–1399. [Google Scholar] [CrossRef] [PubMed]
- Entzian, K.; Aigner, A. Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021, 13, 1135. [Google Scholar] [CrossRef] [PubMed]
- Roy, R. Nanoparticle-Mediated Tissue Imaging and Therapy at the Intersection of Light and Sound. Available online: https://www.polyu.edu.hk/feng/-/media/department/feng/events/2019/20190624distinguishedlecturenanoparticlemediatedtissueimagingandtherapyattheintersectionoflightandso.pdf?la=enhash=F9837A006FC2110C71708DEA2AA05638 (accessed on 2 July 2024).
- Magnin, R.; Rabusseau, F.; Salabartan, F.; Mériaux, S.; Aubry, J.-F.; Le Bihan, D.; Dumont, E.; Larrat, B. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J. Ther. Ultrasound 2015, 3, 22. [Google Scholar] [CrossRef]
- Aryal, M.; Arvanitis, C.D.; Alexander, P.M.; McDannold, N. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 2014, 72, 94–109. [Google Scholar] [CrossRef]
- Rychak, J.J.; Klibanov, A.L. Nucleic acid delivery with microbubbles and ultrasound. Adv. Drug Deliv. Rev. 2014, 72, 82–93. [Google Scholar] [CrossRef]
- Mitragotri, S. Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 2005, 4, 255–260. [Google Scholar] [CrossRef]
- Prentice, P.; Cuschieri, A.; Dholakia, K.; Prausnitz, M.; Campbell, P. Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 2005, 1, 107–110. [Google Scholar] [CrossRef]
- Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.; Moonen, C. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 2014, 72, 49–64. [Google Scholar] [CrossRef]
- Qiu, Y.; Luo, Y.; Zhang, Y.; Cui, W.; Zhang, D.; Wu, J.; Zhang, J.; Tu, J. The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro. J. Control. Release 2010, 145, 40–48. [Google Scholar] [CrossRef]
- Ferrara, K.W. Driving delivery vehicles with ultrasound. Adv. Drug Deliv. Rev. 2008, 60, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.; Kost, J.; Barenholz, Y. Ultrasound, liposomes, and drug delivery: Principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids 2009, 162, 1–16. [Google Scholar] [CrossRef]
- Shortencarier, M.; Dayton, P.; Bloch, S.; Schumann, P.; Matsunaga, T.; Ferrara, K. A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 822–831. [Google Scholar] [CrossRef]
- Hancock, H.A.; Smith, L.H.; Cuesta, J.; Durrani, A.K.; Angstadt, M.; Palmeri, M.L.; Kimmel, E.; Frenkel, V. Investigations into Pulsed High-Intensity Focused Ultrasound–Enhanced Delivery: Preliminary Evidence for a Novel Mechanism. Ultrasound Med. Biol. 2009, 35, 1722–1736. [Google Scholar] [CrossRef]
- Frenkel, V.; Kimmel, E.; Iger, Y. Ultrasound-induced intercellular space widening in fish epidermis. Ultrasound Med. Biol. 2000, 26, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tasset, A.; Pyatnitskiy, I.; Mohamed, H.G.; Taniguchi, R.; Zhou, R.; Rana, M.; Lin, P.; Capocyan, S.L.C.; Bellamkonda, A.; et al. Ultrasound triggered organic mechanoluminescence materials. Adv. Drug Deliv. Rev. 2022, 186, 114343. [Google Scholar] [CrossRef] [PubMed]
- Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem. Eng. J. 2018, 340, 155–172. [Google Scholar] [CrossRef]
- Costley, D.; Mc Ewan, C.; Fowley, C.; McHale, A.P.; Atchison, J.; Nomikou, N.; Callan, J.F. Treating cancer with sonodynamic therapy: A review. Int. J. Hyperth. 2015, 31, 107–117. [Google Scholar] [CrossRef]
- Halliwell, B.; Aruoma, O.I. DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Lett. 1991, 281, 9–19. [Google Scholar] [CrossRef]
- Honda, H.; Kondo, T.; Zhao, Q.-L.; Feril, L.B.; Kitagawa, H. Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound Med. Biol. 2004, 30, 683–692. [Google Scholar] [CrossRef]
- VanBavel, E. Effects of shear stress on endothelial cells: Possible relevance for ultrasound applications. Prog. Biophys. Mol. Biol. 2007, 93, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Nagata, K.; Kuroda, S.; Horiuchi, S.; Nakamura, T.; Karima, M.; Inubushi, T.; Tanaka, E. Low-Intensity Pulsed Ultrasound Activates Integrin-Mediated Mechanotransduction Pathway in Synovial Cells. Ann. Biomed. Eng. 2014, 42, 2156–2163. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, V.; Fittipaldi, A.; Agostini, S.; Giacca, M.; Recchia, F.A.; Picano, E. Enhanced Caveolae-Mediated Endocytosis by Diagnostic Ultrasound In Vitro. Ultrasound Med. Biol. 2009, 35, 136–143. [Google Scholar] [CrossRef]
- Afadzi, M.; Strand, S.P.; Nilssen, E.A.; Masøy, S.-E.; Johansen, T.F.; Hansen, R.; Angelsen, B.A.; Davies, C.d.L. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 21–33. [Google Scholar] [CrossRef]
- Schlicher, R.K.; Radhakrishna, H.; Tolentino, T.P.; Apkarian, R.P.; Zarnitsyn, V.; Prausnitz, M.R. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 2006, 32, 915–924. [Google Scholar] [CrossRef]
- Goertz, D.E. An overview of the influence of therapeutic ultrasound exposures on the vasculature: High intensity ultrasound and microbubble-mediated bioeffects. Int. J. Hyperth. 2015, 31, 134–144. [Google Scholar] [CrossRef]
- Chen, C.C.; Sheeran, P.S.; Wu, S.-Y.; Olumolade, O.O.; Dayton, P.A.; Konofagou, E.E. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. J. Control. Release 2013, 172, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.-W.; Hwang, K.; Jin, J.; Cho, A.-S.; Kim, T.Y.; Hwang, S.I.; Lee, H.J.; Kim, C.-Y. Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: An effective drug delivery system. Int. J. Nanomed. 2019, 14, 3743–3752. [Google Scholar] [CrossRef]
- Kwan, J.J.; Myers, R.; Coviello, C.M.; Graham, S.M.; Shah, A.R.; Stride, E.; Carlisle, R.C.; Coussios, C.C. Ultrasound-Propelled Nanocups for Drug Delivery. Small 2015, 11, 5305–5314. [Google Scholar] [CrossRef]
- Nikam, A.P.; Ratnaparkhiand, M.P.; Chaudhari, S.P. Nanoparticles—An Overview. Int. J. Res. Dev. Pharm. Life Sci. 2014, 3, 1121–1127. [Google Scholar]
- Paris, J.L.; Vallet-Regí, M. Ultrasound-Activated Nanomaterials for Therapeutics. Bull. Chem. Soc. Jpn. 2020, 93, 220–229. [Google Scholar] [CrossRef]
- Husseini, G.A.; Myrup, G.D.; Pitt, W.G.; Christensen, D.A.; Rapoport, N.Y. Factors affecting acoustically triggered release of drugs from polymeric micelles. J. Control. Release 2000, 69, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Marin, A.; Muniruzzaman, M.; Rapoport, N. Acoustic activation of drug delivery from polymeric micelles: Effect of pulsed ultrasound. J. Control. Release 2001, 71, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, N. Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int. J. Pharm. 2004, 277, 155–162. [Google Scholar] [CrossRef]
- Liang, B.; Tong, R.; Wang, Z.; Guo, S.; Xia, H. High Intensity Focused Ultrasound Responsive Metallo-supramolecular Block Copolymer Micelles. Langmuir 2014, 30, 9524–9532. [Google Scholar] [CrossRef]
- Tong, R.; Xia, H.; Lu, X. Fast release behavior of block copolymer micelles under high intensity focused ultrasound/redox combined stimulus. J. Mater. Chem. B 2013, 1, 886–894. [Google Scholar] [CrossRef]
- Geers, B.; Lentacker, I.; Sanders, N.N.; Demeester, J.; Meairs, S.; De Smedt, S.C. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J. Control. Release 2011, 152, 249–256. [Google Scholar] [CrossRef]
- Zeng, Y.; Pitt, W.G. A polymeric micelle system with a hydrolysable segment for drug delivery. J. Biomater. Sci. Polym. Ed. 2006, 17, 591–604. [Google Scholar] [CrossRef]
- Novell, A.; Al Sabbagh, C.; Escoffre, J.-M.; Gaillard, C.; Tsapis, N.; Fattal, E.; Bouakaz, A. Focused ultrasound influence on calcein-loaded thermosensitive stealth liposomes. Int. J. Hyperth. 2015, 31, 349–358. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Javadi, M.; Belnap, D.M.; Barrow, J.R.; Pitt, W.G. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 67–76. [Google Scholar] [CrossRef]
- Ghamkhari, A.; Tafti, H.A.; Rabbani, S.; Ghorbani, M.; Ghiass, M.A.; Akbarzadeh, F.; Abbasi, F. Ultrasound-Triggered Microbubbles: Novel Targeted Core–Shell for the Treatment of Myocardial Infarction Disease. ACS Omega 2023, 8, 11335–11350. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; An, H.; Wang, X.; Wang, P.; Qu, F.; Jiao, Y.; Zhang, K.; Liu, Q. Ultrasoundtriggered release of sinoporphyrin sodium from liposome-microbubble complexes and its enhanced sonodynamic toxicity in breast cancer. Nano Res. 2018, 11, 1038–1056. [Google Scholar] [CrossRef]
- Gupta, R.; Shea, J.; Scaife, C.; Shurlygina, A.; Rapoport, N. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance. J. Control. Release 2015, 212, 70–77. [Google Scholar] [CrossRef]
- Kheirolomoom, A.; Lai, C.-Y.; Tam, S.M.; Mahakian, L.M.; Ingham, E.S.; Watson, K.D.; Ferrara, K.W. Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J. Control. Release 2013, 172, 266–273. [Google Scholar] [CrossRef]
- Park, S.M.; Kim, M.S.; Park, S.J.; Park, E.S.; Choi, K.S.; Kim, Y.S.; Kim, H.R. Novel Temperature-Triggered Liposome with High Stability: Formulation, in Vitro Evaluation, and in Vivo Study Combined with High-Intensity Focused Ultrasound (HIFU). J. Control. Release 2013, 170, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Treat, L.H.; McDannold, N.; Zhang, Y.; Vykhodtseva, N.; Hynynen, K. Improved Anti-Tumor Effect of Liposomal Doxorubicin After Targeted Blood-Brain Barrier Disruption by MRIGuided Focused Ultrasound in Rat Glioma. Ultrasound Med. Biol. 2012, 38, 1716–1725. [Google Scholar] [CrossRef]
- Yang, F.-Y.; Wong, T.-T.; Teng, M.-C.; Liu, R.-S.; Lu, M.; Liang, H.-F.; Wei, M.-C. Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J. Control. Release 2012, 160, 652–658. [Google Scholar] [CrossRef]
- Xu, P.; Yao, J.; Li, Z.; Wang, M.; Zhou, L.; Zhong, G.; Zheng, Y.; Li, N.; Zhai, Z.; Yang, S.; et al. Therapeutic Effect of Doxorubicin-Chlorin E6-Loaded Mesoporous Silica Nanoparticles Combined with Ultrasound on Triple-Negative Breast Cancer. Int. J. Nanomed. 2020, 15, 2659–2668. [Google Scholar] [CrossRef]
- Lv, Y.; Cao, Y.; Li, P.; Liu, J.; Chen, H.; Hu, W.; Zhang, L. Ultrasound-Triggered Destruction of Folate-Functionalized Mesoporous Silica Nanoparticle-Loaded Microbubble for Targeted Tumor Therapy. Adv. Healthc. Mater. 2017, 6, 1700354. [Google Scholar] [CrossRef]
- Shen, Y.; Pi, Z.; Yan, F.; Yeh, C.-K.; Zeng, X.; Diao, X.; Hu, Y.; Chen, S.; Chen, X.; Zheng, H. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int. J. Nanomed. 2017, 12, 5613–5629. [Google Scholar] [CrossRef]
- Yuan, J.; Ding, L.; Han, L.; Pang, L.; Zhang, P.; Yang, X.; Liu, H.; Zheng, M.; Zhang, Y.; Luo, W. Thermal/ultrasound-triggered release of liposomes loaded with Ganoderma applanatum polysaccharide from microbubbles for enhanced tumour ablation. J. Control. Release 2023, 363, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. Role of Nanobiotechnology in Drug Delivery. Drug Deliv. Syst. 2020, 2059, 55–73. [Google Scholar]
- Ahmed, S.E.; Awad, N.; Paul, V.; Moussa, H.G.; Husseini, G.A. Improving the Efficacy of Anticancer Drugs via Encapsulation and Acoustic Release. Curr. Top. Med. Chem. 2018, 18, 857–880. [Google Scholar] [CrossRef] [PubMed]
- Kneidl, B.; Peller, M.; Lindner, L.; Winter, G.; Hossann, M. Thermosensitive liposomal drug delivery systems: State of the art review. Int. J. Nanomed. 2014, 9, 4387–4398. [Google Scholar]
- Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Jia, Y.; Qu, F.; Sun, Y.; Wang, P.; Zhang, K.; Xu, C.; Liu, Q.; Wang, X. Ultrasound-Responsive Polymeric Micelles for Sonoporation-Assisted Site-Specific Therapeutic Action. ACS Appl. Mater. Interfaces 2017, 9, 25706–25716. [Google Scholar] [CrossRef]
- Papahadjopoulos, D.; Allen, T.M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S.K.; Lee, K.D.; Woodle, M.C.; Lasic, D.D.; Redemann, C. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA 1991, 88, 11460–11464. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Akita, H.; Harashima, H. The Polyethyleneglycol Dilemma: Advantage and Disadvantage of PEGylation of Liposomes for Systemic Genes and Nucleic Acids Delivery to Tumors. Biol. Pharm. Bull. 2013, 36, 892–899. [Google Scholar] [CrossRef]
- Chaudhry, M.; Lyon, P.; Coussios, C.; Carlisle, R. Thermosensitive liposomes: A promising step toward localised chemotherapy. Expert Opin. Drug Deliv. 2022, 19, 899–912. [Google Scholar] [CrossRef]
- Couture, O.; Foley, J.; Kassell, N.F.; Larrat, B.; Aubry, J.F. Review of ultrasound mediated drug delivery for cancer treatment: Updates from pre-clinical studies. Transl. Cancer Res. 2014, 3, 494–511. [Google Scholar]
- Nardecchia, S.; Sánchez-Moreno, P.; de Vicente, J.; Marchal, J.A.; Boulaiz, H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials 2019, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Bahutair, W.N.; Abuwatfa, W.H.; Husseini, G.A. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials 2022, 12, 3051. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.; Joshi, A. Ultrasound-based drug delivery systems. In Bioelectronics and Medical Devices; Elsevier: Amserdam, The Netherlands, 2019; pp. 241–260. [Google Scholar]
- Nagarajan, R. Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic® (PEO–PPO–PEO) block copolymers. Colloids Surfaces B Biointerfaces 1999, 16, 55–72. [Google Scholar] [CrossRef]
- Batrakova, E.V.; Bronich, T.K.; Vetro, J.A.; Kabanov, A.V. Polymer Micelles as Drug Carriers. In Nanoparticulates as Drug Carriers; Torčilin, V.P., Ed.; Imperial College Press: London, UK, 2006; pp. 57–93. ISBN 978-1-86094-630-1. [Google Scholar]
- Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 2013, 453, 198–214. [Google Scholar] [CrossRef]
- Zacche, M.M.; Srikrishna, S.; Cardozo, L. Novel targeted bladder drug-delivery systems: A review. Res. Rep. Urol. 2015, 7, 169–178. [Google Scholar] [CrossRef]
- Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007, 32, 962–990. [Google Scholar] [CrossRef]
- Martins, M.; Elgaili, S.A.; Vitor, R.F.; Husseini, G.A. Ultrasonic Drug Delivery Using Micelles and Liposomes. In Handbook of Ultrasonics and Sonochemistry; Springer: Singapore, 2015; pp. 1–35. [Google Scholar] [CrossRef]
- Azagury, A.; Amar-Lewis, E.; Yudilevitch, Y.; Isaacson, C.; Laster, B.; Kost, J. Ultrasound Effect on Cancerous versus Non-Cancerous Cells. Ultrasound Med. Biol. 2016, 42, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, Z.; Babyn, P.; Chapman, D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J. Med. Biol. Eng. 2019, 39, 259–276. [Google Scholar] [CrossRef]
- Clement, G. Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics 2004, 42, 1087–1093. [Google Scholar] [CrossRef]
- Tam, K.-F.; Cheung, W.-H.; Lee, K.-M.; Qin, L.; Leung, K.-S. Osteogenic effects of lowintensity pulsed ultrasound, extracorporeal shockwaves and their combination–an in vitro comparative study on human periosteal cells. Ultrasound Med. Biol. 2008, 3, 1957–1965. [Google Scholar] [CrossRef]
- Wei, P.; Cornel, E.J.; Du, J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv. Transl. Res. 2021, 11, 1323–1339. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Xue, M.; Xia, T.; Ji, Z.; Tarn, D.Y.; Zink, J.I.; Nel, A.E. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 2011, 5, 4131–4144. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Sai, H.; Wiesner, U. Ultrasmall Sub-10 nm Near-Infrared Fluorescent Mesoporous Silica Nanoparticles. J. Am. Chem. Soc. 2012, 134, 13180–13183. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L.; Nie, W.; Wang, W.; Qin, M.; Mo, X.; Wang, H.; He, C. Dual-Responsive Mesoporous Silica Nanoparticles Mediated Codelivery of Doxorubicin and Bcl-2 SiRNA for Targeted Treatment of Breast Cancer. J. Phys. Chem. C 2016, 120, 22375–22387. [Google Scholar] [CrossRef]
- Manzano, M.; Vallet-Regí, M. Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chem. Commun. 2019, 55, 2731–2740. [Google Scholar] [CrossRef]
- Rapoport, N.Y.; Kennedy, A.M.; Shea, J.E.; Scaife, C.L.; Nam, K.-H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release 2009, 138, 268–276. [Google Scholar] [CrossRef]
- Paris, J.L.; Cabañas, M.V.; Manzano, M.; Vallet-Regí, M. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound- Responsive Drug Carriers. ACS Nano 2015, 9, 11023–11033. [Google Scholar] [CrossRef]
- Hornsby, T.K.; Jakhmola, A.; Kolios, M.C.; Tavakkoli, J. A Quantitative Study of Thermal and Non-thermal Mechanisms in Ultrasound-Induced Nano-drug Delivery. Ultrasound Med. Biol. 2023, 49, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, J.S.; Xu, R.X. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials 2010, 31, 1278–1286. [Google Scholar] [CrossRef]
- Frenkel, V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 2008, 60, 1193–1208. [Google Scholar] [CrossRef]
- Kwan, J.J.; Coussios, C.C. Triggered drug release and enhanced drug transport from ultrasound-responsive nanoparticles. In Design and Applications of Nanoparticles in Biomedical Imaging; Bulte, J., Modo, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 277–297. [Google Scholar]
- Carpentier, A.; Canney, M.; Vignot, A.; Reina, V.; Beccaria, K.; Horodyckid, C.; Karachi, C.; Leclercq, D.; Lafon, C.; Chapelon, J.-Y.; et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 2016, 8, 343re2. [Google Scholar] [CrossRef] [PubMed]
- O’reilly, M.A.; Hynynen, K. Blood-Brain Barrier: Real-time Feedback-controlled Focused Ultrasound Disruption by Using an Acoustic Emissions–based Controller. Radiology 2012, 263, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, Y.; Power, C.; Alexander, P.M.; Sutton, J.T.; Aryal, M.; Vykhodtseva, N.; Miller, E.L.; McDannold, N.J. Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model. Proc. Natl. Acad. Sci. USA 2017, 114, E10281–E10290. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Yiu, H.H.P.; Pickard, M.R.; Olariu, C.I.; Williams, S.R.; Chari, D.M.; Rosseinsky, M.J. Fe3O4-PEI-RITC Magnetic Nanoparticles with Imaging and Gene Transfer Capability: Development of a Tool for Neural Cell Transplantation Therapies. Pharm. Res. 2012, 29, 1328–1343. [Google Scholar] [CrossRef]
- Sriraman, S.K.; Aryasomayajula, B.; Torchilin, V.P. Barriers to drug delivery in solid tumors. Tissue Barriers 2014, 2, e29528. [Google Scholar] [CrossRef]
- Husseini, G.A.; Pitt, W.G. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1137–1152. [Google Scholar] [CrossRef]
- Karshafian, R.; Bevan, P.D.; Williams, R.; Samac, S.; Burns, P.N. Sonoporation by Ultrasound-Activated Microbubble Contrast Agents: Effect of Acoustic Exposure Parameters on Cell Membrane Permeability and Cell Viability. Ultrasound Med. Biol. 2009, 35, 847–860. [Google Scholar] [CrossRef]
- Celentano, M.; Jakhmola, A.; Profeta, M.; Battista, E.; Guarnieri, D.; Gentile, F.; Netti, P.A.; Vecchione, R. Diffusion limited green synthesis of ultra-small gold nanoparticles at room temperature. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 558, 548–557. [Google Scholar] [CrossRef]
- Jakhmola, A.; Celentano, M.; Vecchione, R.; Manikas, A.; Battista, E.; Calcagno, V.; Netti, P.A. Self-assembly of gold nanowire networks into gold foams: Production, ultrastructure and applications. Inorg. Chem. Front. 2017, 4, 1033–1041. [Google Scholar] [CrossRef]
- Ponce, A.M.; Vujaskovic, Z.; Yuan, F.; Needham, D.; Dewhirst, M.W. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperth. 2006, 22, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Tharkar, P.; Varanasi, R.; Wong, W.S.F.; Jin, C.T.; Chrzanowski, W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front. Bioeng. Biotechnol. 2019, 7, 324. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kreider, W.; Brayman, A.A.; Bailey, M.R.; Matula, T.J. Blood Vessel Deformations on Microsecond Time Scales by Ultrasonic Cavitation. Phys. Rev. Lett. 2011, 106, 034301. [Google Scholar] [CrossRef]
- Suzuki, R.; Oda, Y.; Utoguchi, N.; Maruyama, K. Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J. Control. Release 2011, 149, 36–41. [Google Scholar] [CrossRef]
- Moon, G.D.; Choi, S.-W.; Cai, X.; Li, W.; Cho, E.C.; Jeong, U.; Wang, L.V.; Xia, Y. A New Theranostic System Based on Gold Nanocages and Phase-Change Materials with Unique Features for Photoacoustic Imaging and Controlled Release. J. Am. Chem. Soc. 2011, 133, 4762–4765. [Google Scholar] [CrossRef]
- Liang, H.D.; Tang, J.; Halliwell, M. Sonoporation, drug delivery, and gene therapy. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 343–361. [Google Scholar] [CrossRef]
- Hornsby, T.; Shaswary, E.; Tavakkoli, J. Development of an ultrasonic nonlinear frequency compounding method with applications in tissue thermometry. J. Acoust. Soc. Am. 2021, 150, 3192–3203. [Google Scholar] [CrossRef] [PubMed]
- Snipstad, S.; Sulheim, E.; Davies, C.d.L.; Moonen, C.; Storm, G.; Kiessling, F.; Schmid, R.; Lammers, T. Sonopermeation to improve drug delivery to tumors: From fundamental understanding to clinical translation. Expert Opin. Drug Deliv. 2018, 15, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Ibsen, S.; Schutt, C.E.; Esener, S. Microbubble-mediated ultrasound therapy: A review of its potential in cancer treatment. Drug Des. Dev. Ther. 2013, 7, 375–388. [Google Scholar] [CrossRef]
- Hernot, S.; Klibanov, A.L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1153–1166. [Google Scholar] [CrossRef]
- Sun, W.; Li, Z.; Zhou, X.; Yang, G.; Yuan, L. Efficient exosome delivery in refractory tissues assisted by ultrasound-targeted microbubble destruction. Drug Deliv. 2019, 26, 45–50. [Google Scholar] [CrossRef]
- Udroiu, I. Ultrasonic drug delivery in Oncology. J. BUON 2015, 20, 381–390. [Google Scholar] [PubMed]
- Tartis, M.S.; McCallan, J.; Lum, A.F.; LaBell, R.; Stieger, S.M.; Matsunaga, T.O.; Ferrara, K.W. Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med. Biol. 2006, 32, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Fokong, S.; Theek, B.; Wu, Z.; Koczera, P.; Appold, L.; Jorge, S.; Resch-Genger, U.; van Zandvoort, M.; Storm, G.; Kiessling, F.; et al. Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J. Control. Release 2012, 163, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mørch, Ý.; Hansen, R.; Berg, S.; Åslund, A.K.O.; Glomm, W.R.; Eggen, S.; Schmid, R.; Johnsen, H.; Kubowicz, S.; Snipstad, S.; et al. Nanoparticle-stabilized microbubbles for multimodal imaging and drug delivery. Contrast Media Mol. Imaging 2015, 10, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Hao, L.; Hu, W.; Ran, Y.; Bai, Y.; Zhang, L. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting. Sci. Rep. 2016, 6, 29321. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Y.; Yu, T.; Guo, Y.; Liu, F.; Yao, Y.; Li, P.; Wang, D.; Wang, Z.; Chen, Y.; et al. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Theranostics 2018, 8, 1327–1339. [Google Scholar] [CrossRef]
- Kripfgans, O.D.; Fowlkes, J.; Miller, D.L.; Eldevik, O.; Carson, P.L. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. 2000, 26, 1177–1189. [Google Scholar] [CrossRef]
- Kawabata, K.-I.; Sugita, N.; Yoshikawa, H.; Azuma, T.; Umemura, S.-I. Nanoparticles with Multiple Perfluorocarbons for Controllable Ultrasonically Induced Phase Shifting. Jpn. J. Appl. Phys. 2005, 44, 4548–4552. [Google Scholar] [CrossRef]
- Mi, P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020, 10, 4557–4588. [Google Scholar] [CrossRef]
- Wu, H.; Rognin, N.G.; Krupka, T.M.; Solorio, L.; Yoshiara, H.; Guenette, G.; Sanders, C.; Kamiyama, N.; Exner, A.A. Acoustic Characterization and Pharmacokinetic Analyses of New Nanobubble Ultrasound Contrast Agents. Ultrasound Med. Biol. 2013, 39, 2137–2146. [Google Scholar] [CrossRef] [PubMed]
- Exner, A.A.; Kolios, M.C. Bursting microbubbles: How nanobubble contrast agents can enable the future of medical ultrasound molecular imaging and image-guided therapy. Curr. Opin. Colloid Interface Sci. 2021, 54, 101463. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.-C.; Gao, J.-Q. Exosomes as novel bio-carriers for gene and drug delivery. Int. J. Pharm. 2017, 521, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Liu, Y.; Guo, K.; Zhang, K.; Liu, Q.; Wang, P.; Wang, X. Ultrasound Facilitates Naturally Equipped Exosomes Derived from Macrophages and Blood Serum for Orthotopic Glioma Treatment. ACS Appl. Mater. Interfaces 2019, 11, 14576–14587. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.R.; Geis, N.A.; Katus, H.A.; Bekeredjian, R. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin. Drug Deliv. 2008, 5, 1121–1138. [Google Scholar] [CrossRef]
- Sayes, C.M.; Reed, K.L.; Warheit, D.B. Assessing Toxicity of Fine and Nanoparticles: Comparing In Vitro Measurements to In Vivo Pulmonary Toxicity Profiles. Toxicol. Sci. 2007, 97, 163–180. [Google Scholar] [CrossRef]
- Stone, V.; Johnston, H.; Schins, R.P.F. Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 2009, 39, 613–626. [Google Scholar] [CrossRef]
- Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small 2007, 3, 1941–1949. [Google Scholar] [CrossRef]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016, 20, 1–11. [Google Scholar]
- ISO/TR 10993-22; Biological Evaluation of Medical Devices—Part 22: Guidance on Nanomaterials. FILAB: Dijon, France, 2017.
- Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607. [Google Scholar] [CrossRef]
- Lehner, R.; Wang, X.; Marsch, S.; Hunziker, P. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 742–757. [Google Scholar] [CrossRef] [PubMed]
- Shankar, H.; Pagel, P.S. Potential adverse ultrasound-related biological effects: A critical review. Anesthesiology 2011, 115, 1109–1124. [Google Scholar] [CrossRef] [PubMed]
Triggering Mechanism | Type | Advantages | Disadvantages |
---|---|---|---|
Magnetic Field | Extrinsic | Non-ionizing radiation, energy modulation using alternating magnetic fields, possible imaging opportunities | Particle accumulation can result in toxicity, limited to surface tumors, expensive, non-mobile equipment |
X-Ray | Extrinsic | High precision, high tissue penetration, easily tuned | Ionizing radiation, expensive, non-mobile equipment |
Microwaves | Extrinsic | Non-ionizing radiation, Non-invasive, easily tuned | Low tissue penetration, possible increase in temperature |
Light | Extrinsic | Non-ionizing radiation, non-invasive | Low tissue penetration |
Ultrasound | Extrinsic | Cost, easily accessible, easily tuned, high spatial and temporal precision, mobile equipment, possible imaging utility | Difficulty in application on moving objects and large volumes |
pH Difference | Intrinsic | Targets low PH tumor environment, wide applicability, simple structure | PH-sensitive drug delivery systems have poor site specificity and can cause off-target delivery, difficulty in maintaining structure during drug delivery |
Redox Reactions | Intrinsic | Able to target a tumor environment or disease site because of variations in redox potential as a result of molecules like GSH being present | Careful design is required to ensure specificity, performance may be impacted by the body’s variable redox environments. |
Enzymatic | Intrinsic | High specificity for environments overexpressing certain enzymes, potential for minimal side effects | Environmentally sensitive, unpredictable in vivo response, difficulty in designing enzyme-responsive drug delivery system |
Nanoparticles | Type | Advantages | Disadvantages |
---|---|---|---|
Liposomes | Organic | Easy preparation, good biocompatibility, low toxicity, enhanced circulation time through pegylation, able to encapsulate both polar and non-polar molecules, functional groups can be added for targeted drug delivery | Limited storage conditions, low stability, potential allergic reactions |
Dendrimers | Organic | High drug loading capacity, functional groups can be attached to the outer surface | Complex and costly synthesis process, possible toxicity, limited solubility for hydrophilic molecules |
Polymeric Micelles | Organic | Self-assembly and chemical flexibility allow for modification, good stability, biodegradable, and biocompatible | Toxic organic solvent residue leftover from the formation process can affect aggregation properties, low drug loading capacity, challenges in industrial scale production |
Exosome | Organic (Biological) | Natural nanocarriers, intrinsic targeting that prevents off-target effects, can pass through biological barriers and reduce Immune response, low to moderate starting material cost, enhanced efficacy and pharmacokinetic profile, and low toxicity | Undesired effects due to exosome components, lack of standardized production method |
Solid Lipid Nanoparticles | Organic | A high surface area to volume ratio allows for high rug loading capacity, high stability, biocompatible, functional groups can be conjugated for active targeting | Difficulties in large-scale reproducible synthesis, stability issues, low drug loading capacity |
Gold Nanoparticles | Inorganic | It can be directed using external magnetic fields | Potential toxicity depends on nanocarriers size, shape, and surface modification, in vitro studies have shown it can induce ROS production leading to DNA damage, and cell death, in vivo studies are required to fully assess the toxicity, size, dose, species, and surface coating |
Super Magnetic Iron Oxide Nanoparticles | Inorganic | Ease of production, loss of magnetism in the absence of magnetic field lowers risk of particle accumulation, ROS-producing sonosensitizers stable, tunable, and uniform pore size, controlled | determine their toxicity, risks associated with inhalation, ingestion, and skin absorption, synthesis challenges, possible toxicity depending on the size |
Nanoparticles | Inorganic | Release of drug payload, high drug loading capacity because of their porous structure | Potential toxicity affected by the shape, size, surface functionality, hydrophilicity, porosity, and surface conductivity |
Carbon Nanotubes | Inorganic | Large surface area, sustained release while safeguarding the entrapped drug, possible surface modification | Poor water solubility |
Quantum Dots | Inorganic | Imaging properties, theranostic utility, control of particle size and surface charge of the nanoparticle, smaller particles can penetrate cell membranes easily | Highly toxicity due to their composition, possible particle accumulation, instability due to air sensitivity and possible oxidation |
Reference | Study Type | U.S. Parameters | Nanoparticle Type/ Drug Type | Effect |
---|---|---|---|---|
[58] | in vitro | 20 to 90 kHz, 0 to 3 W/cm2 | Pluronic Micelles/ DOX and Ruboxyl | When the micelles were ruptured by cavitation, the encapsulated drug was released. The release of DOX was greater than that of ruboxyl. |
[59] | in vitro | 20 kHz (1.4, 14, and 33 mW/cm2 | Pluronic Micelles/DOX | The process of sonication increased the uptake of DOX by cancerous cells. |
[60] | in vitro | 1, 3 MHz and 20 kHz 3 MHz power densities (0.058, 6 and 0–0.2 W/cm2) | Micelles/DOX | Drug release from micelles and intracellular drug uptake by cancer cells are both increased by sonication |
[61] | in vitro | 1.1 MHz (0–150 W) | (PPG-[Cu]-PEG) micelles/(pyrene/Nile red). | After HIFU sonication, the encapsulated payload was rapidly released from the micelles. |
[62] | in vitro | 1.1 MHz (0–150 W) | copolymer micelles/ (pyrene/DTT) | Redox and HIFU combined to improve drug release from copolymer micelles. |
[63] | in vitro | 1 MHz, 2 W/cm2 | Liposome-loaded (lipid-shelled) MBs/DOX | US-mediated drug release; even at low DOX doses, cancer cells are killed |
[64] | in vitro | 70 kHz | Polymeric Micelles /(DPH/DOX) | DOX release increased with temperature from 25 °C (2%) to 37 °C (4%). Stopping the sonication led to DOX re-encapsulation |
[65] | in vitro | 1 MHz | Thermosensitive Liposomes/Calcein | TSL drug release was improved by the focused US due to the mechanical stresses that were produced. |
[66] | in vitro | 20 kHz (1 W/cm2) | eLiposomes/DOX | Compared to liposomes without emulsions eLiposomes showed increased DOX release after sonication. |
[67] | in vitro | 1.5 MHz and 35 mW/cm2 for 10–80 min | MBs/basic fibroblast growth factor (bFGF) | Without obvious cytotoxicity, greatly increased the efficiency of bFGF, cellular uptake, and flow cytometry to MI tissue. |
[68] | in vivo | 1.0 MHz; 3 min; TAT 3 W; 30% duty cycle | DVDMS liposomes conjugated to MBs | MBs and DVDMS sonsensitizer sonification helped reduce the size of the tumor |
[69] | in vivo | 3 MHz, 3.1 W | Micelles and Nanoemulsions/Paclitaxel (IV) | Compared to micelles with solid cores, those with elastic cores and the corresponding nanoemulsions showed higher treatment efficacy. Nanoemulsions showed less systemic toxicity compared to micelles. |
[70] | in vivo | 1.54 MHz, pulsed | CuDOX-TSL/DOX | Approximately 100% tumor inhibition |
[71] | in vivo | 1 MHz | TSL/DOX | The TSL liposomes in conjunction with HIFU dramatically reduced tumor regression. |
[72] | in vivo | 1.7 MHz | Liposomes/DOX | Liposomal DOX’s therapeutic effect in the brain was enhanced by the US-mediated disruption of the BBB. |
[73] | in vivo | 1 MHz (2.9 W/cm2) | Liposomes/DOX | Improved targeted drug delivery brought about by ultrasound application inhibited the growth of brain tumors. |
[74] | in vivo | 4 W/cm2 | Mesoporous Silica Nanoparticles/DOX | High drug-loading properties and synergistic effects between ultrasound and drug delivery system |
[75] | in vivo | 1 MHz, 2 W/cm2 | Microbubble-encased Mesoporous Silica nanoparticles/TAN | High drug loading capacity and multitargeting capability. |
[76] | in vivo | 1.1 MHz | Liposomes with Microbubble/PTX | When liposomes and US were combined with MBs, the drug’s efficacy was increased. |
[77] | in vivo | MI 1.3, peak negative pressure 2.3 MPa, 50% duty cycle, 3.13 MHz frequency, and 80 mW acoustic power | liposome–microbubble complexes/Ganoderma applanatum polysaccharide | Reduced the growth of rabbit VX2 liver tumors in the SH field by blocking TAMs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Refaai, K.A.; AlSawaftah, N.A.; Abuwatfa, W.; Husseini, G.A. Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review. Pharmaceutics 2024, 16, 1383. https://doi.org/10.3390/pharmaceutics16111383
Al Refaai KA, AlSawaftah NA, Abuwatfa W, Husseini GA. Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review. Pharmaceutics. 2024; 16(11):1383. https://doi.org/10.3390/pharmaceutics16111383
Chicago/Turabian StyleAl Refaai, Khaled Armouch, Nour A. AlSawaftah, Waad Abuwatfa, and Ghaleb A. Husseini. 2024. "Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review" Pharmaceutics 16, no. 11: 1383. https://doi.org/10.3390/pharmaceutics16111383
APA StyleAl Refaai, K. A., AlSawaftah, N. A., Abuwatfa, W., & Husseini, G. A. (2024). Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review. Pharmaceutics, 16(11), 1383. https://doi.org/10.3390/pharmaceutics16111383