Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications
<p>Extraction of chitin and chitosan.</p> "> Figure 2
<p>Functionalized chitosan derivatives. Adapted from reference [<a href="#B88-pharmaceutics-15-01313" class="html-bibr">88</a>].</p> "> Figure 3
<p>Various applications of chitosan.</p> "> Figure 4
<p>((<b>A</b>), i) SEM micrographs of isolated drug-free chitosan–arginine–alginate bioparticles after lyophilization, showing globular morphology and smooth to a slightly irregular surface. ((<b>A</b>), ii) SEM micrographs of particle cluster containing 38 μM praziquantel unveiling irregular polygonal-like structures and wrinkled surface. Confocal laser scanning micrographs (epifluorescence of labeled fluorescein isothiocyanate, phase contrast and merge) of anterior (upper panels) and posterior (lower panels) intestine of Carassius auratus after 30 min ((<b>A</b>), iii) and 8 h ((<b>A</b>), iv) (Scale bar: 50 μm). Reproduced with permission from [<a href="#B129-pharmaceutics-15-01313" class="html-bibr">129</a>], copyright Elsevier 2020. ((<b>B</b>), i) SEM images and diameter distributions of electrospun nanofiber (30/70 weight ratio of chitosan to Pullulan) ((<b>B</b>), ii) Presentation of solubility behavior of C/P 0/100 nanofiber film and C/P 30/70 nanofiber film. The photos were taken before the film was in contact with water (a, a’) and after the film was in contact with water for 5 s (b, b’), 30 s (c, c’), and 60 s (d, d’). Reproduced with permission from [<a href="#B132-pharmaceutics-15-01313" class="html-bibr">132</a>], copyright Elsevier 2019.</p> "> Figure 5
<p>((<b>A</b>), i) Inverted fluorescence microscope micrographs after time-coursed in vivo corneal permeation of the preparations, the eye treated with normal saline was used as control. (Scale bar: 150 μm). ((<b>A</b>), ii) Ex vivo fluorescence imaging of rabbit ocular tissues from rabbits treated with different Coumarin 6-loaded formulations. Here, F1 = chitosan-N-acetyl-L-cysteine-coated NLC, F2 = chitosan oligosaccharide-coated NLC, F3 = carboxymethyl chitosan-coated NLC, F4 = Uncoated NLC, F5 = Coumarin 6 eyedrops. Reproduced with permission from [<a href="#B141-pharmaceutics-15-01313" class="html-bibr">141</a>], copyright Elsevier 2017. ((<b>B</b>), i) SEM images of polyacrylonitrile modified nanofibers at different magnifications: PAN (a) and (b); PANEDA (c) and (d); PAN-EDA-OC (e) and (f); PAN-EDA-OC-ACY (g) and (h). ((<b>B</b>), ii) Cell attachment of HASCs on modified fibrous scaffolds. Reproduced with permission from [<a href="#B150-pharmaceutics-15-01313" class="html-bibr">150</a>], copyright Elsevier 2020.</p> "> Figure 6
<p>((<b>A</b>), i) Cryo-TEM images of N-O-carboxymethyl chitosan-dopamine amide conjugate nanoparticles (Scale bar: 500 nm). ((<b>A</b>), ii) Epifluorescence microscopy of olfactory ensheathing cells incubated with FITC-loaded N-O-carboxymethyl chitosan-dopamine amide conjugate nanoparticles at dopamine concentrations of 18.75 (a,c) and 75 μM (b,d), and FITC-loaded N-O-carboxymethyl chitosan-dopamine amide conjugate nanoparticles 75 μM (e,f), incubated with olfactory ensheathing cells in the presence or absence of mucin for 2 h and then evaluated by epifluorescence microscopy. Controls (CTRL) were cells incubated with medium only in the presence or absence of mucin (g,h). Arrows indicate nanoparticles in close vicinity of nuclei as dots, while arrowheads point to more diffuse perinuclear staining (Scale bar: 10 μm). Reproduced with permission from [<a href="#B162-pharmaceutics-15-01313" class="html-bibr">162</a>], copyright MDPI 2019. ((<b>B</b>), i) TEM image of luteolin-loaded chitosomes (150,000× magnification). Arrows point to the chitosan coating layer. ((<b>B</b>), ii) Photomicrograph immunohistochemistry of GFAP expression in brain tissue. Group 2 (disease control) shows a marked expression of GFAP; however, the morphological difference between the two treated groups was not observed. Here, significant difference was considered at <span class="html-italic">p</span> < 0.05, *. Statistically significant difference from the normal group at <span class="html-italic">p</span> < 0.05, **. Reproduced with permission from [<a href="#B163-pharmaceutics-15-01313" class="html-bibr">163</a>], copyright MDPI 2022.</p> "> Figure 7
<p>((<b>A</b>), i) Vulvovaginal histological sections from the experimental groups of animals. Female rats were intravaginally infected or not with <span class="html-italic">C. albicans</span> and treated or not with MFM-chitosan gel or clotrimazole. H&E-stained vulvovaginal tissue sections were analyzed by light microscopy. ((<b>A</b>), ii) SEM views of vulvovaginal epithelium in vulvovaginal candidiasis rat models after vaginal topical treatment with MFM-chitosan gel. (A–C) shows the well-preserved ultrastructure of vaginal epithelium treated with chitosan-gel containing 2.5% (A), 5.0% (B), and 10.0% (C) MFM [fungal cells are highlighted in green]. Reproduced with permission from [<a href="#B170-pharmaceutics-15-01313" class="html-bibr">170</a>], copyright Elsevier 2020. ((<b>B</b>), i) SEM images of (A) Unloaded 5:5 chitosan/sodium alginate PEC-based insert, (B) Fluconazole 5:5 chitosan/sodium alginate PEC, (C) Unloaded 5:5 chitosan/xanthan gum PEC-based insert, (D) Fluconazole 5:5 chitosan/xanthan gum PEC, (E) Unloaded 5:5 chitosan/carpobol PEC-based insert, (F) Fluconazole 5:5 chitosan/carpobol PEC ((<b>B</b>), ii) Histological examination of Candida infected vaginal tissue treated by unloaded vaginal insert, fluconazole PEC based vaginal insert and fluconazole solution. (A) Control normal vaginal tissue; (B) Control Candida infected, non-treated vaginal tissue; (C) Candida infected vaginal tissue treated by unloaded vaginal insert; (D) Candida infected vaginal tissue treated by fluconazole solution; (E) Candida infected vaginal tissue treated by fluconazole vaginal insert. Stars represent inflammatory cells; Black arrows represent normal epithelium; Dotted arrows represent hyperplastic or damaged epithelium. Reproduced with permission from [<a href="#B176-pharmaceutics-15-01313" class="html-bibr">176</a>], copyright MDPI 2018.</p> "> Figure 7 Cont.
<p>((<b>A</b>), i) Vulvovaginal histological sections from the experimental groups of animals. Female rats were intravaginally infected or not with <span class="html-italic">C. albicans</span> and treated or not with MFM-chitosan gel or clotrimazole. H&E-stained vulvovaginal tissue sections were analyzed by light microscopy. ((<b>A</b>), ii) SEM views of vulvovaginal epithelium in vulvovaginal candidiasis rat models after vaginal topical treatment with MFM-chitosan gel. (A–C) shows the well-preserved ultrastructure of vaginal epithelium treated with chitosan-gel containing 2.5% (A), 5.0% (B), and 10.0% (C) MFM [fungal cells are highlighted in green]. Reproduced with permission from [<a href="#B170-pharmaceutics-15-01313" class="html-bibr">170</a>], copyright Elsevier 2020. ((<b>B</b>), i) SEM images of (A) Unloaded 5:5 chitosan/sodium alginate PEC-based insert, (B) Fluconazole 5:5 chitosan/sodium alginate PEC, (C) Unloaded 5:5 chitosan/xanthan gum PEC-based insert, (D) Fluconazole 5:5 chitosan/xanthan gum PEC, (E) Unloaded 5:5 chitosan/carpobol PEC-based insert, (F) Fluconazole 5:5 chitosan/carpobol PEC ((<b>B</b>), ii) Histological examination of Candida infected vaginal tissue treated by unloaded vaginal insert, fluconazole PEC based vaginal insert and fluconazole solution. (A) Control normal vaginal tissue; (B) Control Candida infected, non-treated vaginal tissue; (C) Candida infected vaginal tissue treated by unloaded vaginal insert; (D) Candida infected vaginal tissue treated by fluconazole solution; (E) Candida infected vaginal tissue treated by fluconazole vaginal insert. Stars represent inflammatory cells; Black arrows represent normal epithelium; Dotted arrows represent hyperplastic or damaged epithelium. Reproduced with permission from [<a href="#B176-pharmaceutics-15-01313" class="html-bibr">176</a>], copyright MDPI 2018.</p> "> Figure 8
<p>(<b>A</b>) Synthesis of the dual-responsive hydrogel composite by incorporating NIR-responsive polydopamine-coated magnesium–calcium carbonate microspheres into a thermo-responsive hydroxy butyl chitosan hydrogel and its application for sequential Aspirin/bone morphogenetic protein-2 delivery. Reproduced with permission from [<a href="#B181-pharmaceutics-15-01313" class="html-bibr">181</a>], copyright Elsevier 2022. ((<b>B</b>), i) Photographic and SEM images of porous hybrid calcium phosphate/chitosan membranes, scale bar: 10 μm. ((<b>B</b>), ii) SEM image showing the osteoblast cell growth and formation of mineral-surrounded clusters, indicated by arrows. Scale bar: 10 μm. ((<b>B</b>), iii) X-ray and micro-CT imaging in Sprague-Dawley rats (21 days post-surgery). All rat skulls were punched with two holes having 4 mm diameter and then covered with different membranes listed in the top panel. B–F panel are X-ray images while B’–F’ are micro-CT images as explained in figure. B–F and B’–F’ correspond to materials 1–5 as shown in panel above X-ray images. Reproduced with permission from [<a href="#B182-pharmaceutics-15-01313" class="html-bibr">182</a>], copyright Elsevier 2019.</p> "> Figure 9
<p>(<b>i</b>) Graphical illustration for the mechanism of the self-assembled microspheres. (<b>ii</b>) Bright-field [a], florescent [b], mix CLSM [c], and SEM images [d, e] of MC3T3-E1 cells co-cultured with microspheres after 3 days. The graph shows the adhesion-related gene expression of MC3T3-E1 cells on chitosan microspheres without nanofibers and nanofibrous chitosan microspheres (Here, **** <span class="html-italic">p</span> < 0.0001) [f]. (<b>iii</b>) Micro CT reconstruction images of the bone defect. Reproduced with permission from [<a href="#B184-pharmaceutics-15-01313" class="html-bibr">184</a>], copyright Elsevier 2022.</p> "> Figure 10
<p>((<b>A</b>), i) Schematic image of the scaffold showing mean pore size in each phase with corresponding SEM images showing internal pore structure of the composite scaffolds in the cartilage and bone phases. ((<b>A</b>), ii) Comparison of compressive modulus of chitosan-only and chitosan-nano-hydroxyapatite composite scaffolds. ((<b>A</b>), iii) Sulphated glycosaminoglycans measured in mesenchymal stem cells-seeded chitosan scaffolds exposed to chondrogenic culture conditions. (Here, SC = chitosan scaffold in standard culture, CC = chitosan scaffold in chondrogenic medium, SnHA = chitosan-nHA scaffold in standard culture, CnHA = chitosan-nHA scaffold in chondrogenic medium; <span class="html-italic">p</span> values ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001). ((<b>A</b>), iv) Fluorescent microscopy showing MSCs seeded onto chitosan-nHA composite scaffolds after 14 days in osteogenic medium. Reproduced with permission from [<a href="#B188-pharmaceutics-15-01313" class="html-bibr">188</a>], copyright Elsevier 2022. (<b>B</b>) Immunofluorescent staining of bone marrow mesenchymal stem cells encapsulated in hyaluronic acid/chitosan coacervate-based scaffolds at different days of chondrogenic differentiation. Blue represents cell nuclei, green represents COL2A1, red represents ACAN and Phalloidin. Reproduced with permission from [<a href="#B190-pharmaceutics-15-01313" class="html-bibr">190</a>], copyright Elsevier 2021.</p> "> Figure 11
<p>((<b>A</b>), i) Schematic depicting the synthesis route and UCMSCs encapsulated in CS/Dex/β-GP hydrogel for use in cardiac repair applications. ((<b>A</b>), ii) Gelation time of CS/Dex/β-GP hydrogel with varying concentrations of dextran, here significant differences were defined as <span class="html-italic">p</span> values * ≤ 0.05, *** ≤ 0.001. ((<b>A</b>), iii) Confocal microscope images showing the morphology of UCMSCs in hydrogels before and after injection. ((<b>A</b>), iv) Representative Western blot assay for detecting the levels of p-ERK and p-ERK1/2 of UCMSCs cultured in hydrogels for 2 days. ((<b>A</b>), v) cTnI (green) and Cx43 (red) expression of UCMSCs in cultured hydrogels, cell nuclei were stained by Hoechst (blue). Reproduced with permission from [<a href="#B196-pharmaceutics-15-01313" class="html-bibr">196</a>], copyright Elsevier 2020. ((<b>B</b>), i) SEM image of polypyrrole/chitosan/collagen electrospun nanofiber scaffold. ((<b>B</b>), ii) The electrical conductivity and stress–strain curve of different nanofibrous scaffolds. Reproduced with permission from [<a href="#B197-pharmaceutics-15-01313" class="html-bibr">197</a>], copyright Elsevier 2019.</p> "> Figure 12
<p>((<b>A</b>), i) Macroscopic photographs of dried composite membranes showing a decrease in visual transparency with increasing PCL content. ((<b>A</b>), ii) The effect of PCL content on light transmittance of the composite membranes (significant differences were defined as <span class="html-italic">p</span> values **** ≤ 0.0001). ((<b>A</b>), iii) Representative SEM images of corneal epithelial cells cultured on CSNP/PCL 50/25 for 5 days. Reproduced with permission from [<a href="#B204-pharmaceutics-15-01313" class="html-bibr">204</a>], copyright Springer Nature 2021. ((<b>B</b>), i) Transmittance of DC hydrogel in water and in PBS (2 wt%) between 25 and 40 °C (λ = 700 nm). ((<b>B</b>), ii) AFM images of self-assembled DC hydrogel at different temperatures. ((<b>B</b>), iii) Representative micrographs of DC hydrogel stimulating corneal stromal cell migration after 12 h in the scratching assay (100× magnification, Scale bar: 100 μm). ((<b>B</b>), iv) Confocal laser scanning microscopy graphs of rabbit corneal stromal cells cultured in hydrogel at day 7 (Scale bar: 20 μm). ((<b>B</b>), v) H&E and Masson staining images of corneal stroma defect with and without DC hydrogel at 4 weeks after surgery (Scale bar: 500 μm for 2×, 20 μm for 40×; Black arrows point to keratocytes). Reproduced with permission from [<a href="#B205-pharmaceutics-15-01313" class="html-bibr">205</a>], copyright American Chemical Society.</p> "> Figure 13
<p>((<b>A</b>), i) Image showing the one-walled defects created surgically at mesial and distal sides of maxillary first premolar ((<b>A</b>), ii) New bone formation seen in defects of trilayer functional chitosan membrane (left)- and Biomend<sup>®</sup> (right)-treated groups, the rectangular frame was chosen for bone density analysis. ((<b>A</b>), iii) Graph depicting the percentage of new bone formation (Here, significant difference was labeled as * <span class="html-italic">p</span> < 0.05). Reproduced with permission from [<a href="#B213-pharmaceutics-15-01313" class="html-bibr">213</a>], copyright Elsevier 2016. ((<b>B</b>), i) SEM image of fibrin with ε-aminocaproic acid loaded chitosan-tripolyphosphate nanoparticles (Scale bar: 2 μm). ((<b>B</b>), ii) Micro-computed topography-based measurement of the linear distance of vertical alveolar bone regeneration (compared with enamel matrix derivative, EMD). ((<b>B</b>), iii) Histological and immune-histological analyses of cementum formation and Sharpey’s fiber insertions to bone and newly formed cementum tissues. Upon comparison with fibrin-only (unmodified fibrin hydrogel) and EMD groups, the fibrin-ACP group facilitated the regeneration of periodontal tissues such as cementum on tooth-root surfaces, periodontal ligament, and the alveolar bone. More critically, the fibrin-ACP promoted Sharpey’s fiber formations and insertions into the cementum layers and alveolar bone surfaces, indicated by white arrows. Reproduced with permission from [<a href="#B215-pharmaceutics-15-01313" class="html-bibr">215</a>], copyright Elsevier 2017.</p> "> Figure 14
<p>((<b>A</b>), i) Schematic illustration of the fabrication process of the MACSs. (Here, F: PLA microfiber; C: Chitosan; M: Microchannel; AC: Alkylated chitosan). ((<b>A</b>), ii) Micro-CT images depicting the macro and microstructure of the alkylated chitosan sponge (without microchannel structure) ACS and different preparations of MACS. ((<b>A</b>), iii) Macro photographs of the blood-triggered shape recovery of MACS. ((<b>A</b>), iv) Photographs of the hemostatic effect of CELOXTM and MACS in the normal rat liver perforation wound model (yellow arrow and dotted line represented the bleeding site and liver boundary, respectively) along with quantitative data of total blood loss and hemostatic time for different treatment groups. Reproduced with permission from [<a href="#B222-pharmaceutics-15-01313" class="html-bibr">222</a>], copyright Springer Nature 2021. ((<b>B</b>), i) Photographs (upper), SEM images (middle), and fluorescent images (bottom) of electrospinning membranes (scale bar: 1 cm, black; 10 μm, Re; 100 μm, white). ((<b>B</b>), ii) Representative images showing full-thickness skin defects treated with the petrolatum gauze (Control) and nBG-TFM at a predetermined time post-surgery (scale bar: 10 mm). Reproduced with permission from [<a href="#B225-pharmaceutics-15-01313" class="html-bibr">225</a>], copyright Elsevier 2019.</p> "> Figure 15
<p>(<b>i</b>) Schematic illustrations for the preparation of PEI/PAA/QCS powder and the formation of PEI/PAA/QCS powder-derived hydrogel by adding anticoagulated blood. The photos are of the PEI/PAA/QCS powder and a pentagram PEI/PAA/QCS hydrogel formed by adding anticoagulated blood. (<b>ii</b>) SEM images of red blood cells (red arrow) and activated platelets (blue arrow) on the surface of PEI/PAA/QCS hydrogel. (<b>iii</b>) Schematic and photos of creating acute bleeding and stopping bleeding by applying PEI/PAA/QCS powder femoral artery and tail vein bleeding models. Reproduced with permission from [<a href="#B226-pharmaceutics-15-01313" class="html-bibr">226</a>], copyright Wiley-VCH 2021.</p> "> Figure 16
<p>(<b>i</b>) SEM images of BP/CS-bFGF hydrogels. (Scale bar: 200 μm). (<b>ii</b>) Photographs of the self-healing performance of the BP/CS-bFGF hydrogel. (<b>iii</b>) Images of cell migration at different times with corresponding values of wound area closure treated with various samples and migration rate of hGFs cells upon the prepared hydrogels (Here, significant differences were defined as <span class="html-italic">p</span> values * ≤ 0.05, *** ≤ 0.001). Reproduced with permission from [<a href="#B228-pharmaceutics-15-01313" class="html-bibr">228</a>], copyright Elsevier 2022.</p> "> Figure 17
<p>(<b>i</b>) Schematic mechanism of RCP/pJUN-PSPF@PGA scaffold on the nerve regeneration via the located gene transfection of c-JUN: (a) preparation of RCP/pJUN and RCP/pDNA-PSPF@PGA; (b) bridging surgery in sciatic nerve defect of rat; (c) located delivery of RCP/pJUN nanoparticles and nerve repair; (d) transfection of c-Jun via RCP/pJUN in cells and three factors secretion; (e) Bungner bands formation and axon regeneration. (<b>ii</b>) Nerve growth factor and brain-derived neurotrophic factor expression level in transfected RSC96s cell line (Here, ## <span class="html-italic">p</span> < 0.01, compared with control; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01). (<b>iii</b>) Evaluation of nerve regeneration: (a) H&E-stained tissue section images and (b) TB-stained tissue sections images at 12 weeks postoperatively. Reproduced with permission from [<a href="#B241-pharmaceutics-15-01313" class="html-bibr">241</a>], copyright Elsevier 2022.</p> "> Figure 18
<p>(<b>i</b>) Schematic illustration of NS-GAM as a gene delivery system for deep second-degree burn wound. (<b>ii</b>) In vitro release of pDNA from NS-GAM: (a) Cumulative amount of pDNA released in vitro from NS-GAM and the agarose gel electrophoresis of the plasmids; (b) SEM of the surface of NS-GAM. (<b>iii</b>) Gross examination and healing rate: (a) Observation of the deep second-degree burn wounds. A: Control group; B: NS-GAM group; (b) The calculated wound size reduction (Significant difference was considered at <span class="html-italic">p</span> < 0.05 *). Reproduced with permission from [<a href="#B243-pharmaceutics-15-01313" class="html-bibr">243</a>], copyright Elsevier 2022.</p> "> Figure 19
<p>((<b>A</b>), i) The fluorescence intensities of tumor-bearing mice were monitored after 4 h of the last injection to detect the targeting effect. ((<b>A</b>), ii) The protein expression of CLl-2 was analyzed by western blotting (quantification of the protein level was normalized to GAPDH, significant differences were defined as <span class="html-italic">p</span> values * ≤ 0.05 and ns represents non-significance). ((<b>A</b>), iii) Immunofluorescence observation under the same exposure for each fluorescent channel after siRNA@chitosan-HAD nanoparticles (b), naked siRNA (c), and siRNA@chitosan nanoparticles (d) treatment compared with the control group (a). Reproduced with permission from [<a href="#B247-pharmaceutics-15-01313" class="html-bibr">247</a>], copyright Elsevier 2021. ((<b>B</b>), i) Confocal laser scanning microscopy images showing uptake in A549 cells after incubation with AA-CS/pDNA (2 μg/mL pDNA-rho) for 4 h. Hoechst 33342 (blue) and Lyso-Tracker Green were used to stain cell nuclei and lysosome, respectively, (Scale bar: 10 μm) ((<b>B</b>), ii) Confocal laser scanning microscopy images showing the endosomal escape of DMAPAPA-chitosan/pDNA-rho, PEI-chitosan/pDNA-rho, or PEI-25 kDa/pDNA-rho in A549 cells. The cells were stained with Lyso-Tracker Green and Hoechst 33342 (Scale bar: 10 μm). Reproduced with permission from [<a href="#B248-pharmaceutics-15-01313" class="html-bibr">248</a>], copyright Elsevier 2020.</p> "> Figure 20
<p>((<b>A</b>), i) Fluorescence image excited at 488 nm and NIR image excited at 808 nm of HeLa cells incubated with Ag<sub>2</sub>S(DOX)@CS nanospheres for 12 h. The fluorescence image was acquired in a wavelength window between 560 and 600 nm (Scale bar: 25 μm) ((<b>A</b>), ii) Viability of HeLa cells incubated with different concentrations of Ag<sub>2</sub>S@CS nanospheres ((<b>A</b>), iii) ICP-MS analysis of tumor and five major organs of the mice sacrificed at different time points (statistical significance: * <span class="html-italic">p</span> < 0.05). ((<b>A</b>), iv) In vivo NIR images of a nude mouse at 6 h (i), 12 h (ii), and 24 h (iii) after injection of the Ag<sub>2</sub>S(DOX)@CS nanospheres; ex vivo NIR image of the tumor (iv) and the organs (v) harvested from the sacrificed nude mouse. Reproduced with permission from [<a href="#B140-pharmaceutics-15-01313" class="html-bibr">140</a>], copyright Elsevier 2017. ((<b>B</b>), i) TEM images of blank TPE-bi(SS-CS-Bio) micelles (Scale bar: 100 nm). ((<b>B</b>), ii) Confocal laser scanning microscopy images of MCF-7 cells after incubation with TPE-bi(SS-CS-Bio) for 4 h (Scale bar: 10 μm); and after incubation at different time points (1, 2, 3, and 4 h). Reproduced with permission from [<a href="#B255-pharmaceutics-15-01313" class="html-bibr">255</a>], copyright Elsevier 2021.</p> ">
Abstract
:1. Introduction
2. Source of Chitosan
2.1. Marine Source
2.2. Terrestrial Source
2.3. Microbial Source
3. Chitin and Chitosan Extraction Techniques
3.1. Preparation of Chitin
3.1.1. Chemical Method
- Demineralization Process
- Deproteinization of chitin
- Decolorization/bleaching and post-treatment
3.1.2. Biological Extraction of Chitin
- Enzymatic Method
- Fermentation Method
3.2. Preparation of Chitosan
3.2.1. Chemical and Biological Deacetylation of Chitin
3.2.2. Chitosan Extraction from Fungal Cell Wall
4. Bioactivities of Chitosan
4.1. Antibacterial Activity
4.2. Antifungal Activity
4.3. Antiviral Activity
4.4. Anti-Tumor Activity
4.5. Anti-Oxidant and Anti-Inflammatory Activities
5. Modified Chitosan Preparation/Derivatives
5.1. N-Carboxymethyl Chitosan (N-CM-Chitosan)
5.2. Hydrophobic Chitosan
5.3. Chitosan with Methoxyphenyl Functions
5.4. Tyrosine Glucan
5.5. Highly Cationic Chitosan
5.6. Polyurethane Based Chitosan
5.7. Hydroxyalkyl Chitosan
5.8. Sugar Modified Chitosan
5.9. Dendrimer Chitosan Hybrid
5.10. Cyclodextrin-Linked Chitosan
6. Applications of Chitosan
6.1. Drug Delivery Applications
6.1.1. Oral Delivery
6.1.2. Ophthalmic Delivery
6.1.3. Transdermal Delivery
6.1.4. Nasal Delivery
6.1.5. Vaginal Delivery
6.2. Biomedical Applications
6.2.1. Bone Regeneration
6.2.2. Cartilage Tissue Regeneration
6.2.3. Cardiac Tissue Regeneration
6.2.4. Corneal Regeneration
6.2.5. Periodontal Tissue Regeneration
6.2.6. Wound Healing
6.3. Miscellaneous Applications
6.3.1. Gene Delivery
6.3.2. Bioimaging
6.4. Other Applications
6.4.1. Vaccination
6.4.2. Cosmeceuticals
7. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef] [PubMed]
- Mourya, V.K.; Inamdar, N.N.; Choudhari, Y.M. Chitooligosaccharides: Synthesis, Characterization and Applications. Polym. Sci. Ser. A 2011, 53, 583–612. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Yanat, M.; Schroën, K. Preparation Methods and Applications of Chitosan Nanoparticles; with an Outlook toward Reinforcement of Biodegradable Packaging. React. Funct. Polym. 2021, 161, 104849. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Aljaeid, B.M. Preparation, Characterization, and Potential Application of Chitosan, Chitosan Derivatives, and Chitosan Metal Nanoparticles in Pharmaceutical Drug Delivery. Drug Des. Devel. Ther. 2016, 10, 483–507. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, Production and Commercial Applications of Fungal Chitosan: A Review. J. Bioresour. Bioprod. 2022, 7, 85–98. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-Based Nanomaterials: A State-of-the-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef]
- Rajitha, P.; Gopinath, D.; Biswas, R.; Sabitha, M.; Jayakumar, R. Chitosan Nanoparticles in Drug Therapy of Infectious and Inflammatory Diseases. Expert. Opin. Drug Deliv. 2016, 13, 1177–1194. [Google Scholar] [CrossRef]
- Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. Biomed. Res. Int. 2015, 2015, 821279. [Google Scholar] [CrossRef]
- Madni, A.; Kousar, R.; Naeem, N.; Wahid, F. Recent Advancements in Applications of Chitosan-Based Biomaterials for Skin Tissue Engineering. J. Bioresour. Bioprod. 2021, 6, 11–25. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent Advances in Chitosan-Based Carriers for Gene Delivery. Mar. Drugs 2019, 17, 381. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydr. Polym. Technol. Appl. 2021, 2, 100036. [Google Scholar] [CrossRef]
- Pellis, A.; Guebitz, G.M.; Nyanhongo, G.S. Chitosan: Sources, Processing and Modification Techniques. Gels 2022, 8, 393. [Google Scholar] [CrossRef] [PubMed]
- The State of World Fisheries and Aquaculture 2022. Available online: https://www.fao.org/3/cc0461en/cc0461en.pdf.2374 (accessed on 12 March 2023).
- Youn, D.K.; No, H.K.; Prinyawiwatkul, W. Preparation and Characteristics of Squid Pen β-Chitin Prepared under Optimal Deproteinisation and Demineralisation Condition. Int. J. Food Sci. Technol. 2013, 48, 571–577. [Google Scholar] [CrossRef]
- Manni, L.; Ghorbel-Bellaaj, O.; Jellouli, K.; Younes, I.; Nasri, M. Extraction and Characterization of Chitin, Chitosan, and Protein Hydrolysates Prepared from Shrimp Waste by Treatment with Crude Protease from Bacillus Cereus SV1. Appl. Biochem. Biotechnol. 2010, 162, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Hajji, S.; Ghorbel-Bellaaj, O.; Younes, I.; Jellouli, K.; Nasri, M. Chitin Extraction from Crab Shells by Bacillus Bacteria. Biological Activities of Fermented Crab Supernatants. Int. J. Biol. Macromol. 2015, 79, 167–173. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Alemán, A.; López-Caballero, M.E.; Baccan, G.C.; Montero, P.; Gómez-Guillén, M.C. Bioaccessibility and Antimicrobial Properties of a Shrimp Demineralization Extract Blended with Chitosan as Wrapping Material in Ready-to-Eat Raw Salmon. Food Chem. 2019, 276, 342–349. [Google Scholar] [CrossRef]
- Ghormade, V.; Pathan, E.K.; Deshpande, M.V. Can Fungi Compete with Marine Sources for Chitosan Production? Int. J. Biol. Macromol. 2017, 104, 1415–1421. [Google Scholar] [CrossRef]
- Cheong, K.L.; Wang, L.Y.; Wu, D.T.; Hu, D.J.; Zhao, J.; Li, S.P. Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis Fungus UM01. J. Food. Sci. 2016, 81, C2167–C2174. [Google Scholar] [CrossRef]
- Bastiaens, L.; Soetemans, L.; D’Hondt, E.; Elst, K. Sources of Chitin and Chitosan and Their Isolation. In Chitin and Chitosan: Properties and Applications; van den Broek, L.A.M., Boeriu, C.G., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 1–34. [Google Scholar]
- Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A Review of Sources and Preparation Methods; Elsevier B.V: Amsterdam, The Netherlands, 2021; Volume 169, pp. 85–94. [Google Scholar]
- Ali, M.; Shakeel, M.; Mehmood, K. Extraction and Characterization of High Purity Chitosan by Rapid and Simple Techniques from Mud Crabs Taken from Abbottabad. Pak. J. Pharm. Sci. 2019, 32, 171–175. [Google Scholar]
- Saleh, Y.; Nasr, A.; Zaki, H.; Mohamed, M.; Kandile, N. Extraction and Characterization of Chitosan from Shrimp Shells (Egypt: Case Study). J. Sci. Res. Sci. 2016, 33, 396–407. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Karaarslan, M. A New Method for Fast Chitin Extraction from Shells of Crab, Crayfish and Shrimp. Nat. Prod. Res. 2015, 29, 1477–1480. [Google Scholar] [CrossRef] [PubMed]
- Issahaku, I.; Tetteh, I.K.; Tetteh, A.Y. Chitosan and Chitosan Derivatives: Recent Advancements in Production and Applications in Environmental Remediation. Environ. Adv. 2023, 11, 100351. [Google Scholar] [CrossRef]
- Kumari, S.; Kishor, R. Chitin and Chitosan: Origin, Properties, and Applications. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–33. [Google Scholar]
- Kaur, S.; Kumar, S.; Momi, N.; Sasson, A.R.; Batra, S.K. Mucins in Pancreatic Cancer and Its Microenvironment. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 607–620. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133. [Google Scholar] [CrossRef]
- Kurita, K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef]
- Sagheer, F.A.A.; Al-Sughayer, M.A.; Muslim, S.; Elsabee, M.Z. Extraction and Characterization of Chitin and Chitosan from Marine Sources in Arabian Gulf. Carbohydr. Polym. 2009, 77, 410–419. [Google Scholar] [CrossRef]
- Kumari, S.; Rath, P.; Sri Hari Kumar, A.; Tiwari, T.N. Extraction and Characterization of Chitin and Chitosan from Fishery Waste by Chemical Method. Environ. Technol. Innov. 2015, 3, 77–85. [Google Scholar] [CrossRef]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current State of Chitin Purification and Chitosan Production from Insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Giyose, N.Y.; Mazomba, N.T.; Mabinya, L.V. Evaluation of Proteases Produced by Erwinia Chrysanthemi for the Deproteinization of Crustacean Waste in a Chitin Production Process. Afr. J. Biotechnol. 2010, 9, 711–717. [Google Scholar]
- Kaur, S.; Dhillon, G.S. Recent Trends in Biological Extraction of Chitin from Marine Shell Wastes: A Review. Crit. Rev. Biotechnol. 2015, 35, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.H.; Jung, W.J.; Kuk, J.H.; Oh, K.T.; Kim, Y.J.; Park, R.D. Screening of Protease-Producing Serratia Marcescens FS-3 and Its Application to Deproteinization of Crab Shell Waste for Chitin Extraction. Carbohydr. Polym. 2008, 74, 504–508. [Google Scholar] [CrossRef]
- El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, Chemical Modification and Characterization of Chitin and Chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Vo, T.P.K.; Nguyen, A.D.; Wang, S.L. Chitin Extraction from Shrimp Waste by Liquid Fermentation Using an Alkaline Protease-Producing Strain, Brevibacillus Parabrevis. Int. J. Biol. Macromol. 2019, 131, 706–715. [Google Scholar] [CrossRef]
- Arbia, W.; Arbia, L.; Adour, L.; Amrane, A. Chitin Extraction from Crustacean Shells Using Biological Methods—A Review. Chitin Recovery Using Biol. Methods Food Technol. Biotechnol. 2013, 51, 12–25. [Google Scholar]
- Khanafari, A.; Marandi, R.; Sh, S. Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J. Environ. Health Sci. 2008, 5, 19–24. [Google Scholar]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Synowiecki, J.; Al-khateeb, N.A.; Synowiecki, J. Production, Properties, and Some New Applications of Chitin and Its Derivatives. Crit. Rev. Food. Sci. Nutr. 2010, 43, 145–171. [Google Scholar] [CrossRef]
- Galed, G.; Miralles, B.; Paños, I.; Santiago, A.; Heras, Á. N-Deacetylation and Depolymerization Reactions of Chitin/Chitosan: Influence of the Source of Chitin. Carbohydr. Polym. 2005, 62, 316–320. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2012, 3, 203–230. [Google Scholar]
- Tamura, H.; Furuike, T. Chitin and Chitosan. In Encylopedia of Polymeric Nanomaterials; Kobayashi, S., Mullen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–4. [Google Scholar]
- Sinha, S.; Chand, S.; Tripathi, P. Production, Purification and Characterization of a New Chitosanase Enzyme and Improvement of Chitosan Pentamer and Hexamer Yield in an Enzyme Membrane Reactor. Biocatal. Biotransform. 2014, 32, 208–213. [Google Scholar] [CrossRef]
- Naknean, P.; Jutasukosol, K.; Mankit, T. Utilization of Chitosan as an Antimicrobial Agent for Pasteurized Palm Sap (Borassus flabellifer Linn.) during Storage. J. Food Sci. Technol. 2015, 52, 731–741. [Google Scholar] [CrossRef]
- Nwe, N.; Furuike, T.; Tamura, H. Production of Fungal Chitosan by Enzymatic Method and Applications in Plant Tissue Culture and Tissue Engineering: 11 years of Our Progress, Present Situation and Future Prospects. In Biopolymers; Elnashar, M., Ed.; Intech: Rang-Du-Fliers, France, 2010; pp. 135–161. [Google Scholar]
- Tang, R.H.; Li, M.; Liu, L.N.; Zhang, S.F.; Alam, N.; You, M.; Ni, Y.H.; Li, Z.D. Chitosan-Modified Nitrocellulose Membrane for Paper-Based Point-of-Care Testing. Cellulose 2020, 27, 3835–3846. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.; Dai, F.; Xia, W. Purification of Chitosan by Using Sol-Gel Immobilized Pepsin Deproteinization. Carbohydr. Polym. 2012, 88, 206–212. [Google Scholar] [CrossRef]
- Yildirim-Aksoy, M.; Beck, B.H. Antimicrobial Activity of Chitosan and a Chitosan Oligomer against Bacterial Pathogens of Warmwater Fish. J. Appl. Microbiol. 2017, 122, 1570–1578. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Reviews Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Yilmaz Atay, H. Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan; Springer: Berlin/Heidelberg, Germany, 2020; pp. 457–489. [Google Scholar]
- Raafat, D.; Von Bargen, K.; Haas, A.; Sahl, H.G. Insights into the Mode of Action of Chitosan as an Antibacterial Compound. Appl. Environ. Microbiol. 2008, 74, 3764–3773. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhang, W.; He, T.; Yang, X.; Bi, W.; Li, J.; Yang, W.; Chen, W. Asymmetric Wettable Polycaprolactone-Chitosan/Chitosan Oligosaccharide Nanofibrous Membrane as Antibacterial Dressings. Carbohydr. Polym. 2023, 304, 120485. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.Y.; Zhu, J.F. Study on Antimicrobial Activity of Chitosan with Different Molecular Weights. Carbohydr. Polym. 2003, 54, 527–530. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- Shih, P.Y.; Liao, Y.T.; Tseng, Y.K.; Deng, F.S.; Lin, C.H. A Potential Antifungal Effect of Chitosan against Candida Albicansis Mediated via the Inhibition of SAGA Complex Component Expression and the Subsequent Alteration of Cell Surface Integrity. Front. Microbiol. 2019, 10, 602. [Google Scholar] [CrossRef]
- Vishu Kumar, A.B.; Varadaraj, M.C.; Gowda, L.R.; Tharanathan, R.N. Characterization of Chito-Oligosaccharides Prepared by Chitosanolysis with the Aid of Papain and Pronase, and Their Bactericidal Action against Bacillus cereus and Escherichia coli. Biochem. J. 2005, 391, 167–175. [Google Scholar] [CrossRef]
- Li, J.; Feng, Y.; Chen, W.; Zhang, S.; Ma, J.; Chen, S.; Liu, S.; Cao, C.; Zhang, Y. Electroactive Materials: Innovative Antibacterial Platforms for Biomedical Applications. Prog. Mater. Sci. 2023, 132, 101045. [Google Scholar] [CrossRef]
- Liu, S.; Ma, J.; Wang, S.; Chen, S.; Wang, B.; Li, J. Silver Nanoparticles Incorporated Chitosan/Calcium Pyrophosphate Hybrid Microflowers for Antibacterial Applications. Mater. Lett. 2019, 255, 126570. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156. [Google Scholar] [CrossRef]
- Duran, A.; Nombela, C. Fungal Cell Wall Biogenesis: Building a Dynamic Interface with the Environment. Microbiology 2004, 150, 3099–3103. [Google Scholar] [CrossRef]
- Hasim, S.; Coleman, J.J. Targeting the Fungal Cell Wall: Current Therapies and Implications for Development of Alternative Antifungal Agents. Future Med. Chem. 2019, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Finkel, J.; Microbiology, A.M.-N.R. Genetic Control of Candida Albicans Biofilm Development. Nat. Rev. Microbiol. 2011. undefined. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida Albicans Pathogenicity Mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int. J. Mol. Sci. 2019, 20, 332. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.G.; Specht, C.A.; Donlin, M.J.; Lodge, J.K. Chitosan, the Deacetylated Form of Chitin, Is Necessary for Cell Wall Integrity in Cryptococcus Neoformans. Eukaryot. Cell 2007, 6, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Ing, L.Y.; Zin, N.M.; Sarwar, A.; Katas, H. Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties. Int. J. Biomater. 2012, 2012, 632698. [Google Scholar] [CrossRef]
- Tayel, A.A.; Moussa, S.; El-Tras, W.F.; Knittel, D.; Opwis, K.; Schollmeyer, E. Anticandidal Action of Fungal Chitosan against Candida Albicans. Int. J. Biol. Macromol. 2010, 47, 454–457. [Google Scholar] [CrossRef]
- Seyfarth, F.; Schliemann, S.; Elsner, P.; Hipler, U.C. Antifungal Effect of High- and Low-Molecular-Weight Chitosan Hydrochloride, Carboxymethyl Chitosan, Chitosan Oligosaccharide and N-Acetyl-d-Glucosamine against Candida Albicans, Candida Krusei and Candida Glabrata. Int. J. Pharm. 2008, 353, 139–148. [Google Scholar] [CrossRef]
- Zhao, Q.; Fan, L.; Liu, Y.; Li, J. Recent Advances on Formation Mechanism and Functionality of Chitosan-Based Conjugates and Their Application in o/w Emulsion Systems: A Review. Food Chem. 2022, 380, 131838. [Google Scholar] [CrossRef]
- Davydova, V.N.; Nagorskaya, V.P.; Gorbach, V.I.; Kalitnik, A.A.; Reunov, A.V.; Solov’eva, T.F.; Ermak, I.M. Chitosan Antiviral Activity: Dependence on Structure and Depolymerization Method. Appl. Biochem. Microbiol. 2011, 47, 113–117. [Google Scholar] [CrossRef]
- Karadeniz, F. In Vitro Anti-HIV-1 Activity of Chitosan Oligomers N-Conjugated with Asparagine and Glutamine. BioTech 2023, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Karagozlu, M.Z.; Karadeniz, F.; Kim, S.K. Anti-HIV Activities of Novel Synthetic Peptide Conjugated Chitosan Oligomers. Int. J. Biol. Macromol. 2014, 66, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Guo, Y. Recent Advances in Chitosan and Its Derivatives in Cancer Treatment. Front. Pharmacol. 2022, 13, 1557. [Google Scholar] [CrossRef]
- Zhang, E.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Li, P. Advances in Chitosan-Based Nanoparticles for Oncotherapy. Carbohydr. Polym. 2019, 222, 115004. [Google Scholar] [CrossRef] [PubMed]
- Lima, B.V.; Oliveira, M.J.; Barbosa, M.A.; Goncalves, R.M.; Castro, F. Immunomodulatory Potential of Chitosan-Based Materials for Cancer Therapy: A Systematic Review of in Vitro, in Vivo and Clinical Studies. Biomater. Sci. 2021, 9, 3209–3227. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chan, H.Y.; Shen, F.H.; Chen, M.H.; Wang, Y.J.; Yu, C.K. Chitosan Prevents the Development of AOM-Induced Aberrant Crypt Foci in Mice and Suppressed the Proliferation of AGS Cells by Inhibiting DNA Synthesis. J. Cell Biochem. 2007, 100, 1573–1580. [Google Scholar] [CrossRef]
- Maeda, Y.; Kimura, Y. Antitumor Effects of Various Low-Molecular-Weight Chitosans Are Due to Increased Natural Killer Activity of Intestinal Intraepithelial Lymphocytes in Sarcoma 180-Bearing Mice. J. Nutr. 2004, 134, 945–950. [Google Scholar] [CrossRef]
- Fong, D.; Hoemann, C.D. Chitosan Immunomodulatory Properties: Perspectives on the Impact of Structural Properties and Dosage. Future Sci. OA 2018, 4, 225–2056. [Google Scholar] [CrossRef]
- Mohyuddin, S.G.; Qamar, A.; Hu, C.Y.; Chen, S.W.; Wen, J.Y.; Liu, X.X.; Ma, X.B.; Yu, Z.C.; Yong, Y.H.; Wu, L.Y.; et al. Effect of Chitosan on Blood Profile, Inflammatory Cytokines by Activating TLR4/NF-ΚB Signaling Pathway in Intestine of Heat Stressed Mice. Sci. Rep. 2021, 11, 20608. [Google Scholar] [CrossRef]
- Mourya, V.K.; Inamdar, N.N. Chitosan-Modifications and Applications: Opportunities Galore. React. Funct. Polym. 2008, 68, 1013–1051. [Google Scholar] [CrossRef]
- Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules 2021, 26, 272. [Google Scholar] [CrossRef]
- Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan Chemistry and Pharmaceutical Perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Farinha, I.; Freitas, F. Chemically Modified Chitin, Chitosan, and Chitinous Polymers as Biomaterials. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 43–69. [Google Scholar]
- Bose, A.; Wong, T.W. Oral Colon Cancer Targeting by Chitosan Nanocomposites. In Applications of Nanocomposite Materials in Drug Delivery; Inamuddin, Asiri, A.M., Mohammed, A., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 409–429. [Google Scholar]
- Desbrières, J.; Martinez, C.; Rinaudo, M. Hydrophobic Derivatives of Chitosan: Characterization and Rheological Behaviour. Int. J. Biol. Macromol. 1996, 19, 21–28. [Google Scholar] [CrossRef]
- Mateescu, M.A.; Ispas-Szabo, P.; Assaad, E. (Eds.) Chitosan and Its Derivatives as Self-Assembled Systems for Drug Delivery. In Controlled Drug Delivery; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 85–125. [Google Scholar]
- Muzzarelli, R.A.A.; Ilari, P. Chitosans Carrying the Methoxyphenyl Functions Typical of Lignin. Carbohydr. Polym. 1994, 23, 155–160. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A.; Ilari, P.; Xia, W.; Pinotti, M.; Tomasetti, M. Tyrosinase-Mediated Quinone Tanning of Chitinous Materials. Carbohydr. Polym. 1994, 24, 295–300. [Google Scholar] [CrossRef]
- Prabaharan, M. Review Paper: Chitosan Derivatives as Promising Materials for Controlled Drug Delivery. J. Biomater. Appl. 2008, 23, 5–36. [Google Scholar] [CrossRef]
- Le Tien, C.; Lacroix, M.; Ispas-Szabo, P.; Mateescu, M.A. N-Acylated Chitosan: Hydrophobic Matrices for Controlled Drug Release. J. Control. Release 2003, 93, 1–13. [Google Scholar] [CrossRef]
- Usman, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Rehman, S.; Zia, F. Chitin and Chitosan Based Polyurethanes: A Review of Recent Advances and Prospective Biomedical Applications. Int. J. Biol. Macromol. 2016, 86, 630–645. [Google Scholar] [CrossRef]
- Barikani, M.; Honarkar, H.; Barikani, M. Synthesis and Characterization of Chitosan-Based Polyurethane Elastomer Dispersions. Monatsh. Chem. 2010, 141, 653–659. [Google Scholar] [CrossRef]
- Mahanta, A.K.; Mittal, V.; Singh, N.; Dash, D.; Malik, S.; Kumar, M.; Maiti, P. Polyurethane-Grafted Chitosan as New Biomaterials for Controlled Drug Delivery. Macromolecules 2015, 48, 2654–2666. [Google Scholar] [CrossRef]
- Aranaz, I.; Harris, R.; Heras, A. Chitosan Amphiphilic Derivatives. Chemistry and Applications. Curr. Org. Chem. 2010, 14, 308–330. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Shi, Q.; Li, C.; Chen, X. Effects of Hydroxybutyl Chitosan on Improving Immunocompetence and Antibacterial Activities. Mater. Sci. Eng. C 2019, 105, 110086. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.D.; Yalpani, M. Formation of Branched-Chain, Soluble Polysaccharides from Chitosan. J. Chem. Soc. Chem. Commun. 1980, 23, 1153–1154. [Google Scholar] [CrossRef]
- Yalpani, M.; Hall, L.D. Some Chemical and Analytical Aspects of Polysaccharide Modifications.1 3. Formation of Branched-Chain, Soluble Chitosan Derivatives2. Macromolecules 1984, 17, 272–281. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, Y.W.; Chung, H.; Kwon, I.C.; Jeong, S.Y. Synthesis and Characterization of Sugar-Bearing Chitosan Derivatives: Aqueous Solubility and Biodegradability. Biomacromolecules 2003, 4, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Sashiwa, H.; Shigemasa, Y.; Roy, R. Chemical Modification of Chitosan 11: Chitosan–Dendrimer Hybrid as a Tree like Molecule. Carbohydr. Polym. 2002, 49, 195–205. [Google Scholar] [CrossRef]
- Sashiwa, H.; Yajima, H.; Aiba, S.I. Synthesis of a Chitosan-Dendrimer Hybrid and Its Biodegradation. Biomacromolecules 2003, 4, 1244–1249. [Google Scholar] [CrossRef]
- Tsubokawa, N.; Takayama, T. Surface Modification of Chitosan Powder by Grafting of ‘Dendrimer-like’ Hyperbranched Polymer onto the Surface. React. Funct. Polym. 2000, 43, 341–350. [Google Scholar] [CrossRef]
- Pokhrel, S.; Yadav, P.N. Functionalization of Chitosan Polymer and Their Applications. J. Macromol. Sci. A 2019, 56, 450–475. [Google Scholar] [CrossRef]
- Auzély-Velty, R.; Rinaudo, M. Chitosan Derivatives Bearing Pendant Cyclodextrin Cavities: Synthesis and Inclusion Performance. Macromolecules 2001, 34, 3574–3580. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y. Study on β-Cyclodextrin Grafting with Chitosan and Slow Release of Its Inclusion Complex with Radioactive Iodine. J. Appl. Polym. Sci. 2001, 82, 2414–2421. [Google Scholar] [CrossRef]
- Venter, J.P.; Kotzé, A.F.; Auzély-Velty, R.; Rinaudo, M. Synthesis and Evaluation of the Mucoadhesivity of a CD-Chitosan Derivative. Int. J. Pharm. 2006, 313, 36–42. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, F.; Marino, A.; Marchetta, A.; Bongiorno, C.; Zagami, R.; Cristiano, M.C.; Paolino, D.; Pistarà, V.; Ventura, C.A. Development of Chitosan/Cyclodextrin Nanospheres for Levofloxacin Ocular Delivery. Pharmaceutics 2021, 13, 1293. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, F.; d’Avanzo, N.; Mancuso, A.; De Gaetano, A.; Paladini, G.; Caridi, F.; Venuti, V.; Paolino, D.; Ventura, C.A. Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals 2022, 15, 1206. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef]
- Kantak, M.N.; Bharate, S.S. Analysis of Clinical Trials on Biomaterial and Therapeutic Applications of Chitosan: A Review. Carbohydr. Polym. 2022, 278, 118999. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, Biodistribution and Toxicity of Chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Saranya, T.S.; Rajan, V.K.; Biswas, R.; Jayakumar, R.; Sathianarayanan, S. Synthesis, Characterisation and Biomedical Applications of Curcumin Conjugated Chitosan Microspheres. Int. J. Biol. Macromol. 2018, 110, 227–233. [Google Scholar] [CrossRef]
- Badwan, A.A.; Rashid, I.; al Omari, M.M.H.; Darras, F.H. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications. Mar. Drugs 2015, 13, 1519–1547. [Google Scholar] [CrossRef]
- Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9, 195. [Google Scholar] [CrossRef]
- Al-Jbour, N.D.; Beg, M.D.; Gimbun, J.; Alam, A.K.M.M. An Overview of Chitosan Nanofibers and Their Applications in the Drug Delivery Process. Curr. Drug Deliv. 2019, 16, 272–294. [Google Scholar] [CrossRef]
- Peers, S.; Montembault, A.; Ladavière, C. Chitosan Hydrogels for Sustained Drug Delivery. J. Control. Release 2020, 326, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Curcio, F.; Poerio, T.; Pellegrino, M.; Russo, R.; Cassano, R. Chitosan Membranes Filled with Cyclosporine a as Possible Devices for Local Administration of Drugs in the Treatment of Breast Cancer. Molecules 2021, 26, 1889. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.J.; Lohade, A.A.; Parmar, J.J.; Hegde, D.D.; Soni, P.; Samad, A.; Menon, M.D. Development of Chitosan-Based Dry Powder Inhalation System of Cisplatin for Lung Cancer. Indian. J. Pharm. Sci. 2012, 74, 521. [Google Scholar] [PubMed]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Baradaran Eftekhari, R.; Maghsoudnia, N.; Samimi, S.; Abedin Dorkoosh, F. Application of Chitosan in Oral Drug Delivery. In Functional Chitosan: Drug Delivery and Biomedical Applications; Jana, S., Jana, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–73. [Google Scholar]
- Ren, G.; Clancy, C.; Tamer, T.M.; Schaller, B.; Walker, G.M.; Collins, M.N. Cinnamyl O-Amine Functionalized Chitosan as a New Excipient in Direct Compressed Tablets with Improved Drug Delivery. Int. J. Biol. Macromol. 2019, 141, 936–946. [Google Scholar] [CrossRef]
- Yasufuku, T.; Anraku, M.; Kondo, Y.; Hata, T.; Hirose, J.; Kobayashi, N.; Tomida, H. Useful Extend-Release Chitosan Tablets with High Antioxidant Activity. Pharmaceutics 2010, 2, 245–257. [Google Scholar] [CrossRef]
- Patta, A.C.M.F.; Mathews, P.D.; Madrid, R.R.M.; Rigoni, V.L.S.; Silva, E.R.; Mertins, O. Polyionic Complexes of Chitosan-N-Arginine with Alginate as PH Responsive and Mucoadhesive Particles for Oral Drug Delivery Applications. Int. J. Biol. Macromol. 2020, 148, 550–564. [Google Scholar] [CrossRef]
- Pellá, M.C.G.; Simão, A.R.; Lima-Tenório, M.K.; Tenório-Neto, E.; Scariot, D.B.; Nakamura, C.V.; Rubira, A.F. Chitosan Hybrid Microgels for Oral Drug Delivery. Carbohydr. Polym. 2020, 239, 116236. [Google Scholar] [CrossRef]
- Ryu, J.H.; Choi, J.S.; Park, E.; Eom, M.R.; Jo, S.; Lee, M.S.; Kwon, S.K.; Lee, H. Chitosan Oral Patches Inspired by Mussel Adhesion. J. Control. Release 2020, 317, 57–66. [Google Scholar] [CrossRef]
- Qin, Z.; Jia, X.-W.; Liu, Q.; Kong, B.; Wang, H. Fast Dissolving Oral Films for Drug Delivery Prepared from Chitosan/Pullulan Electrospinning Nanofibers. Int. J. Biol. Macromol. 2019, 137, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Gote, V.; Sikder, S.; Sicotte, J.; Pal, D. Ocular Drug Delivery: Present Innovations and Future Challenges. J. Pharmacol. Exp. Ther. 2019, 370, 602–624. [Google Scholar] [CrossRef] [PubMed]
- Vasdev, N.; Chaudhari, N.; Polaka, S.; Rajpoot, K.; Gondaliya, P.; Sayyed, A.A.; Sengupta, P.; Tekade, R.K. Current Progress in Preservative-Free Topical Ophthalmic Formulations. J. Drug Deliv. Sci. Technol. 2022, 79, 103996. [Google Scholar] [CrossRef]
- Soni, V.; Pandey, V.; Tiwari, R.; Asati, S.; Tekade, R.K. Design and Evaluation of Ophthalmic Delivery Formulations. In Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 473–538. [Google Scholar]
- Zamboulis, A.; Nanaki, S.; Michailidou, G.; Koumentakou, I.; Lazaridou, M.; Ainali, N.M.; Xanthopoulou, E.; Bikiaris, D.N. Chitosan and Its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers 2020, 12, 1519. [Google Scholar] [CrossRef]
- Algharib, S.A.; Dawood, A.; Zhou, K.; Chen, D.; Li, C.; Meng, K.; Zhang, A.; Luo, W.; Ahmed, S.; Huang, L. Preparation of Chitosan Nanoparticles by Ionotropic Gelation Technique: Effects of Formulation Parameters and in Vitro Characterization. J. Mol. Struct. 2022, 1252, 132129. [Google Scholar] [CrossRef]
- Dubashynskaya, N.V.; Golovkin, A.S.; Kudryavtsev, I.V.; Prikhodko, S.S.; Trulioff, A.S.; Bokatyi, A.N.; Poshina, D.N.; Raik, S.V.; Skorik, Y.A. Mucoadhesive Cholesterol-Chitosan Self-Assembled Particles for Topical Ocular Delivery of Dexamethasone. Int. J. Biol. Macromol. 2020, 158, 811–818. [Google Scholar] [CrossRef]
- Elkomy, M.H.; Ali, A.A.; Eid, H.M. Chitosan on the Surface of Nanoparticles for Enhanced Drug Delivery: A Comprehensive Review. J. Control. Release 2022, 351, 923–940. [Google Scholar] [CrossRef]
- Eid, H.M.; Naguib, I.A.; Alsantali, R.I.; Alsalahat, I.; Hegazy, A.M. Novel Chitosan-Coated Niosomal Formulation for Improved Management of Bacterial Conjunctivitis: A Highly Permeable and Efficient Ocular Nanocarrier for Azithromycin. J. Pharm. Sci. 2021, 110, 3027–3036. [Google Scholar] [CrossRef]
- Li, J.; Tan, G.; Cheng, B.; Liu, D.; Pan, W. Transport Mechanism of Chitosan-N-Acetylcysteine, Chitosan Oligosaccharides or Carboxymethyl Chitosan Decorated Coumarin-6 Loaded Nanostructured Lipid Carriers across the Rabbit Ocular. Eur. J. Pharm. Biopharm. 2017, 120, 89–97. [Google Scholar] [CrossRef]
- Fang, G.; Yang, X.; Wang, Q.; Zhang, A.; Tang, B. Hydrogels-Based Ophthalmic Drug Delivery Systems for Treatment of Ocular Diseases. Mater. Sci. Eng. C 2021, 127, 112212. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Bao, Z.; Lin, D.; Liu, H.; Yu, A.; Lei, L.; Li, X.; Xu, X. Thermosensitive Glycol Chitosan-Based Hydrogel as a Topical Ocular Drug Delivery System for Enhanced Ocular Bioavailability. Int. J. Pharm. 2019, 570, 118688. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Gui, Q.; Yang, H. Drug-Loaded Chitosan Film Prepared via Facile Solution Casting and Air-Drying of Plain Water-Based Chitosan Solution for Ocular Drug Delivery. Bioact. Mater. 2020, 5, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Yu, A.; Shi, H.; Hu, Y.; Jin, B.; Lin, D.; Dai, M.; Lei, L.; Li, X.; Wang, Y. Glycol Chitosan/Oxidized Hyaluronic Acid Hydrogel Film for Topical Ocular Delivery of Dexamethasone and Levofloxacin. Int. J. Biol. Macromol. 2021, 167, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.Y.; Kwon, M.; Choi, H.E.; Kim, K.S. Recent Advances in Transdermal Drug Delivery Systems: A Review. Biomater. Res. 2021, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Phatale, V.; Vaiphei, K.K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming Skin Barriers through Advanced Transdermal Drug Delivery Approaches. J. Control. Release 2022, 351, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Praveen, A.; Aqil, M. Transdermal Delivery of Chitosan-Based Systems. In Functional Chitosan: Drug Delivery and Biomedical Applications; Jana, S., Jana, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 75–106. [Google Scholar]
- Ma, J.; Wang, Y.; Lu, R. Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review. Pharmaceuticals 2022, 15, 459. [Google Scholar] [CrossRef]
- Shekh, M.I.; Amirian, J.; Stadler, F.J.; Du, B.; Zhu, Y. Oxidized Chitosan Modified Electrospun Scaffolds for Controllable Release of Acyclovir. Int. J. Biol. Macromol. 2020, 151, 787–796. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Nair, S.S.; Nair, A.S. Fabrication of a Bioadhesive Transdermal Device from Chitosan and Hyaluronic Acid for the Controlled Release of Lidocaine. Carbohydr. Polym. 2016, 152, 687–698. [Google Scholar] [CrossRef]
- Indulekha, S.; Arunkumar, P.; Bahadur, D.; Srivastava, R. Thermoresponsive Polymeric Gel as an On-Demand Transdermal Drug Delivery System for Pain Management. Mater. Sci. Eng. C 2016, 62, 113–122. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Janus, Ł.; Piątkowski, M.; Sierakowska, A.; Szajna, E.; Matýsek, D.; Bogdał, D. Development of Stimuli-Responsive Chitosan/ZnO NPs Transdermal Systems for Controlled Cannabidiol Delivery. Polymers 2021, 13, 211. [Google Scholar] [CrossRef]
- Riezk, A.; van Bocxlaer, K.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis. Molecules 2020, 25, 4002. [Google Scholar] [CrossRef] [PubMed]
- Fereig, S.A.; El-Zaafarany, G.M.; Arafa, M.G.; Abdel-Mottaleb, M.M.A. Tacrolimus-Loaded Chitosan Nanoparticles for Enhanced Skin Deposition and Management of Plaque Psoriasis. Carbohydr. Polym. 2021, 268, 118238. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.I.; Lima, S.A.C.; Reis, S. Development of Methotrexate Loaded Fucoidan/Chitosan Nanoparticles with Anti-Inflammatory Potential and Enhanced Skin Permeation. Int. J. Biol. Macromol. 2019, 124, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Laffleur, F.; Bauer, B. Progress in Nasal Drug Delivery Systems. Int. J. Pharm. 2021, 607, 120994. [Google Scholar] [CrossRef]
- Keller, L.-A.; Merkel, O.; Popp, A. Intranasal Drug Delivery: Opportunities and Toxicologic Challenges during Drug Development. Drug Deliv. Transl. Res. 2021, 12, 1–23. [Google Scholar] [CrossRef]
- Casettari, L.; Illum, L. Chitosan in Nasal Delivery Systems for Therapeutic Drugs. J. Control. Release 2014, 190, 189–200. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Cheng, S.; Pozzoli, M.; Messerotti, E.; Traini, D.; Young, P.; Kourmatzis, A.; Ong, H.X. Smart Thermosensitive Chitosan Hydrogel for Nasal Delivery of Ibuprofen to Treat Neurological Disorders. Expert. Opin. Drug Deliv. 2019, 16, 453–466. [Google Scholar] [CrossRef]
- Qi, X.-J.; Liu, X.-Y.; Tang, L.-M.-Y.; Li, P.-F.; Qiu, F.; Yang, A.-H. Anti-Depressant Effect of Curcumin-Loaded Guanidine-Chitosan Thermo-Sensitive Hydrogel by Nasal Delivery. Pharm. Dev. Technol. 2020, 25, 316–325. [Google Scholar] [CrossRef]
- Trapani, A.; Cometa, S.; de Giglio, E.; Corbo, F.; Cassano, R.; di Gioia, M.L.; Trombino, S.; Hossain, M.N.; di Gioia, S.; Trapani, G. Novel Nanoparticles Based on N, O-Carboxymethyl Chitosan-Dopamine Amide Conjugate for Nose-to-Brain Delivery. Pharmaceutics 2022, 14, 147. [Google Scholar] [CrossRef]
- Abbas, H.; Sayed, N.S.E.; Youssef, N.A.H.A.; Gaafar, P.M.E.; Mousa, M.R.; Fayez, A.M.; Elsheikh, M.A. Novel Luteolin-Loaded Chitosan Decorated Nanoparticles for Brain-Targeting Delivery in a Sporadic Alzheimer’s Disease Mouse Model: Focus on Antioxidant, Anti-Inflammatory, and Amyloidogenic Pathways. Pharmaceutics 2022, 14, 1003. [Google Scholar] [CrossRef]
- Kiss, T.; Ambrus, R.; Abdelghafour, M.M.; Zeiringer, S.; Selmani, A.; Roblegg, E.; Budai-Szűcs, M.; Janovák, L.; Lőrinczi, B.; Deák, Á. Preparation and Detailed Characterization of the Thiomer Chitosan–Cysteine as a Suitable Mucoadhesive Excipient for Nasal Powders. Int. J. Pharm. 2022, 626, 122188. [Google Scholar] [CrossRef] [PubMed]
- Osmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadziński, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R.L.; DeLong, K.; Zulfiqar, F.; Carter, D.; Better, M.; Ensign, L.M. In Vitro and Ex Vivo Models for Evaluating Vaginal Drug Delivery Systems. Adv. Drug Deliv. Rev. 2022, 191, 114543. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Choudhury, H.; Abdul-Aziz, A.; Bhattamisra, S.K.; Gorain, B.; Carine, T.; Wee Toong, T.; Yi, N.J.; Win Yi, L. Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers 2020, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.M.; Carvalho, S.G.; Araujo, V.H.S.; Carvalho, G.C.; Gremião, M.P.D.; Chorilli, M. Recent Advances in Hydrogels as Strategy for Drug Delivery Intended to Vaginal Infections. Int. J. Pharm. 2020, 590, 119867. [Google Scholar] [CrossRef]
- Araujo, V.H.S.; de Souza, M.P.C.; Carvalho, G.C.; Duarte, J.L.; Chorilli, M. Chitosan-Based Systems Aimed at Local Application for Vaginal Infections. Carbohydr. Polym. 2021, 261, 117919. [Google Scholar] [CrossRef]
- Campos, L.M.; de Oliveira Lemos, A.S.; da Cruz, L.F.; de Freitas Araújo, M.G.; de Mello Botti, G.C.R.; Júnior, J.L.R.; Rocha, V.N.; Denadai, Â.M.L.; da Silva, T.P.; Tavares, G.D. Development and in Vivo Evaluation of Chitosan-Gel Containing Mitracarpus Frigidus Methanolic Extract for Vulvovaginal Candidiasis Treatment. Biomed. Pharmacother. 2020, 130, 110609. [Google Scholar] [CrossRef]
- Jalalvandi, E.; Shavandi, A. In Situ-Forming and PH-Responsive Hydrogel Based on Chitosan for Vaginal Delivery of Therapeutic Agents. J. Mater. Sci. Mater. Med. 2018, 29, 1–11. [Google Scholar] [CrossRef]
- Fitaihi, R.A.; Aleanizy, F.S.; Elsamaligy, S.; Mahmoud, H.A.; Bayomi, M.A. Role of Chitosan on Controlling the Characteristics and Antifungal Activity of Bioadhesive Fluconazole Vaginal Tablets. Saudi. Pharm. J. 2018, 26, 151–161. [Google Scholar] [CrossRef]
- Paczkowska, M.; Chanaj-Kaczmarek, J.; Romaniuk-Drapała, A.; Rubiś, B.; Szymanowska, D.; Kobus-Cisowska, J.; Szymańska, E.; Winnicka, K.; Cielecka-Piontek, J. Mucoadhesive Chitosan Delivery System with Chelidonii Herba Lyophilized Extract as a Promising Strategy for Vaginitis Treatment. J. Clin. Med. 2020, 9, 1208. [Google Scholar] [CrossRef]
- Moreno, M.A.; Gómez-Mascaraque, L.G.; Arias, M.; Zampini, I.C.; Sayago, J.E.; Ramos, L.L.P.; Schmeda-Hirschmann, G.; López-Rubio, A.; Isla, M.I. Electrosprayed Chitosan Microcapsules as Delivery Vehicles for Vaginal Phytoformulations. Carbohydr. Polym. 2018, 201, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Maestrelli, F.; Jug, M.; Cirri, M.; Kosalec, I.; Mura, P. Characterization and Microbiological Evaluation of Chitosan-Alginate Microspheres for Cefixime Vaginal Administration. Carbohydr. Polym. 2018, 192, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Darwesh, B.; Aldawsari, H.M.; Badr-Eldin, S.M. Optimized Chitosan/Anion Polyelectrolyte Complex Based Inserts for Vaginal Delivery of Fluconazole: In Vitro/in Vivo Evaluation. Pharmaceutics 2018, 10, 227. [Google Scholar] [CrossRef]
- Ressler, A. Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers 2022, 14, 3430. [Google Scholar] [CrossRef] [PubMed]
- Vukajlovic, D.; Parker, J.; Bretcanu, O.; Novakovic, K. Chitosan Based Polymer/Bioglass Composites for Tissue Engineering Applications. Mater. Sci. Eng. C 2019, 96, 955–967. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Maji, K.; Nandi, S.K. Investigating the Mechanical, Physiochemical and Osteogenic Properties in Gelatin-Chitosan-Bioactive Nanoceramic Composite Scaffolds for Bone Tissue Regeneration: In Vitro and in Vivo. Mater. Sci. Eng. C 2019, 94, 713–728. [Google Scholar] [CrossRef]
- Brahimi, S.; Ressler, A.; Boumchedda, K.; Hamidouche, M.; Kenzour, A.; Djafar, R.; Antunović, M.; Bauer, L.; Hvizdoš, P.; Ivanković, H. Preparation and Characterization of Biocomposites Based on Chitosan and Biomimetic Hydroxyapatite Derived from Natural Phosphate Rocks. Mater. Chem. Phys. 2022, 276, 125421. [Google Scholar] [CrossRef]
- Wan, Z.; Dong, Q.; Guo, X.; Bai, X.; Zhang, X.; Zhang, P.; Liu, Y.; Lv, L.; Zhou, Y. A Dual-Responsive Polydopamine-Modified Hydroxybutyl Chitosan Hydrogel for Sequential Regulation of Bone Regeneration. Carbohydr. Polym. 2022, 297, 120027. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Tai, H.-Y.; Fu, E.; Don, T.-M. Guided Bone Regeneration Activity of Different Calcium Phosphate/Chitosan Hybrid Membranes. Int. J. Biol. Macromol. 2019, 126, 159–169. [Google Scholar] [CrossRef]
- Sarviya, N.; Basu, S.M.; Mani, R.; Chauhan, M.; Kingshott, P.; Giri, J. Biomimicking Nanofibrous Gelatin Microspheres Recreating the Stem Cell Niche for Their Ex-Vivo Expansion and in-Vivo like Differentiation for Injectable Stem Cell Transplantation. Biomater. Adv. 2022, 139, 212981. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Bian, H.; Xing, X.; Yu, J.; Wu, X.; Zhang, L.; Liang, X.; Lu, A.; Huang, C. Extracellular Matrix-Mimicking Nanofibrous Chitosan Microspheres as Cell Micro-Ark for Tissue Engineering. Carbohydr. Polym. 2022, 292, 119693. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xu, Z.; Ke, Q.; Yin, W.; Chen, Y.; Zhang, C.; Guo, Y. Strontium Hydroxyapatite/Chitosan Nanohybrid Scaffolds with Enhanced Osteoinductivity for Bone Tissue Engineering. Mater. Sci. Eng. C 2017, 72, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Wang, J.; Fu, Y.; Pan, H.; He, H.; Gan, Q.; Liu, C. Smart Biomaterials for Articular Cartilage Repair and Regeneration. Adv. Funct. Mater. 2023, 33, 2212561. [Google Scholar] [CrossRef]
- Garcia, C.E.G.; Lardy, B.; Bossard, F.; Martínez, F.A.S.; Rinaudo, M. Chitosan Based Biomaterials for Cartilage Tissue Engineering: Chondrocyte Adhesion and Proliferation. Food Hydrocoll. Health 2021, 1, 100018. [Google Scholar] [CrossRef]
- Pitrolino, K.A.; Felfel, R.M.; Pellizzeri, L.M.; McLaren, J.; Popov, A.A.; Sottile, V.; Scotchford, C.A.; Scammell, B.E.; Roberts, G.A.F.; Grant, D.M. Development and in Vitro Assessment of a Bi-Layered Chitosan-Nano-Hydroxyapatite Osteochondral Scaffold. Carbohydr. Polym. 2022, 282, 119126. [Google Scholar] [CrossRef]
- Samie, M.; Khan, A.F.; Rahman, S.U.; Iqbal, H.; Yameen, M.A.; Chaudhry, A.A.; Galeb, H.A.; Halcovitch, N.R.; Hardy, J.G. Drug/Bioactive Eluting Chitosan Composite Foams for Osteochondral Tissue Engineering. Int. J. Biol. Macromol. 2023, 229, 561–574. [Google Scholar] [CrossRef]
- Acar, Ö.K.; Bedir, S.; Kayitmazer, A.B.; Kose, G.T. Chondro-Inductive Hyaluronic Acid/Chitosan Coacervate-Based Scaffolds for Cartilage Tissue Engineering. Int. J. Biol. Macromol. 2021, 188, 300–312. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Li, M.; Li, J.; Wan, Y. Enhanced Dual Network Hydrogels Consisting of Thiolated Chitosan and Silk Fibroin for Cartilage Tissue Engineering. Carbohydr. Polym. 2020, 227, 115335. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Marsh, P.; Schmiess-Heine, L.; Burke, P.J.; Lee, A.; Lee, J.; Cao, H. Cardiac Tissue Engineering: State-of-the-Art Methods and Outlook. J. Biol. Eng. 2019, 13, 1–21. [Google Scholar] [CrossRef]
- Dunn, D.A.; Hodge, A.J.; Lipke, E.A. Biomimetic Materials Design for Cardiac Tissue Regeneration. WIREs Nanomed. Nanobiotechnol. 2014, 6, 15–39. [Google Scholar] [CrossRef]
- Patel, B.; Manne, R.; Patel, D.B.; Gorityala, S.; Palaniappan, A.; Kurakula, M. Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels 2021, 7, 253. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Liu, W.; Shi, G.; Zhu, F.; He, X.; Zhu, Z.; Chen, H. Human Cardiac Extracellular Matrix-chitosan-gelatin Composite Scaffold and Its Endothelialization. Exp. Ther. Med. 2020, 19, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Li, M.; Wang, X.; Liang, J.; Wang, X.; Wu, S.; Long, M.; Hu, C. An Injectable Chitosan/Dextran/β-Glycerophosphate Hydrogel as Cell Delivery Carrier for Therapy of Myocardial Infarction. Carbohydr. Polym. 2020, 229, 115516. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Samimi, A.; Khorram, M.; Abdi, M.M.; Golestaneh, S.I. Fabrication and Characterization of Conductive Polypyrrole/Chitosan/Collagen Electrospun Nanofiber Scaffold for Tissue Engineering Application. Int. J. Biol. Macromol. 2021, 168, 175–186. [Google Scholar] [CrossRef]
- Mombini, S.; Mohammadnejad, J.; Bakhshandeh, B.; Narmani, A.; Nourmohammadi, J.; Vahdat, S.; Zirak, S. Chitosan-PVA-CNT Nanofibers as Electrically Conductive Scaffolds for Cardiovascular Tissue Engineering. Int. J. Biol. Macromol. 2019, 140, 278–287. [Google Scholar] [CrossRef]
- Lagali, N. Corneal Stromal Regeneration: Current Status and Future Therapeutic Potential. Curr. Eye Res. 2020, 45, 278–290. [Google Scholar] [CrossRef]
- Palchesko, R.N.; Carrasquilla, S.D.; Feinberg, A.W. Natural Biomaterials for Corneal Tissue Engineering, Repair, and Regeneration. Adv. Healthc. Mater. 2018, 7, 1701434. [Google Scholar] [CrossRef]
- Sabater, A.L.; Guarnieri, A.; Espana, E.M.; Li, W.; Prósper, F.; Moreno-Montañés, J. Strategies of Human Corneal Endothelial Tissue Regeneration. Regen. Med. 2013, 8, 183–195. [Google Scholar] [CrossRef]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Mashayekhan, S.; Baradaran-Rafii, A.; Djalilian, A.R. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng. Regen. Med. 2020, 17, 567–593. [Google Scholar] [CrossRef]
- Ozcelik, B.; Brown, K.D.; Blencowe, A.; Daniell, M.; Stevens, G.W.; Qiao, G.G. Ultrathin Chitosan–Poly (Ethylene Glycol) Hydrogel Films for Corneal Tissue Engineering. Acta Biomater. 2013, 9, 6594–6605. [Google Scholar] [CrossRef]
- Tayebi, T.; Baradaran-Rafii, A.; Hajifathali, A.; Rahimpour, A.; Zali, H.; Shaabani, A.; Niknejad, H. Biofabrication of Chitosan/Chitosan Nanoparticles/Polycaprolactone Transparent Membrane for Corneal Endothelial Tissue Engineering. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Feng, L.; Liu, R.; Zhang, X.; Li, J.; Zhu, L.; Li, Z.; Li, W.; Zhang, A. Thermo-Gelling Dendronized Chitosans as Biomimetic Scaffolds for Corneal Tissue Engineering. ACS Appl. Mater. Interfaces 2021, 13, 49369–49379. [Google Scholar] [CrossRef]
- Xu, W.; Liu, K.; Li, T.; Zhang, W.; Dong, Y.; Lv, J.; Wang, W.; Sun, J.; Li, M.; Wang, M. An in Situ Hydrogel Based on Carboxymethyl Chitosan and Sodium Alginate Dialdehyde for Corneal Wound Healing after Alkali Burn. J. Biomed. Mater. Res. A 2019, 107, 742–754. [Google Scholar] [CrossRef]
- Iviglia, G.; Kargozar, S.; Baino, F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J. Funct. Biomater. 2019, 10, 3. [Google Scholar] [CrossRef]
- Ausenda, F.; Rasperini, G.; Acunzo, R.; Gorbunkova, A.; Pagni, G. New Perspectives in the Use of Biomaterials for Periodontal Regeneration. Materials 2019, 12, 2197. [Google Scholar] [CrossRef]
- Liang, Y.; Luan, X.; Liu, X. Recent Advances in Periodontal Regeneration: A Biomaterial Perspective. Bioact. Mater. 2020, 5, 297–308. [Google Scholar] [CrossRef]
- Lauritano, D.; Limongelli, L.; Moreo, G.; Favia, G.; Carinci, F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. a Systematic Review. Nanomaterials 2020, 10, 605. [Google Scholar] [CrossRef]
- Woo, H.N.; Cho, Y.J.; Tarafder, S.; Lee, C.H. The Recent Advances in Scaffolds for Integrated Periodontal Regeneration. Bioact. Mater. 2021, 6, 3328–3342. [Google Scholar] [CrossRef]
- Varoni, E.M.; Vijayakumar, S.; Canciani, E.; Cochis, A.; de Nardo, L.; Rimondini, L.; Cerruti, M. Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration. J. Dent. Res. 2018, 97, 303–311. [Google Scholar] [CrossRef]
- Lee, B.-S.; Lee, C.-C.; Lin, H.-P.; Shih, W.-A.; Hsieh, W.-L.; Lai, C.-H.; Takeuchi, Y.; Chen, Y.-W. A Functional Chitosan Membrane with Grafted Epigallocatechin-3-Gallate and Lovastatin Enhances Periodontal Tissue Regeneration in Dogs. Carbohydr. Polym. 2016, 151, 790–802. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, X.; Sui, B.; Liu, C.; Mo, X.; Sun, J. Development of Fish Collagen/Bioactive Glass/Chitosan Composite Nanofibers as a GTR/GBR Membrane for Inducing Periodontal Tissue Regeneration. Biomed. Mater. 2017, 12, 55004. [Google Scholar] [CrossRef]
- Park, C.H.; Oh, J.-H.; Jung, H.-M.; Choi, Y.; Rahman, S.U.; Kim, S.; Kim, T.-I.; Shin, H.-I.; Lee, Y.-S.; Frank, H.Y. Effects of the Incorporation of ε-Aminocaproic Acid/Chitosan Particles to Fibrin on Cementoblast Differentiation and Cementum Regeneration. Acta Biomater. 2017, 61, 134–143. [Google Scholar] [CrossRef]
- Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for Wound Healing Applications. Polymers 2020, 12, 2010. [Google Scholar] [CrossRef]
- Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic Polymeric Biomaterials for Wound Healing: A Review. Prog. Biomater. 2018, 7, 1–21. [Google Scholar] [CrossRef]
- Wilkinson, H.N.; Hardman, M.J. Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Li, P.; Zhu, C.; Lin, Z.; Mackey, V.; Coy, D.H.; He, Q. The Wound Dressings and Their Applications in Wound Healing and Management. Health Sci. J. 2019, 13, 1–8. [Google Scholar]
- Kaur, G.; Narayanan, G.; Garg, D.; Sachdev, A.; Matai, I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS Appl. Bio Mater. 2022, 5, 2069–2106. [Google Scholar] [CrossRef]
- Deng, P.; Jin, W.; Liu, Z.; Gao, M.; Zhou, J. Novel Multifunctional Adenine-Modified Chitosan Dressings for Promoting Wound Healing. Carbohydr. Polym. 2021, 260, 117767. [Google Scholar] [CrossRef]
- Du, X.; Wu, L.; Yan, H.; Jiang, Z.; Li, S.; Li, W.; Bai, Y.; Wang, H.; Cheng, Z.; Kong, D. Microchannelled Alkylated Chitosan Sponge to Treat Noncompressible Hemorrhages and Facilitate Wound Healing. Nat. Commun. 2021, 12, 4733. [Google Scholar] [CrossRef]
- Li, H.; Wang, F. Core-Shell Chitosan Microsphere with Antimicrobial and Vascularized Functions for Promoting Skin Wound Healing. Mater. Des. 2021, 204, 109683. [Google Scholar] [CrossRef]
- Mehrabi, T.; Mesgar, A.S.; Mohammadi, Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater. Sci. Eng. 2020, 6, 5399–5430. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, J.; Liu, Y.; Li, Y.; Zhang, C.; Qi, W.; Yeung, K.W.K.; Wong, T.M.; Zhao, X.; Pan, H. Electrospun Chitosan/PVA/Bioglass Nanofibrous Membrane with Spatially Designed Structure for Accelerating Chronic Wound Healing. Mater. Sci. Eng. C 2019, 105, 110083. [Google Scholar] [CrossRef]
- Peng, X.; Xu, X.; Deng, Y.; Xie, X.; Xu, L.; Xu, X.; Yuan, W.; Yang, B.; Yang, X.; Xia, X. Ultrafast Self-gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing. Adv. Funct. Mater. 2021, 31, 2102583. [Google Scholar] [CrossRef]
- Sun, C.; Zeng, X.; Zheng, S.; Wang, Y.; Li, Z.; Zhang, H.; Nie, L.; Zhang, Y.; Zhao, Y.; Yang, X. Bio-Adhesive Catechol-Modified Chitosan Wound Healing Hydrogel Dressings through Glow Discharge Plasma Technique. J. Chem. Eng. 2022, 427, 130843. [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, W.; Zhang, H.; Zheng, W.; Zhou, Q. Carboxymethyl Chitosan-Based Hydrogels Containing Fibroblast Growth Factors for Triggering Diabetic Wound Healing. Carbohydr. Polym. 2022, 287, 119336. [Google Scholar] [CrossRef]
- Teoh, J.H.; Mozhi, A.; Sunil, V.; Tay, S.M.; Fuh, J.; Wang, C. 3D Printing Personalized, Photocrosslinkable Hydrogel Wound Dressings for the Treatment of Thermal Burns. Adv. Funct. Mater. 2021, 31, 2105932. [Google Scholar] [CrossRef]
- Sung, Y.K.; Kim, S.W. Recent Advances in the Development of Gene Delivery Systems. Biomater. Res. 2019, 23, 1–7. [Google Scholar] [CrossRef]
- Keles, E.; Song, Y.; Du, D.; Dong, W.-J.; Lin, Y. Recent Progress in Nanomaterials for Gene Delivery Applications. Biomater. Sci. 2016, 4, 1291–1309. [Google Scholar] [CrossRef]
- Lundstrom, K. Viral Vectors in Gene Therapy. Diseases 2018, 6, 42. [Google Scholar] [CrossRef]
- Patil, S.; Gao, Y.-G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W.-J.; Jiang, S.-F.; Qadir, A.; Qian, A.-R. The Development of Functional Non-Viral Vectors for Gene Delivery. Int. J. Mol. Sci. 2019, 20, 5491. [Google Scholar] [CrossRef]
- Faneca, H. Non-Viral Gene Delivery Systems. Pharmaceutics 2021, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Santos-Carballal, B.; Fernández Fernández, E.; Goycoolea, F.M. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers 2018, 10, 444. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Howard, K.A.; Dong, M.; Andersen, M.Ø.; Rahbek, U.L.; Johnsen, M.G.; Hansen, O.C.; Besenbacher, F.; Kjems, J. The Influence of Polymeric Properties on Chitosan/SiRNA Nanoparticle Formulation and Gene Silencing. Biomaterials 2007, 28, 1280–1288. [Google Scholar] [CrossRef]
- Malmo, J.; Sørgård, H.; Vårum, K.M.; Strand, S.P. SiRNA Delivery with Chitosan Nanoparticles: Molecular Properties Favoring Efficient Gene Silencing. J. Control. Release 2012, 158, 261–268. [Google Scholar] [CrossRef]
- Alameh, M.; Lavertu, M.; Tran-Khanh, N.; Chang, C.-Y.; Lesage, F.; Bail, M.; Darras, V.; Chevrier, A.; Buschmann, M.D. SiRNA Delivery with Chitosan: Influence of Chitosan Molecular Weight, Degree of Deacetylation, and Amine to Phosphate Ratio on in Vitro Silencing Efficiency, Hemocompatibility, Biodistribution, and in Vivo Efficacy. Biomacromolecules 2018, 19, 112–131. [Google Scholar] [CrossRef]
- Ziminska, M.; Wilson, J.J.; McErlean, E.; Dunne, N.; McCarthy, H.O. Synthesis and Evaluation of a Thermoresponsive Degradable Chitosan-Grafted PNIPAAm Hydrogel as a “Smart” Gene Delivery System. Materials 2020, 13, 2530. [Google Scholar] [CrossRef]
- Akbari, V.; Rezazadeh, M.; Hanaie, N.S.; Hasanzadeh, F. Preparation and in Vitro Characterization of Histidine Trimethyl Chitosan Conjugated Nanocomplex Incorporated into Injectable Thermosensitive Hydrogels for Localized Gene Delivery. Biotechnol. Appl. Biochem. 2022, 69, 1047–1057. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Huang, Z.; Yang, B.; Mu, N.; Yang, Z.; Deng, M.; Liao, X.; Yin, G.; Nie, Y. Gene Delivery of Chitosan-Graft-Polyethyleneimine Vectors Loaded on Scaffolds for Nerve Regeneration. Carbohydr. Polym. 2022, 290, 119499. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Gao, C. Design of Gene-Activated Matrix for the Repair of Skin and Cartilage. Polym. J. 2014, 46, 476–482. [Google Scholar] [CrossRef]
- Wang, L.; Sun, L.; Gu, Z.; Li, W.; Guo, L.; Ma, S.; Guo, L.; Zhang, W.; Han, B.; Chang, J. N-Carboxymethyl Chitosan/Sodium Alginate Composite Hydrogel Loading Plasmid DNA as a Promising Gene Activated Matrix for in-Situ Burn Wound Treatment. Bioact. Mater. 2022, 15, 330–342. [Google Scholar] [CrossRef]
- Yahya, E.B.; Alqadhi, A.M. Recent Trends in Cancer Therapy: A Review on the Current State of Gene Delivery. Life Sci. 2021, 269, 119087. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinejad, R.; Dehshahri, A.; Madamsetty, V.S.; Zahmatkeshan, M.; Tavakol, S.; Makvandi, P.; Khorsandi, D.; Pardakhty, A.; Ashrafizadeh, M.; Afshar, E.G. In Vivo Gene Delivery Mediated by Non-Viral Vectors for Cancer Therapy. J. Control. Release 2020, 325, 249–275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, W.; Lan, Y.; He, X.; Liu, K.; Liang, Y. Antitumor Effect of Hyaluronic-Acid-Modified Chitosan Nanoparticles Loaded with SiRNA for Targeted Therapy for Non-Small Cell Lung Cancer. Int. J. Nanomed. 2019, 14, 5287–5301. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, Y.; Wang, L.; Liang, Z.; Li, D.; Xu, X.; Chen, Y.; Yang, X.; Zhang, H.; Niu, H. Self-Crosslinkable Chitosan-Hyaluronic Acid Dialdehyde Nanoparticles for CD44-Targeted SiRNA Delivery to Treat Bladder Cancer. Bioact. Mater. 2021, 6, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, Q.; Wu, W.; Wang, J.; Chu, P.K.; Bai, H.; Tang, G. Reconstructed Chitosan with Alkylamine for Enhanced Gene Delivery by Promoting Endosomal Escape. Carbohydr. Polym. 2020, 227, 115339. [Google Scholar] [CrossRef]
- Agrawal, P.; Strijkers, G.J.; Nicolay, K. Chitosan-Based Systems for Molecular Imaging. Adv. Drug Deliv. Rev. 2010, 62, 42–58. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C.L. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials 2020, 10, 1700. [Google Scholar] [CrossRef]
- Chakraborty, I.; Nadumane, S.S.; Biswas, R.; Mazumder, N. An Overview of the Application of Chitosan-Based Nanocomposites in Bioimaging. In Chitosan-Based Nanocomposite Materials: Fabrication, Characterization and Biomedical Applications; Gulati, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 189–197. [Google Scholar]
- Horo, H.; Das, H.; Bhattacharjee, G.; Kundu, L.M. Chitosan-Derived Biomaterials in Cancer Therapeutics and Biomedical Imaging. In Polysaccharide-Based Biomaterials; Jana, S., Jana, S., Domb, A.J., Eds.; Royal Society of Chemistry: London, UK, 2022; pp. 497–534. [Google Scholar]
- Tan, L.; Huang, R.; Li, X.; Liu, S.; Shen, Y.-M.; Shao, Z. Chitosan-Based Core-Shell Nanomaterials for PH-Triggered Release of Anticancer Drug and near-Infrared Bioimaging. Carbohydr. Polym. 2017, 157, 325–334. [Google Scholar] [CrossRef]
- Wang, B.; Liu, S.; Liu, X.; Hu, R.; Qin, A.; Tang, B.Z. Aggregation-Induced Emission Materials That Aid in Pharmaceutical Research. Adv. Healthc. Mater. 2021, 10, 2101067. [Google Scholar] [CrossRef]
- Shi, H.; Liang, N.; Liu, J.; Li, S.; Gong, X.; Yan, P.; Sun, S. AIE-Active Polymeric Micelles Based on Modified Chitosan for Bioimaging-Guided Targeted Delivery and Controlled Release of Paclitaxel. Carbohydr. Polym. 2021, 269, 118327. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, N.; Liu, J.; Gong, X.; Yan, P.; Sun, S. Design and Fabrication of Chitosan-Based AIE Active Micelles for Bioimaging and Intelligent Delivery of Paclitaxel. Carbohydr. Polym. 2022, 290, 119509. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.; Bi, J.; Yan, H.; Wang, H.; Song, Y.; Zhu, B.-W.; Tan, M. Nanostructures Derived from Starch and Chitosan for Fluorescence Bio-Imaging. Nanomaterials 2016, 6, 130. [Google Scholar] [CrossRef] [PubMed]
- Dmour, I.; Islam, N. Recent Advances on Chitosan as an Adjuvant for Vaccine Delivery. Int. J. Biol. Macromol. 2022, 200, 498–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zou, Y.; Wang, N.; Wu, J. Chitosan Hydrochloride Salt Stabilized Emulsion as Vaccine Adjuvant. Carbohydr. Polym. 2022, 296, 119879. [Google Scholar] [CrossRef]
- Mosafer, J.; Sabbaghi, A.-H.; Badiee, A.; Dehghan, S.; Tafaghodi, M. Preparation, Characterization and in Vivo Evaluation of Alginate-Coated Chitosan and Trimethylchitosan Nanoparticles Loaded with PR8 Influenza Virus for Nasal Immunization. Asian J. Pharm. Sci. 2019, 14, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Sun, B.; Jin, Z.; Zhao, K. Enhanced Immune Responses to Mucosa by Functionalized Chitosan-Based Composite Nanoparticles as a Vaccine Adjuvant for Intranasal Delivery. ACS Appl. Mater. Interfaces 2022, 14, 52691–52701. [Google Scholar] [CrossRef]
- Zare, S.; Kabiri, M.; Amini, Y.; Najafi, A.; Mohammadpour, F.; Ayati, S.H.; Nikpoor, A.R.; Tafaghodi, M. Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated Plga Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates against Tuberculosis. AAPS PharmSciTech 2022, 23, 1–14. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Rubio, R.G. Chitosan: A Promising Multifunctional Cosmetic Ingredient for Skin and Hair Care. Cosmetics 2022, 9, 99. [Google Scholar] [CrossRef]
- Kulka, K.; Sionkowska, A. Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023, 28, 1817. [Google Scholar] [CrossRef]
- Libio, I.C.; Demori, R.; Ferrão, M.F.; Lionzo, M.I.Z.; da Silveira, N.P. Films Based on Neutralized Chitosan Citrate as Innovative Composition for Cosmetic Application. Mater. Sci. Eng. C 2016, 67, 115–124. [Google Scholar] [CrossRef]
- Chen, K.; Guo, B.; Luo, J. Quaternized Carboxymethyl Chitosan/Organic Montmorillonite Nanocomposite as a Novel Cosmetic Ingredient against Skin Aging. Carbohydr. Polym. 2017, 173, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.; Ibadurrohman, M. Slamet Synthesis of Chitosan/TiO2 Nanocomposite for Antibacterial Sunscreen Application. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2255, p. 60020. [Google Scholar]
Type of System | Overview | Method of Preparation | Key Attributes/Features | Ref. |
---|---|---|---|---|
Microspheres | They are spherical particles with diameters of 10 μm to 1000 μm. Variants like hollow, core-shell, and fibrous microspheres allow modulation of the release profile. |
|
| [118] |
Tablets | It is used as a matrix material in tablet formation to control drug release, improve the stability/shelf life, and enhance the mechanical properties of the tablets |
|
| [119] |
Nanoparticles | They are particulate systems employed for their tunable size (1 to 100 nm) and ability to undergo surface modification, making them versatile platforms for the targeted delivery of drugs, proteins, and genes. |
|
| [120] |
Nanofibers | They are a novel platform where the drug is encapsulated within or attached to fibers with diameters in the nanometer range. The high surface area to volume ratio of nanofibers makes them suitable for controlled drug release and regenerative applications |
|
| [121] |
Hydrogels | They are cross-linked polymer chains that form a 3D network capable of retaining large quantities of water. The gelation chemistry involved can be controlled at a molecular level, facilitating the creation of hydrogels with tailored physicochemical properties for various biomedical applications |
|
| [122] |
Membranes | They are thin, flexible sheets that act as a dosage form and can be made to specific dimensions. They facilitate the direct release of drugs into biological environments. |
|
| [123] |
Powder/microgranules | They are subcategories of solid dosage forms that consist of non-uniform micron-sized aggregates of drugs with polymeric chitosan. |
|
| [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desai, N.; Rana, D.; Salave, S.; Gupta, R.; Patel, P.; Karunakaran, B.; Sharma, A.; Giri, J.; Benival, D.; Kommineni, N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023, 15, 1313. https://doi.org/10.3390/pharmaceutics15041313
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics. 2023; 15(4):1313. https://doi.org/10.3390/pharmaceutics15041313
Chicago/Turabian StyleDesai, Nimeet, Dhwani Rana, Sagar Salave, Raghav Gupta, Pranav Patel, Bharathi Karunakaran, Amit Sharma, Jyotsnendu Giri, Derajram Benival, and Nagavendra Kommineni. 2023. "Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications" Pharmaceutics 15, no. 4: 1313. https://doi.org/10.3390/pharmaceutics15041313
APA StyleDesai, N., Rana, D., Salave, S., Gupta, R., Patel, P., Karunakaran, B., Sharma, A., Giri, J., Benival, D., & Kommineni, N. (2023). Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics, 15(4), 1313. https://doi.org/10.3390/pharmaceutics15041313