EGFR-Targeted Photodynamic Therapy
<p>Jablonski diagram of photosensitizer (PS) excited states showing the photochemical mechanisms operating in photodynamic anticancer therapy.</p> "> Figure 2
<p>Representative photosensitizers (PS) used in EGFR-targeted PDT.</p> "> Figure 3
<p>Therapeutic application of PDT or targeted PDT. The patient is administered with the photosensitizer, which concentrates at the tumor. The photosensitizer is then activated by light, destroying the tumor. Created with BioRender.com.</p> "> Figure 4
<p>The positivity proportions of EGFR expression in various cancers (ca., carcinoma; ESCC, esophageal squamous cell carcinoma; EAC, esophageal adenocarcinoma). Adapted from Kato et al., Cancers, published by MDPI in 2021. Created with BioRender.com.</p> "> Figure 5
<p>EGFR structure and conformation: (<b>a</b>) open conformation (active) and (<b>b</b>) closed conformation (inactive); (<b>c</b>) the ligand binding drives EGFR dimerization and activates the signaling cascade, with consequent stimulation of cell division and differentiation, as well as migration and angiogenesis. Created with BioRender.com.</p> "> Figure 6
<p>EGFR internalization, degradation, and reuse pathways. The active homodimer of EGFR is internalized through clathrin-coated vesicles, meaning (<b>A</b>) ligand-free receptors can be recycled in cell membrane. Alternatively, active EGFR may escape the degradation process and become tagged to the plasma membrane, nucleus, and mitochondria (blue arrows). (<b>B</b>) EGFR–ligand complexes are routed to lysosomes for degradation (black arrows) or (<b>C</b>) degraded via the proteosome pathway (pink arrows). Created with BioRender.com.</p> "> Figure 7
<p>PDT conjugation strategies and targeting agents. (<b>a</b>) Direct conjugation of a PS to an EGFR-targeting agent. (<b>b</b>) Surface modification of a nanovector, incorporating a photosensitizer payload with EGFR-targeting agents. (<b>c</b>) Cellular localization of PSs after interaction between the targeting agent and EGFR receptor. (<b>d</b>) Different targeting agents used in EGFR-targeted PDT and their dimension in kDa. Created with BioRender.com.</p> "> Figure 8
<p>Domains of EGFR recognized by different targeting agents. Created with BioRender.com.</p> ">
Abstract
:1. Anticancer Photodynamic Therapy
1.1. Photodynamic Therapy: An Overview
1.2. Photophysical and Photochemical Mechanisms of PDT
1.3. Mechanisms for Photodynamic-Therapy-Induced Cancer Cell Death
1.3.1. Direct Cytotoxicity on Tumor Cells
1.3.2. Tumoral Vascular System Impairment
1.3.3. Immunostimulatory Effect
1.4. Photosensitizers
1.4.1. First-Generation PSs
1.4.2. Second-Generation PSs
1.4.3. Third-Generation PSs
- (1)
- Phototoxicity and photosensitivity in healthy tissues. Most PSs are poorly selective molecules that bind not only cancer cells but also normal cells, including the skin and other epithelial tissues, resulting in unwanted phototoxicity and photosensitivity (i.e., eyes and skin). Of course, if compared to chemotherapeutics, the local activation by light, needed to exert photodynamic activity, reduces the likelihood of off-target effects;
- (2)
- Poor biodistribution. PSs have the same limitations as cancer chemotherapeutic drugs in terms of delivery; that is, direct parenteral administration through intravenous injection leads to unpredictable biodistribution. Because of the non-specific biodistribution, considerable drug losses and inadequate PS concentrations at the target may occur;
- (3)
- Hydrophobicity and the need for formulants. Many PSs are highly hydrophobic. Accordingly, they need to be administrated through intravenous formulations such as cremophor, ethanol, or propylene-glycol-based excipients. This determines a poorly controlled (re)distribution of the PS molecules towards plasma proteins and other off-target tissues, as well as hypersensitivity and toxicity caused by the excipients, especially if repeated treatments are required.
1.4.4. Receptor-Targeted PSs
2. Epidermal Growth Factor Receptor (EGFR)
2.1. EGFR Biology
2.2. EGFR-Targeted Cancer Therapies
2.3. EGFR-Targeted PDT
3. Targeting Agents Used in EGFR-Targeted Photodynamic Therapy
3.1. Epidermal Growth Factor (EGF)
Targeting Agent | PS | In Vitro Studies | In Vivo Studies | Ref |
---|---|---|---|---|
EGF | Disulfochloride aluminum phthalocy- anine [Pc(Al)], disulfochloride cobalt phthalocyanine [Pc(Co)] | MCF-7, B16 cells | Melanoma B16 cells in C57B1/6 mice | [93] |
3.2. EGFR-Targeting Peptides
3.3. EGFR Small-Molecule Inhibitors
3.4. Anti-EGFR Antibodies
- (1)
- (2)
- The mAb–PS conjugate generates singlet oxygen and reactive oxygen species, which elicit a rapid response in the cell [153];
- (3)
- Alternative mechanisms of killing may take place. For example, immediately after light exposure, axial ligands of the IR700 molecule dissociate, promoting aggregation and leading to damage and rupture of the cellular membrane [162];
- (4)
- A comparison between the performances of cetuximab and panitumumab as targeting agents for EGFR in PIT showed that in vitro cet-IR700 and pan-IR700 bind to EGFR-expressing cancer cells with nearly identical affinity levels, and both agents are capable of penetrating into 3D spheroids at the same rate [150]. These properties result in nearly identical PIT-induced phototoxicity in vitro [150]. In contrast, the two mAbs showed different pharmacokinetic effects, likely depending on their IgG subclasses—cetuximab is a chimeric IgG1 (13% mouse and 87% human), while panitumumab is a fully human IgG2 allotype;
- (5)
- The tumor killing ability of the treatment is dependent on the dose and modality of light exposure, i.e., multiple NIR PIT cycles proved superior to a single treatment. In vivo, different modalities of light delivery were tested, from the use of interstitial light diffusers to implanted wireless LEDs [159,164,165,166];
- (6)
- The PIT treatment causes a large increase (up to 24-fold compared with untreated tumors) in vascular permeability that facilitates the delivery of intravenous therapeutics, resulting in a synergy between PIT and chemotherapy. This phenomenon is referred to as super-enhanced permeability and retention (SUPR) [148,156,174];
- (7)
- PIT treatment causes an “immunogenic cell death” (ICD) [160,171,172,173]. Upon PIT treatment, cancer-specific antigens and membrane damage markers are produced. These signals provoke the local activation of dendritic cells (DC), a type of antigen-presenting cell (APC) able to prime inactive or resting naïve T lymphocytes, leading to the commitment of the adaptive immune system and cell-mediated cancer cell killing. PIT could, therefore, have an advantage over conventional immunotherapies, which are hampered by heterogeneous or poor delivery of antibodies or immunoconjugates, since the cancer cells escaping the first line of irradiation-mediated ROS production could be cleared by the activated (cytotoxic) T cells. Moreover, since PIT can be repeatedly applied, multiple NIR–PIT treatments could also reinforce the APC-mediated priming of the cellular immune responses against the tumor [171,172,173];
- (8)
- The therapeutic effects of NIR–PIT therapy can be monitored with several different imaging modalities. Exploiting the fluorescent properties of the used photosensitizers, it is possible to detect whether the antibody—PS conjugate has bound to the cancer cells and to set the proper light dosimetry, measuring the photobleaching of the PS. Fluorescence lifetime imaging and bioluminescence imaging can be used in pre-clinical studies, while 8F-fluorodeoxy glucose positron emission tomography (18F-FDG-PET) or MR imaging can assess early therapeutic changes after the treatment;
- (9)
- PIT also holds great promise in assisting surgeons in the intraoperative and postoperative elimination of residual tumor patches following incomplete tumor resections [155]. As such, the conjugation of photosensitizers to mAbs might be suitable to improve the treatment and elimination of multiple tumor foci in larger areas;
- (10)
- The preclinical validation of PIT was achieved in immune-deficient mice. Accordingly, the PIT-mediated triggering of the immune system was not accomplished until the first trials in humans, which resulted in better-than-expected results and was eventually repeated in immune-competent animal models. These results prompted new investigations, in which the PIT targeting of immunosuppressor cells within the tumor was explored. PIT resulted in further enhancement of the systemic and selective host immunity, leading to significant responses in distant metastases that were not irradiated by light. These results indicate that the combination of targeted PDT, with other immune-activating strategies, including PIT itself, provide systemic anticancer effects and long-term immune memory, skipping the adverse autoimmune effects often triggered by the use of immune checkpoint inhibitors.
3.5. Anti-EGFR Nanobodies
3.6. Anti EGFR-Affibodies
3.7. Anti EGFR Aptamers
3.8. Refactored Anti-EGFR Phages
4. Conclusions
Funding
Conflicts of Interest
References
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Wang, Z.; Wang, W.; Yang, M.; Dong, X. Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. J. Mater. Chem. B 2020, 8, 4748–4763. [Google Scholar] [CrossRef]
- Kim, M.M.; Darafsheh, A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 280–294. [Google Scholar] [CrossRef] [Green Version]
- St Denis, T.G.; Hamblin, M.R. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy. Bioanalysis 2013, 5, 1099–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Shuhendler, A.J.; Ye, D.; Xu, J.J.; Chen, H.Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6725–6741. [Google Scholar] [CrossRef]
- Middha, E.; Liu, B. Nanoparticles of Organic Electronic Materials for Biomedical Applications. ACS Nano 2020, 14, 9228–9242. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Fullerenes as photosensitizers in photodynamic therapy: Pros and cons. Photochem. Photobiol. Sci. 2018, 17, 1515–1533. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Gu, R.; Xu, W.; Huang, H.; Xue, L.; Wang, W.; Zhang, Y.-W.; Si, W.; Dong, X. Near-infrared Light-harvesting Fullerene-based Nanoparticles for Promoted Synergetic Tumor Phototheranostics. ACS Appl. Mater. Interfaces 2019, 11, 44970–44977. [Google Scholar] [CrossRef]
- Agazzi, M.L.; Durantini, J.E.; Gsponer, N.S.; Durantini, A.M.; Bertolotti, S.G.; Durantini, E.N. Light-Harvesting Antenna and Proton-Activated Photodynamic Effect of a Novel BODIPY-Fullerene C 60 Dyad as Potential Antimicrobial Agent. ChemPhysChem 2019, 20, 1110–1125. [Google Scholar] [CrossRef]
- Antoku, D.; Satake, S.; Mae, T.; Sugikawa, K.; Funabashi, H.; Kuroda, A.; Ikeda, A. Improvement of Photodynamic Activity of Lipid–Membrane-Incorporated Fullerene Derivative by Combination with a Photo-Antenna Molecule. Chem.-A Eur. J. 2018, 24, 7335–7339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Shi, R.; Chen, G.; Dong, S.; Yang, P.; Zhang, Z.; Niu, N.; Gai, S.; He, F.; Fu, Y.; et al. All-in-One Theranostic Nanomedicine with Ultrabright Second Near-Infrared Emission for Tumor-Modulated Bioimaging and Chemodynamic/Photodynamic Therapy. ACS Nano 2020, 14, 9613–9625. [Google Scholar] [CrossRef]
- Bassan, E.; Gualandi, A.; Cozzi, P.G.; Ceroni, P. Design of BODIPY dyes as triplet photosensitizers: Electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chem. Sci. 2021, 12, 6607–6628. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, W.; Chen, R.; Liu, X.K.; Xiong, Y.; Kershaw, S.V.; Rogach, A.L.; Adachi, C.; Zhang, X.; Lee, C.S. Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chem. Commun. 2016, 52, 11744–11747. [Google Scholar] [CrossRef]
- Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T. Active Oxygen Species Generated from Photoexcited Fullerene (C60) as Potential Medicines: O2-• versus 1O2. J. Am. Chem. Soc. 2003, 125, 12803–12809. [Google Scholar] [CrossRef]
- Lan, M.; Zhao, S.; Liu, W.; Lee, C.; Zhang, W.; Wang, P. Photosensitizers for Photodynamic Therapy. Adv. Healthc. Mater. 2019, 8, 1900132. [Google Scholar] [CrossRef] [PubMed]
- Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials 2013, 6, 817–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, P.L.; Shihabuddeen, W.A.; Low, K.P.; Poon, D.J.J.; Ramaswamy, B.; Liang, Z.-G.; Nei, W.L.; Chua, K.L.M.; Thong, P.S.P.; Soo, K.C.; et al. Vandetanib sensitizes head and neck squamous cell carcinoma to photodynamic therapy through modulation of EGFR-dependent DNA repair and the tumour microenvironment. Photodiagnosis Photodyn. Ther. 2019, 27, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Gebicki, J.M. Proteins are major initial cell targets of hydroxyl free radicals. Int. J. Biochem. Cell Biol. 2004, 36, 2334–2343. [Google Scholar] [CrossRef] [PubMed]
- Brunet, L.; Lyon, D.Y.; Hotze, E.M.; Alvarez, P.J.J.; Wiesner, M.R. Comparative Photoactivity and Antibacterial Properties of C 60 Fullerenes and Titanium Dioxide Nanoparticles. Environ. Sci. Technol. 2009, 43, 4355–4360. [Google Scholar] [CrossRef]
- Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004, 266, 37–56. [Google Scholar] [CrossRef]
- Shadel, G.S.; Horvath, T.L. Mitochondrial ROS Signaling in Organismal Homeostasis. Cell 2015, 163, 560–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calori, I.R.; Bi, H.; Tedesco, A.C. Expanding the Limits of Photodynamic Therapy: The Design of Organelles and Hypoxia-Targeting Nanomaterials for Enhanced Photokilling of Cancer. ACS Appl. Bio Mater. 2021, 4, 195–228. [Google Scholar] [CrossRef] [PubMed]
- Star, W.M. Light delivery and light dosimetry for photodynamic therapy. Lasers Med. Sci. 1990, 5, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Dysart, J.S.; Patterson, M.S. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys. Med. Biol. 2005, 50, 2597–2616. [Google Scholar] [CrossRef]
- Kessel, D.; Castelli, M. Evidence that bcl-2 is the Target of Three Photosensitizers that Induce a Rapid Apoptotic Response¶. Photochem. Photobiol. 2001, 74, 318–322. [Google Scholar] [CrossRef]
- Reiners, J.J.; Caruso, J.A.; Mathieu, P.; Chelladurai, B.; Yin, X.M.; Kessel, D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ. 2002, 9, 934–944. [Google Scholar] [CrossRef] [Green Version]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Reiners, J.J.; Agostinis, P.; Berg, K.; Oleinick, N.L.; Kessel, D. Assessing autophagy in the context of photodynamic therapy. Autophagy 2010, 6, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xu, H.; Meyers, A.D.; Musani, A.I.; Wang, L.; Tagg, R.; Barqawi, A.B.; Chen, Y.K. Photodynamic therapy for treatment of solid tumors--potential and technical challenges. Technol. Cancer Res. Treat. 2008, 7, 309–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, R.R.; Moghissi, K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013, 46, 24–29. [Google Scholar] [CrossRef]
- Reis, E. Sousa, C. Activation of dendritic cells: Translating innate into adaptive immunity. Curr. Opin. Immunol. 2004, 16, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Kabingu, E.; Vaughan, L.; Owczarczak, B.; Ramsey, K.D.; Gollnick, S.O. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br. J. Cancer 2007, 96, 1839–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gollnick, S.O.; Evans, S.S.; Baumann, H.; Owczarczak, B.; Maier, P.; Vaughan, L.; Wang, W.C.; Unger, E.; Henderson, B.W. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br. J. Cancer 2003, 88, 1772. [Google Scholar] [CrossRef] [Green Version]
- Kousis, P.C.; Henderson, B.W.; Maier, P.G.; Gollnick, S.O. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 2007, 67, 10501–10510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, N.; Katiyar, S.K.; Elmets, C.A. The immunosuppressive effects of phthalocyanine photodynamic therapy in mice are mediated by CD4+ and CD8+ T cells and can be adoptively transferred to naive recipients. Photochem. Photobiol. 2008, 84, 366–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleinick, N.L.; Evans, H.H. The photobiology of photodynamic therapy: Cellular targets and mechanisms. Radiat. Res. 1998, 150. [Google Scholar] [CrossRef]
- Shi, H.; Sadler, P.J. How promising is phototherapy for cancer? Br. J. Cancer 2020, 123, 871–873. [Google Scholar] [CrossRef]
- Liu, Y.; Scrivano, L.; Peterson, J.D.; Fens, M.H.A.M.; Hernández, I.B.; Mesquita, B.; Toraño, J.S.; Hennink, W.E.; van Nostrum, C.F.; Oliveira, S. EGFR-Targeted Nanobody Functionalized Polymeric Micelles Loaded with mTHPC for Selective Photodynamic Therapy. Mol. Pharm. 2020, 17, 1276–1292. [Google Scholar] [CrossRef] [Green Version]
- Brilkina, A.A.; Dubasova, L.V.; Sergeeva, E.A.; Pospelov, A.J.; Shilyagina, N.Y.; Shakhova, N.M.; Balalaeva, I.V. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J. Photochem. Photobiol. B Biol. 2019, 191, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.P.; Palanikumar, L.; Jeena, M.T.; Kim, K.; Ryu, J.H. Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem. Sci. 2017, 8, 8351–8356. [Google Scholar] [CrossRef] [Green Version]
- Soldà, A.; Cantelli, A.; Di Giosia, M.; Montalti, M.; Zerbetto, F.; Rapino, S.; Calvaresi, M. C60@lysozyme: A new photosensitizing agent for photodynamic therapy. J. Mater. Chem. B 2017, 5, 6608–6615. [Google Scholar] [CrossRef]
- Tang, Q.; Xiao, W.; Huang, C.; Si, W.; Shao, J.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X. pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. Chem. Mater. 2017, 29, 5216–5224. [Google Scholar] [CrossRef]
- Baghbani, F.; Moztarzadeh, F. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf. B Biointerfaces 2017, 153, 132–140. [Google Scholar] [CrossRef]
- Da Silva, E.F.F.; Pimenta, F.M.; Pedersen, B.W.; Blaikie, F.H.; Bosio, G.N.; Breitenbach, T.; Westberg, M.; Bregnhøj, M.; Etzerodt, M.; Arnaut, L.G.; et al. Intracellular singlet oxygen photosensitizers: On the road to solving the problems of sensitizer degradation, bleaching and relocalization. Integr. Biol. 2016, 8, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Zhang, H. Receptor-targeted cancer therapy. DNA Cell Biol. 2005, 24, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wang, T.; Li, L.; Li, X.; Zhai, Y.; Zhang, J.; Li, W. The Application of Inorganic Nanoparticles in Molecular Targeted Cancer Therapy: EGFR Targeting. Front. Pharmacol. 2021, 12, 702445. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.V.; Hervé-Aubert, K.; Chourpa, I.; Allard-Vannier, E. Active targeting strategy in nanomedicines using anti-EGFR ligands—A promising approach for cancer therapy and diagnosis. Int. J. Pharm. 2021, 609, 121134. [Google Scholar] [CrossRef]
- Schlessinger, J. Receptor Tyrosine Kinases: Legacy of the First Two Decades. Cold Spring Harb. Perspect. Biol. 2014, 6, a008912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer 2005, 5, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, S21–S26. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 2014, 79, 34–74. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer 2001, 37 Suppl 4, 9. [Google Scholar] [CrossRef]
- Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 2005, 353, 172–187. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Wakiyama, H.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy; a review of targets for cancer therapy. Cancers 2021, 13, 2535. [Google Scholar] [CrossRef] [PubMed]
- Ogiso, H.; Ishitani, R.; Nureki, O.; Fukai, S.; Yamanaka, M.; Kim, J.H.; Saito, K.; Sakamoto, A.; Inoue, M.; Shirouzu, M.; et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002, 110, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Garrett, T.P.J.; McKern, N.M.; Lou, M.; Elleman, T.C.; Adams, T.E.; Lovrecz, G.O.; Zhu, H.J.; Walker, F.; Frenkel, M.J.; Hoyne, P.A.; et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 2002, 110, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Martin-Fernandez, M.L.; Clarke, D.T.; Roberts, S.K.; Zanetti-Domingues, L.C.; Gervasio, F.L. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019, 8, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouyain, S.; Longo, P.A.; Li, S.; Ferguson, K.M.; Leahy, D.J. The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand. Proc. Natl. Acad. Sci. USA 2005, 102, 15024–15029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, J.P.; Berger, M.B.; Lin, C.-C.; Schlessinger, J.; Lemmon, M.A.; Ferguson, K.M. Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol. Cell. Biol. 2005, 25, 7734–7742. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, K.M. A structure-based view of Epidermal Growth Factor Receptor regulation. Annu. Rev. Biophys. 2008, 37, 353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gureasko, J.; Shen, K.; Cole, P.A.; Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006, 125, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Brewer, R.M.; Choi, S.H.; Alvarado, D.; Moravcevic, K.; Pozzi, A.; Lemmon, M.A.; Carpenter, G. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 2009, 34, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jura, N.; Endres, N.F.; Engel, K.; Deindl, S.; Das, R.; Lamers, M.H.; Wemmer, D.E.; Zhang, X.; Kuriyan, J. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 2009, 137, 1293–1307. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, M.A.; Schlessinger, J.; Ferguson, K.M. The EGFR Family: Not So Prototypical Receptor Tyrosine Kinases. Cold Spring Harb. Perspect. Biol. 2014, 6, a020768. [Google Scholar] [CrossRef]
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef]
- Kaksonen, M.; Toret, C.P.; Drubin, D.G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2006, 7, 404–414. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007, 315, 201–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldati, T.; Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol. 2006, 7, 897–908. [Google Scholar] [CrossRef]
- Waterman, H.; Katz, M.; Rubin, C.; Shtiegman, K.; Lavi, S.; Elson, A.; Jovin, T.; Yarden, Y. A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J. 2002, 21, 303. [Google Scholar] [CrossRef]
- Sigismund, S.; Algisi, V.; Nappo, G.; Conte, A.; Pascolutti, R.; Cuomo, A.; Bonaldi, T.; Argenzio, E.; Verhoef, L.G.G.C.; Maspero, E.; et al. Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J. 2013, 32, 2140–2157. [Google Scholar] [CrossRef] [Green Version]
- Heukers, R.; Vermeulen, J.F.; Fereidouni, F.; Bader, A.N.; Voortman, J.; Roovers, R.C.; Gerritsen, H.C.; Van Bergen En Henegouwen, P.M.P. Endocytosis of EGFR requires its kinase activity and N-terminal transmembrane dimerization motif. J. Cell Sci. 2013, 126, 4900–4912. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.W. Nuclear mode of the EGFR signaling network: Biology, prognostic value, and therapeutic implications. Discov. Med. 2010, 10, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.W.; Hsu, S.C.; Ali-Seyed, M.; Gunduz, M.; Xia, W.; Wei, Y.; Bartholomeusz, G.; Shih, J.Y.; Hung, M.C. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005, 7, 575–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerner, J.L.; Demory, M.L.; Silva, C.; Parsons, S.J. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol. Cell. Biol. 2004, 24, 7059–7071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demory, M.L.; Boerner, J.L.; Davidson, R.; Faust, W.; Miyake, T.; Lee, I.; Hüttemann, M.; Douglas, R.; Haddad, G.; Parsons, S.J. Epidermal growth factor receptor translocation to the mitochondria: Regulation and effect. J. Biol. Chem. 2009, 284, 36592–36604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, T.F.; Lin, C.W.; Wu, Y.Y.; Chen, Y.J.; Han, C.L.; Chang, Y.L.; Wu, C.T.; Hsiao, T.H.; Hong, T.M.; Yang, P.C. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget 2015, 6, 37349–37366. [Google Scholar] [CrossRef] [Green Version]
- Brand, T.M.; Iida, M.; Luthar, N.; Starr, M.M.; Huppert, E.J.; Wheeler, D.L. Nuclear EGFR as a Molecular Target in Cancer. Radiother. Oncol. 2013, 108, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Liccardi, G.; Hartley, J.A.; Hochhauser, D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 2011, 71, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Li, C.F.; Fang, F.M.; Wang, J.M.; Tzeng, C.C.; Tai, H.C.; Wei, Y.C.; Li, S.H.; Lee, Y.T.; Wang, Y.H.; Yu, S.C.; et al. EGFR nuclear import in gallbladder carcinoma: Nuclear phosphorylated EGFR upregulates iNOS expression and confers independent prognostic impact. Ann. Surg. Oncol. 2012, 19, 443–454. [Google Scholar] [CrossRef]
- Hsu, S.C.; Miller, S.A.; Wang, Y.; Hung, M.C. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am. J. Transl. Res. 2009, 1, 249–258. [Google Scholar]
- Xia, W.; Wei, Y.; Du, Y.; Liu, J.; Chang, B.; Yu, N.L.; Huo, L.F.; Miller, S.; Hung, M.C. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol. Carcinog. 2009, 48, 610–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psyrri, A.; Yu, Z.; Weinberger, P.M.; Sasaki, C.; Haffty, B.; Camp, R.; Rimm, D.; Burtness, B.A. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin. Cancer Res. 2005, 11, 5856–5862. [Google Scholar] [CrossRef] [Green Version]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Akkın, S.; Varan, G.; Bilensoy, E. A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers. Molecules 2021, 26, 3382. [Google Scholar] [CrossRef]
- Singh, A.B.; Harris, R.C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal. 2005, 17, 1183–1193. [Google Scholar] [CrossRef]
- Di Giosia, M.; Zerbetto, F.; Calvaresi, M. Incorporation of Molecular Nanoparticles Inside Proteins: The Trojan Horse Approach in Theranostics. Accounts Mater. Res. 2021, 2, 594–605. [Google Scholar] [CrossRef]
- Di Giosia, M.; Soldà, A.; Seeger, M.; Cantelli, A.; Arnesano, F.; Nardella, M.I.; Mangini, V.; Valle, F.; Montalti, M.; Zerbetto, F.; et al. A Bio-Conjugated Fullerene as a Subcellular-Targeted and Multifaceted Phototheranostic Agent. Adv. Funct. Mater. 2021, 31, 1–8. [Google Scholar] [CrossRef]
- Cantelli, A.; Malferrari, M.; Soldà, A.; Simonetti, G.; Forni, S.; Toscanella, E.; Mattioli, E.J.; Zerbetto, F.; Zanelli, A.; Di Giosia, M.; et al. Human Serum Albumin–Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized Killing of Cancer Cells by Precise Light Activation. JACS Au 2021, 1, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Di Giosia, M.; Bomans, P.H.H.; Bottoni, A.; Cantelli, A.; Falini, G.; Franchi, P.; Guarracino, G.; Friedrich, H.; Lucarini, M.; Paolucci, F.; et al. Proteins as supramolecular hosts for C60: A true solution of C60 in water. Nanoscale 2018, 10, 9908–9916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantelli, A.; Piro, F.; Pecchini, P.; Di Giosia, M.; Danielli, A.; Calvaresi, M. Concanavalin A-Rose Bengal bioconjugate for targeted Gram-negative antimicrobial photodynamic therapy. J. Photochem. Photobiol. B Biol. 2020, 206, 111852. [Google Scholar] [CrossRef]
- Lutsenko, S.V.; Feldman, N.B.; Finakova, G.V.; Posypanova, G.A.; Severin, S.E.; Skryabin, K.G.; Kirpichnikov, M.P.; Lukyanets, E.A.; Vorozhtsov, G.N. Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates. Tumor Biol. 1999, 20, 218–224. [Google Scholar] [CrossRef]
- Gijsens, A.; De Witte, P. Photocytotoxic action of EGF-PVA-Sn(IV)chlorin e6 and EGF-dextran-Sn(IV)chlorin e6 internalizable conjugates on A431 cells. Int. J. Oncol. 1998, 13, 1171–1177. [Google Scholar] [CrossRef]
- Gijsens, A.; Missiaen, L.; Merlevede, W.; De Witte, P. Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity. Cancer Res. 2000, 60, 2197–2202. [Google Scholar]
- Tsai, W.H.; Yu, K.H.; Huang, Y.C.; Lee, C.I. EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles. Int. J. Nanomed. 2018, 13, 903–916. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, T.T.; Castilho, M.L.; de Oliveira, I.R.; Jesus, V.P.S.; Hewitt, K.C.; Raniero, L. FTIR study of secondary structure changes in Epidermal Growth Factor by gold nanoparticle conjugation. Biochim. Biophys. Acta-Gen. Subj. 2018, 1862, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Castilho, M.L.; Jesus, V.P.S.; Vieira, P.F.A.; Hewitt, K.C.; Raniero, L. Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagnosis Photodyn. Ther. 2021, 33. [Google Scholar] [CrossRef] [PubMed]
- Ayo, A.; Laakkonen, P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, X.; Xiao, W.; Lam, K.S. Tumor-targeting peptides from combinatorial libraries. Adv. Drug Deliv. Rev. 2017, 110–111, 13–37. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.S.; Salmon, S.E.; Hersh, E.M.; Hruby, V.J.; Kazmierski, W.M.; Knapp, R.J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991, 354, 82–84. [Google Scholar] [CrossRef]
- Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390. [Google Scholar] [CrossRef]
- Saw, P.E.; Song, E.-W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019, 10, 787–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Llano, L.E.; Tan, C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth. Biol. 2018, 3, ysy012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Liu, Q.; Liang, Z.; Wang, J.; Pang, M.; Huang, W.; Wu, W.; Hong, Z. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications. Org. Biomol. Chem. 2016, 14, 3409–3422. [Google Scholar] [CrossRef]
- Kim, J.; Chae, J.; Kim, J.S.; Goh, S.H.; Choi, Y. Photosensitizer-conjugated tryptophan-containing peptide ligands as new dual-targeted theranostics for cancers. Int. J. Pharm. 2016, 513, 584–590. [Google Scholar] [CrossRef]
- Kim, J.; Won, Y.; Goh, S.H.; Choi, Y. A redox-responsive theranostic agent for target-specific fluorescence imaging and photodynamic therapy of EGFR-overexpressing triple-negative breast cancers. J. Mater. Chem. B 2016, 4, 6787–6790. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, Y.; Zhao, J.; Zhao, M.; Li, W.; Liu, Q.; Xiong, L.; Wu, W.; Hong, Z. In vitro and in vivo evaluation of improved EGFR targeting peptide-conjugated phthalocyanine photosensitizers for tumor photodynamic therapy. Chinese Chem. Lett. 2018, 29, 1171–1178. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Q.; Wong, R.C.H.; Zhao, S.; Ng, D.K.P.; Lo, P.C. Synthesis and biological evaluation of phthalocyanine-peptide conjugate for EGFR-targeted photodynamic therapy and bioimaging. Dye. Pigment. 2019, 163, 197–203. [Google Scholar] [CrossRef]
- Xue, E.Y.; Wong, R.C.H.; Wong, C.T.T.; Fong, W.P.; Ng, D.K.P. Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Adv. 2019, 9, 20652–20662. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.C.H.; Fong, W.P.; Wong, C.T.T.; Ng, D.K.P. Facile Synthesis of Cyclic Peptide-Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J. Med. Chem. 2021, 64, 2064–2076. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Meyers, J.D.; Agnes, R.S.; Doane, T.L.; Kenney, M.E.; Broome, A.M.; Burda, C.; Basilion, J.P. Addressing brain tumors with targeted gold nanoparticles: A new gold standard for hydrophobic drug delivery? Small 2011, 7, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Master, A.M.; Qi, Y.; Oleinick, N.L.; Gupta, A. Sen EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: In vitro studies. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 655–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Master, A.M.; Livingston, M.; Oleinick, N.L.; Sen Gupta, A. Optimization of a nanomedicine-based silicon phthalocyanine 4 photodynamic therapy (Pc 4-PDT) strategy for targeted treatment of EGFR-overexpressing cancers. Mol. Pharm. 2012, 9, 2331–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Master, A.; Malamas, A.; Solanki, R.; Clausen, D.M.; Eiseman, J.L.; Sen Gupta, A. A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol. Pharm. 2013, 10, 1988–1997. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.Y.; Tsai, M.H.; Peng, C.L.; Shih, Y.H.; Luo, T.Y.; Yang, S.J.; Shieh, M.J. PH-Responsive Nanophotosensitizer for an Enhanced Photodynamic Therapy of Colorectal Cancer Overexpressing EGFR. Mol. Pharm. 2018, 15, 1432–1444. [Google Scholar] [CrossRef]
- Goddard, Z.R.; Beekman, A.M.; Cominetti, M.M.D.; O’Connell, M.A.; Chambrier, I.; Cook, M.J.; Marín, M.J.; Russell, D.A.; Searcey, M. Peptide directed phthalocyanine-gold nanoparticles for selective photodynamic therapy of EGFR overexpressing cancers. RSC Med. Chem. 2021, 12, 288–292. [Google Scholar] [CrossRef]
- Tewari, K.M.; Dondi, R.; Yaghini, E.; Pourzand, C.; MacRobert, A.J.; Eggleston, I.M. Peptide-targeted dendrimeric prodrugs of 5-aminolevulinic acid: A novel approach towards enhanced accumulation of protoporphyrin IX for photodynamic therapy. Bioorg. Chem. 2021, 109, 104667. [Google Scholar] [CrossRef]
- Gierlich, P.; Mata, A.I.; Donohoe, C.; Brito, R.M.M.; Senge, M.O.; Gomes-da-Silva, L.C. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020, 25, 5317. [Google Scholar] [CrossRef]
- Zhang, F.L.; Huang, Q.; Zheng, K.; Li, J.; Liu, J.Y.; Xue, J.P. A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(II) phthalocyanine and small molecule target-based anticancer drug erlotinib. Chem. Commun. 2013, 49, 9570–9572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.L.; Huang, Q.; Liu, J.Y.; Huang, M.D.; Xue, J.P. Molecular-target-based anticancer photosensitizer: Synthesis and in vitro photodynamic activity of erlotinib-zinc(II) phthalocyanine conjugates. ChemMedChem 2015, 10, 312–320. [Google Scholar] [CrossRef]
- Chen, J.; Ye, H.; Zhang, M.; Li, J.; Liu, J.; Xue, J. Erlotinib Analogue-substituted Zinc(II) Phthalocyanines for Small Molecular Target-based Photodynamic Cancer Therapy. Chinese J. Chem. 2016, 34, 983–988. [Google Scholar] [CrossRef]
- Chen, J.J.; Huang, Y.Z.; Song, M.R.; Zhang, Z.H.; Xue, J.P. Silicon Phthalocyanines Axially Disubstituted with Erlotinib toward Small-Molecular-Target-Based Photodynamic Therapy. ChemMedChem 2017, 12, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ma, H.; Chen, J.; Zhang, F.; Jia, X.; Xue, J. An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy. Eur. J. Med. Chem. 2019, 182, 111625. [Google Scholar] [CrossRef]
- Otvagin, V.F.; Nyuchev, A.V.; Kuzmina, N.S.; Grishin, I.D.; Gavryushin, A.E.; Romanenko, Y.V.; Koifman, O.I.; Belykh, D.V.; Peskova, N.N.; Shilyagina, N.Y.; et al. Synthesis and biological evaluation of new water-soluble photoactive chlorin conjugate for targeted delivery. Eur. J. Med. Chem. 2018, 144, 740–750. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Y.; Yuan, G.; Zuo, K.; Huang, Y.; Chen, J.; Li, J.; Xue, J. A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities. Chem. Commun. 2019, 55, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Cheruku, R.R.; Cacaccio, J.; Durrani, F.A.; Tabaczynski, W.A.; Watson, R.; Marko, A.; Kumar, R.; El-Khouly, M.E.; Fukuzumi, S.; Missert, J.R.; et al. Epidermal Growth Factor Receptor-Targeted Multifunctional Photosensitizers for Bladder Cancer Imaging and Photodynamic Therapy. J. Med. Chem. 2019, 62, 2598–2617. [Google Scholar] [CrossRef]
- Xiao, M.; Fan, J.; Li, M.; Xu, F.; Zhao, X.; Xi, D.; Ma, H.; Li, Y.; Du, J.; Sun, W.; et al. A photosensitizer-inhibitor conjugate for photodynamic therapy with simultaneous inhibition of treatment escape pathways. Biomaterials 2020, 257, 120262. [Google Scholar] [CrossRef] [PubMed]
- Kessel, D. Apoptosis, Paraptosis and Autophagy: Death and Survival Pathways Associated with Photodynamic Therapy. Photochem. Photobiol. 2019, 95, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, H.; Zhang, Y.; Lv, T.; Zhang, L.; Li, Z.; Xie, X.; Li, F.; Chen, H.; Jia, L. Erlotinib-Guided Self-Assembled Trifunctional Click Nanotheranostics for Distinguishing Druggable Mutations and Synergistic Therapy of Nonsmall Cell Lung Cancer. Mol. Pharm. 2018, 15, 5146–5161. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Zhang, Y.; Ke, L.; Lin, X.; Li, Z.; Chen, H.; Gao, Y. Indocyanine green-encapsulated erlotinib modified chitosan nanoparticles for targeted chemo-photodynamic therapy of lung cancer cells. Dye. Pigment. 2019, 170, 107588. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Lin, X.; Ke, L.; Li, B.; Xu, L.; Lv, T.; Li, Z.; Chen, H.; Gao, Y. Dual-responsive nanosystem for precise molecular subtyping and resistant reversal of EGFR targeted therapy. Chem. Eng. J. 2019, 372, 483–495. [Google Scholar] [CrossRef]
- Nadler, L.M.; Stashenko, P.; Hardy, R.; Kaplan, W.D.; Button, L.N.; Kufe, D.W.; Antman, K.H.; Schlossman, S.F. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980, 40, 3147–3154. [Google Scholar]
- Li, W.-Q.; Guo, H.-F.; Li, L.-Y.; Zhang, Y.-F.; Cui, J.-W. The promising role of antibody drug conjugate in cancer therapy: Combining targeting ability with cytotoxicity effectively. Cancer Med. 2021, 10, 4677–4696. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.R.G.; Fernandes, R.; Sarmento, B.; Pereira, P.M.R.; Tomé, J.P.C. Photoimmunoconjugates: Novel synthetic strategies to target and treat cancer by photodynamic therapy. Org. Biomol. Chem. 2019, 17, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Vrouenraets, M.B.; Visser, G.W.M.; Stewart, F.A.; Stigter, M.; Oppelaar, H.; Postmus, P.E.; Snow, G.B.; Van Dongen, G.A.M.S. Development of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy. Cancer Res. 1999, 59, 1505–1513. [Google Scholar]
- Soukos, N.S.; Hamblin, M.R.; Keel, S.; Fabian, R.L.; Deutsch, T.F.; Hasan, T. Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res. 2001, 61, 4490–4496. [Google Scholar] [PubMed]
- Kim, D.; Lee, S.; Na, K. Immune Stimulating Antibody-Photosensitizer Conjugates via Fc-Mediated Dendritic Cell Phagocytosis and Phototriggered Immunogenic Cell Death for KRAS-Mutated Pancreatic Cancer Treatment. Small 2021, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Savellano, M.D.; Hasan, T. Targeting Cells That Overexpress the Epidermal Growth Factor Receptor with Polyethylene Glycolated BPD Verteporfin Photosensitizer Immunoconjugates¶. Photochem. Photobiol. 2003, 77, 431. [Google Scholar] [CrossRef]
- Savellano, M.D.; Hasan, T. Photochemical targeting of epidermal growth factor receptor: A mechanistic study. Clin. Cancer Res. 2005, 11, 1658–1668. [Google Scholar] [CrossRef] [Green Version]
- Abu-Yousif, A.O.; Moor, A.C.E.; Zheng, X.; Savellano, M.D.; Yu, W.; Selbo, P.K.; Hasan, T. Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. 2012, 321, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inglut, C.T.; Baglo, Y.; Liang, B.J.; Cheema, Y.; Stabile, J.; Woodworth, G.F.; Huang, H.C. Systematic evaluation of light-activatable biohybrids for anti-glioma photodynamic therapy. J. Clin. Med. 2019, 8, 1269. [Google Scholar] [CrossRef] [Green Version]
- Nath, S.; Pigula, M.; Khan, A.P.; Hanna, W.; Ruhi, M.K.; Dehkordy, F.M.; Pushpavanam, K.; Rege, K.; Moore, K.; Tsujita, Y.; et al. Flow-induced shear stress confers resistance to carboplatin in an adherent three-dimensional model for ovarian cancer: A role for EGFR-targeted photoimmunotherapy informed by physical stress. J. Clin. Med. 2020, 9, 924. [Google Scholar] [CrossRef] [Green Version]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Mitsunaga, M.; Nakajima, T.; Sano, K.; Choyke, P.L.; Kobayashi, H. Near-infrared theranostic photoimmunotherapy (PIT): Repeated exposure of light enhances the effect of immunoconjugate. Bioconjug. Chem. 2012, 23, 604–609. [Google Scholar] [CrossRef] [Green Version]
- Mitsunaga, M.; Nakajima, T.; Sano, K.; Kramer-Marek, G.; Choyke, P.L.; Kobayashi, H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer 2012, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, T.; Sano, K.; Mitsunaga, M.; Choyke, P.L.; Kobayashi, H. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Res. 2012, 72, 4622–4628. [Google Scholar] [CrossRef] [Green Version]
- Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Markedly Enhanced Permeability and Retention Effects Induced by Photo-immunotherapy of Tumors. ACS Nano 2012, 7, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, K.; Mitsunaga, M.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Acute cytotoxic effects of photoimmunotherapy assessed by 18F-FDG PET. J. Nucl. Med. 2013, 54, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Watanabe, R.; Hanaoka, H.; Harada, T.; Nakajima, T.; Kim, I.; Paik, C.H.; Choyke, P.L.; Kobayashi, H. Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol. Oncol. 2014, 8, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. The effect of photoimmunotherapy followed by liposomal daunorubicin in a mixed tumor model: A demonstration of the super-enhanced permeability and retention effect after photoimmunotherapy. Mol. Cancer Ther. 2014, 13, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Sato, K.; Hanaoka, H.; Watanabe, R.; Harada, T.; Choyke, P.L.; Kobayashi, H. The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity. BMC Cancer 2014, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, S.; Bernardo, M.; Saito, K.; Koyasu, S.; Mitchell, J.B.; Choyke, P.L.; Krishna, M.C. Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using IR-700-antibody conjugates. Free Radic. Biol. Med. 2015, 85, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, T.; Sato, K.; Harada, T.; Nakamura, Y.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: Optimizing the conjugate-light regimen. PLoS ONE 2015, 10, e0136829. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.S.; de Boer, E.; Warram, J.M.; Tucker, M.D.; Carroll, W.R.; Korb, M.L.; Brandwein-Gensler, M.S.; van Dam, G.M.; Rosenthal, E.L. Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models. Cancer Med. 2016, 5, 1526–1534. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Bernardo, M.; Nagaya, T.; Sato, K.; Harada, T.; Choyke, P.L.; Kobayashi, H. MR imaging biomarkers for evaluating therapeutic effects shortly after near infrared photoimmunotherapy. Oncotarget 2016, 7, 17254–17264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmans, E.; Linssen, M.D.; Sikkens, C.; Levens, A.; Witjes, M.J.H.; van Dam, G.M.; Nagengast, W.B. Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines. Oncotarget 2017, 8, 29846–29856. [Google Scholar] [CrossRef] [Green Version]
- Railkar, R.; Krane, L.S.; Li, Q.Q.; Sanford, T.; Siddiqui, M.R.; Haines, D.; Vourganti, S.; Brancato, S.J.; Choyke, P.L.; Kobayashi, H.; et al. Epidermal Growth Factor Receptor (EGFR)-targeted Photoimmunotherapy (PIT) for the treatment of EGFR-expressing bladder cancer. Mol. Cancer Ther. 2017, 16, 2201–2214. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Ohler, Z.W.; Householder, D.; Nagaya, T.; Sato, K.; Okuyama, S.; Ogata, F.; Daar, D.; Hoa, T.; Choyke, P.L.; et al. Near infrared photoimmunotherapy in a transgenic mouse model of spontaneous epidermal growth factor receptor (EGFR)-expressing lung cancer. Mol. Cancer Ther. 2017, 16, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, M.; Tomita, Y.; Nakamura, Y.; Lee, M.J.; Lee, S.; Tomita, S.; Nagaya, T.; Sato, K.; Yamauchi, T.; Iwai, H.; et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 2017, 8, 10425–10436. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; de Bruijn, H.S.; Farrell, E.; Sioud, M.; Mashayekhi, V.; Oliveira, S.; van Dam, G.M.; Roodenburg, J.L.N.; Witjes, M.J.H.; Robinson, D.J. Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of EGFR-targeted photoimmunotherapy in human head and neck cancer cell lines. Lasers Surg. Med. 2018, 50, 513–522. [Google Scholar] [CrossRef]
- Sato, K.; Ando, K.; Okuyama, S.; Moriguchi, S.; Ogura, T.; Totoki, S.; Hanaoka, H.; Nagaya, T.; Kokawa, R.; Takakura, H.; et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent. Sci. 2018, 4, 1559–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, S.; Oshima, N.; Yamamoto, K.; Munasinghe, J.; Ardenkjaer-Larsen, J.H.; Mitchell, J.B.; Choyke, P.L.; Krishna, M.C. Molecular imaging of tumor photoimmunotherapy: Evidence of photosensitized tumor necrosis and hemodynamic changes. Free Radic. Biol. Med. 2018, 116, 1–10. [Google Scholar] [CrossRef]
- Maruoka, Y.; Nagaya, T.; Sato, K.; Ogata, F.; Okuyama, S.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy with Combined Exposure of External and Interstitial Light Sources. Mol. Pharm. 2018, 15, 3634–3641. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, S.; Nagaya, T.; Sato, K.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Interstitial near-infrared photoimmunotherapy: Effective treatment areas and light doses needed for use with fiber optic diffusers. Oncotarget 2018, 9, 11159–11169. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Kimura, T.; Takakura, H.; Yoshikawa, Y.; Kameda, A.; Shindo, T.; Sato, K.; Kobayashi, H.; Ogawa, M. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy: Device development and experimental assessment in vitro and in vivo. Oncotarget 2018, 9, 20048–20057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driehuis, E.; Spelier, S.; Beltrán Hernández, I.; de Bree, R.M.; Willems, S.; Clevers, H.; Oliveira, S. Patient-Derived Head and Neck Cancer Organoids Recapitulate EGFR Expression Levels of Respective Tissues and Are Responsive to EGFR-Targeted Photodynamic Therapy. J. Clin. Med. 2019, 8, 1880. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.R.; Railkar, R.; Sanford, T.; Crooks, D.R.; Eckhaus, M.A.; Haines, D.; Choyke, P.L.; Kobayashi, H.; Agarwal, P.K. Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT). Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Peng, W.; de Bruijn, H.S.; Ten Hagen, T.L.M.; van Dam, G.M.; Roodenburg, J.L.N.; Berg, K.; Witjes, M.J.H.; Robinson, D.J. Targeted Photodynamic Therapy of Human Head and Neck Squamous Cell Carcinoma with Anti-epidermal Growth Factor Receptor Antibody Cetuximab and Photosensitizer IR700DX in the Mouse Skin-fold Window Chamber Model. Photochem. Photobiol. 2020, 96, 708–717. [Google Scholar] [CrossRef]
- Peng, W.; De Bruijn, H.S.; Hagen, T.L.M.; Berg, K.; Roodenburg, J.L.N.; Van Dam, G.M.; Witjes, M.J.H.; Robinson, D.J. In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers 2020, 12, 190. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer. Acc. Chem. Res. 2019, 52, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Furusawa, A.; Rosenberg, A.; Choyke, P.L. Near-infrared photoimmunotherapy of cancer: A new approach that kills cancer cells and enhances anti-cancer host immunity. Int. Immunol. 2021, 33, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Maruoka, Y.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine 2021, 70, 103501. [Google Scholar] [CrossRef]
- Kobayashi, H.; Choyke, P.L. Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy. Nanoscale 2016, 8, 12504–12509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameyama, N.; Matsuda, S.; Itano, O.; Ito, A.; Konno, T.; Arai, T.; Ishihara, K.; Ueda, M.; Kitagawa, Y. Photodynamic therapy using an anti-EGF receptor antibody complexed with verteporfin nanoparticles: A proof of concept study. Cancer Biother. Radiopharm. 2011, 26, 697–704. [Google Scholar] [CrossRef]
- Gamal-Eldeen, A.M.; El-Daly, S.M.; Borai, I.H.; Wafay, H.A.; Abdel-Ghaffar, A.R.B. Photodynamic therapeutic effect of indocyanine green entrapped in polymeric nanoparticles and their anti-EGFR-conjugate in skin cancer in CD1 mice. Photodiagnosis Photodyn. Ther. 2013, 10, 446–459. [Google Scholar] [CrossRef]
- Er, Ö.; Colak, S.G.; Ocakoglu, K.; Ince, M.; Bresolí-Obach, R.; Mora, M.; Sagristá, M.L.; Yurt, F.; Nonell, S. Selective photokilling of human pancreatic cancer cells using cetuximab-targeted mesoporous silica nanoparticles for delivery of zinc phthalocyanine. Molecules 2018, 23, 2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obaid, G.; Bano, S.; Mallidi, S.; Broekgaarden, M.; Kuriakose, J.; Silber, Z.; Bulin, A.L.; Wang, Y.; Mai, Z.; Jin, W.; et al. Impacting Pancreatic Cancer Therapy in Heterotypic in Vitro Organoids and in Vivo Tumors with Specificity-Tuned, NIR-Activable Photoimmunonanoconjugates: Towards Conquering Desmoplasia? Nano Lett. 2019, 19, 7573–7587. [Google Scholar] [CrossRef]
- Bano, S.; Obaid, G.; Swain, J.W.R.; Yamada, M.; Pogue, B.W.; Wang, K.; Hasan, T. Nir photodynamic destruction of pdac and hnscc nodules using triple-receptor-targeted photoimmuno-nanoconjugates: Targeting heterogeneity in cancer. J. Clin. Med. 2020, 9, 2390. [Google Scholar] [CrossRef]
- Shanmugapriya, K.; Kim, H.; Kang, H.W. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int. J. Biol. Macromol. 2020, 158, 1163–1174. [Google Scholar] [CrossRef]
- Liang, B.J.; Pigula, M.; Baglo, Y.; Najafali, D.; Hasan, T.; Huang, H.C. Breaking the selectivity-uptake trade-off of photoimmunoconjugates with nanoliposomal irinotecan for synergistic multi-tier cancer targeting. J. Nanobiotechnol. 2020, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Savellano, M.D.; Owusu-Brackett, N.; Son, J.; Ganga, T.; Leung, N.L.; Savellano, D.H. Photodynamic tumor eradication with a novel targetable photosensitizer: Strong vascular effects and dependence on treatment repetition versus potentiation. Photochem. Photobiol. 2013, 89, 687–697. [Google Scholar] [CrossRef]
- Selvestrel, F.; Moret, F.; Segat, D.; Woodhams, J.H.; Fracasso, G.; Echevarria, I.M.R.; Baù, L.; Rastrelli, F.; Compagnin, C.; Reddi, E.; et al. Targeted delivery of photosensitizers: Efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale 2013, 5, 6106–6116. [Google Scholar] [CrossRef] [Green Version]
- Mir, Y.; Elrington, S.A.; Hasan, T. A new nanoconstruct for epidermal growth factor receptor-targeted photo-immunotherapy of ovarian cancer. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Low, K.P.; Bhuvaneswari, R.; Thong, P.S.; Bunte, R.M.; Soo, K.C. Novel delivery of Chlorin e6 using anti-EGFR antibody tagged virosomes for fluorescence diagnosis of oral cancer in a hamster cheek pouch model. Eur. J. Pharm. Sci. 2016, 83, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Du, Y.; Liang, X.; Sun, T.; Xue, H.; Tian, J.; Jin, Z. EGFR-targeted liposomal nanohybrid cerasomes: Theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer. Nanoscale 2018, 10, 16738–16749. [Google Scholar] [CrossRef]
- Chang, M.H.; Pai, C.L.; Chen, Y.C.; Yu, H.P.; Hsu, C.Y.; Lai, P.S. Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy. Nanomaterials 2018, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Lin, Y.C. Anti-EGFR indocyanine green-mitomycin C-loaded perfluorocarbon double nanoemulsion: A novel nanostructure for targeted photochemotherapy of bladder cancer cells. Nanomaterials 2018, 8, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Su, H.; Cai, Y.; Wong, W.K.; Jiang, W.; Zhu, X. Porphyrin-Implanted Carbon Nanodots for Photoacoustic Imaging and in Vivo Breast Cancer Ablation. ACS Appl. Bio Mater. 2018, 1, 110–117. [Google Scholar] [CrossRef]
- Baker, J.H.E.; Lindquist, K.E.; Huxham, L.A.; Kyle, A.H.; Sy, J.T.; Minchinton, A.I. Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin. Cancer Res. An Off. J. Am. Assoc. Cancer Res. 2008, 14, 2171–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandomenico, A.; Sivaccumar, J.P.; Ruvo, M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int. J. Mol. Sci. 2020, 21, 6324. [Google Scholar] [CrossRef]
- Kang, T.H.; Seong, B.L. Solubility, Stability, and Avidity of Recombinant Antibody Fragments Expressed in Microorganisms. Front. Microbiol. 2020, 11, 1927. [Google Scholar] [CrossRef]
- Holliger, P.; Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, J.; Gu, P.; Fan, X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact. Mater. 2021, 6, 1973–1987. [Google Scholar] [CrossRef]
- Hussain, A.F.; Kampmeier, F.; Von Felbert, V.; Merk, H.F.; Tur, M.K.; Barth, S. SNAP-tag technology mediates site specific conjugation of antibody fragments with a photosensitizer and improves target specific phototoxicity in tumor cells. Bioconjug. Chem. 2011, 22, 2487–2495. [Google Scholar] [CrossRef]
- Amoury, M.; Bauerschlag, D.; Zeppernick, F.; von Felbert, V.; Berges, N.; Di Fiore, S.; Mintert, I.; Bleilevens, A.; Maass, N.; Bräutigam, K.; et al. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand. Oncotarget 2016, 7, 54925–54936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Felbert, V.; Bauerschlag, D.; Maass, N.; Bräutigam, K.; Meinhold-Heerlein, I.; Woitok, M.; Barth, S.; Hussain, A.F. A specific photoimmunotheranostics agent to detect and eliminate skin cancer cells expressing EGFR. J. Cancer Res. Clin. Oncol. 2016, 142, 1003–1011. [Google Scholar] [CrossRef]
- Bauerschlag, D.; Meinhold-Heerlein, I.; Maass, N.; Bleilevens, A.; Bräutigam, K.; Al Rawashdeh, W.; Di Fiore, S.; Haugg, A.M.; Gremse, F.; Steitz, J.; et al. Detection and Specific Elimination of EGFR+ Ovarian Cancer Cells Using a Near Infrared Photoimmunotheranostic Approach. Pharm. Res. 2017, 34, 696–703. [Google Scholar] [CrossRef]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hamers, C.; Songa, E.B.; Bendahman, N.; Hamers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [Green Version]
- Steeland, S.; Vandenbroucke, R.E.; Libert, C. Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discov. Today 2016, 21, 1076–1113. [Google Scholar] [CrossRef]
- Debie, P.; Lafont, C.; Defrise, M.; Hansen, I.; van Willigen, D.M.; van Leeuwen, F.W.B.; Gijsbers, R.; D’Huyvetter, M.; Devoogdt, N.; Lahoutte, T.; et al. Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J. Control. Release 2020, 317, 34–42. [Google Scholar] [CrossRef]
- Kijanka, M.; Dorresteijn, B.; Oliveira, S.; van Bergen en Henegouwen, P.M.P. Nanobody-based cancer therapy of solid tumors. Nanomedicine 2015, 10, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.P.; Antoniw, P.; Spitali, M.; West, S.; Stephens, S.; King, D.J. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 1999, 17, 780–783. [Google Scholar] [CrossRef]
- Bell, A.; Wang, Z.J.; Arbabi-Ghahroudi, M.; Chang, T.A.; Durocher, Y.; Trojahn, U.; Baardsnes, J.; Jaramillo, M.L.; Li, S.; Baral, T.N.; et al. Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett. 2010, 289, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Sapra, P.; Allen, T.M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res. 2003, 42, 439–462. [Google Scholar] [CrossRef]
- Vincke, C.; Loris, R.; Saerens, D.; Martinez-Rodriguez, S.; Muyldermans, S.; Conrath, K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 2009, 284, 3273–3284. [Google Scholar] [CrossRef] [Green Version]
- Roovers, R.C.; Laeremans, T.; Huang, L.; De Taeye, S.; Verkleij, A.J.; Revets, H.; de Haard, H.J.; van Bergen en Henegouwen, P.M.P. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol. Immunother. CII 2007, 56, 303–317. [Google Scholar] [CrossRef]
- Roovers, R.C.; Vosjan, M.J.W.D.; Laeremans, T.; El Khoulati, R.; De Bruin, R.C.G.; Ferguson, K.M.; Verkleij, A.J.; Van Dongen, G.A.M.S.; Van Bergen En Henegouwen, P.M.P. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer 2011, 129, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Omidfar, K.; Amjad Zanjani, F.S.; Hagh, A.G.; Azizi, M.D.; Rasouli, S.J.; Kashanian, S. Efficient growth inhibition of EGFR over-expressing tumor cells by an anti-EGFR nanobody. Mol. Biol. Rep. 2013, 40, 6737–6745. [Google Scholar] [CrossRef]
- Heukers, R.; van Bergen en Henegouwen, P.M.P.; Oliveira, S. Nanobody-photosensitizer conjugates for targeted photodynamic therapy. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1441–1451. [Google Scholar] [CrossRef]
- van Driel, P.B.A.A.; Boonstra, M.C.; Slooter, M.D.; Heukers, R.; Stammes, M.A.; Snoeks, T.J.A.; de Bruijn, H.S.; van Diest, P.J.; Vahrmeijer, A.L.; van Bergen En Henegouwen, P.M.P.; et al. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J. Control. Release Off. J. Control. Release Soc. 2016, 229, 93–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Lith, S.A.M.; van den Brand, D.; Wallbrecher, R.; Wübbeke, L.; van Duijnhoven, S.M.J.; Mäkinen, P.I.; Hoogstad-van Evert, J.S.; Massuger, L.; Ylä-Herttuala, S.; Brock, R.; et al. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Fur Pharm. Verfahrenstechnik e.V 2018, 124, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Karges, J.; Jakubaszek, M.; Mari, C.; Zarschler, K.; Goud, B.; Stephan, H.; Gasser, G. Synthesis and Characterization of an Epidermal Growth Factor Receptor-Selective RuII Polypyridyl–Nanobody Conjugate as a Photosensitizer for Photodynamic Therapy. ChemBioChem 2020, 21, 531–542. [Google Scholar] [CrossRef] [Green Version]
- De Bruijn, H.S.; Mashayekhi, V.; Schreurs, T.J.L.; van Driel, P.B.A.A.; Strijkers, G.J.; van Diest, P.J.; Lowik, C.W.G.M.; Seynhaeve, A.L.B.; Ten Hagen, T.L.M.; Prompers, J.J.; et al. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging. Theranostics 2020, 10, 2436–2452. [Google Scholar] [CrossRef]
- Hernández, I.B.; Angelier, M.L.; D’ondes, T.D.B.; Di Maggio, A.; Yu, Y.; Oliveira, S. The potential of nanobody-targeted photodynamic therapy to trigger immune responses. Cancers 2020, 12, 978. [Google Scholar] [CrossRef] [Green Version]
- Mashayekhi, V.; Xenaki, K.T.; van Bergen en Henegouwen, P.M.P.; Oliveira, S. Dual targeting of endothelial and cancer cells potentiates in vitro nanobody-targeted photodynamic therapy. Cancers 2020, 12, 2732. [Google Scholar] [CrossRef]
- Beltrán Hernández, I.; Grinwis, G.C.M.; Di Maggio, A.; Van Bergen En Henegouwen, P.M.P.; Hennink, W.E.; Teske, E.; Hesselink, J.W.; Van Nimwegen, S.A.; Mol, J.A.; Oliveira, S. Nanobody-targeted photodynamic therapy for the treatment of feline oral carcinoma: A step towards translation to the veterinary clinic. Nanophotonics 2021, 10, 3075–3087. [Google Scholar] [CrossRef]
- Renard, E.; Camps, E.C.; Canovas, C.; Kip, A.; Gotthardt, M.; Rijpkema, M.; Denat, F.; Goncalves, V.; van Lith, S.A.M. Site-specific dual-labeling of a vhh with a chelator and a photosensitizer for nuclear imaging and targeted photodynamic therapy of egfr-positive tumors. Cancers 2021, 13, 428. [Google Scholar] [CrossRef]
- Xiong, T.; Peng, Q.; Chen, Y.; Li, M.; Du, J.; Fan, J.; Jia, L.; Peng, X. A Novel Nanobody–Photosensitizer Conjugate for Hypoxia Resistant Photoimmunotherapy. Adv. Funct. Mater. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Pille, J.; Van Lith, S.A.M.; Van Hest, J.C.M.; Leenders, W.P.J. Self-Assembling VHH-Elastin-Like Peptides for Photodynamic Nanomedicine. Biomacromolecules 2017, 18, 1302–1310. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, Y.; Wu, T.; Cheng, J.; Liu, Y. Nanobody-Ferritin Conjugate for Targeted Photodynamic Therapy. Chem.-A Eur. J. 2020, 26, 7442–7450. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Liu, S.; Chen, Q.; Zeng, L.; Chen, X.; Zhang, Q. Targeted nanobody complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment. Cancer Cell Int. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Löfblom, J.; Feldwisch, J.; Tolmachev, V.; Carlsson, J.; Ståhl, S.; Frejd, F.Y. Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 2010, 584, 2670–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škrlec, K.; Štrukelj, B.; Berlec, A. Non-immunoglobulin scaffolds: A focus on their targets. Trends Biotechnol. 2015, 33, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, E.; Friedman, M.; Göstring, L.; Adams, G.P.; Brismar, H.; Nilsson, F.Y.; Ståhl, S.; Glimelius, B.; Carlsson, J. Cellular studies of binding, internalization and retention of a radiolabeled EGFR-binding affibody molecule. Nucl. Med. Biol. 2007, 34, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Shishido, T.; Mieda, H.; Hwang, S.Y.; Nishimura, Y.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Affibody-displaying bionanocapsules for specific drug delivery to HER2-expressing cancer cells. Bioorg. Med. Chem. Lett. 2010, 20, 5726–5731. [Google Scholar] [CrossRef] [PubMed]
- Puri, A.; Kramer-Marek, G.; Campbell-Massa, R.; Yavlovich, A.; Tele, S.C.; Lee, S.-B.; Clogston, J.D.; Patri, A.K.; Blumenthal, R.; Capala, J. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J. Liposome Res. 2008, 18, 293–307. [Google Scholar] [CrossRef]
- She, T.; Shi, Q.; Li, Z.; Feng, Y.; Yang, H.; Tao, Z.; Li, H.; Chen, J.; Wang, S.; Liang, Y.; et al. Combination of long-acting TRAIL and tumor cell-targeted photodynamic therapy as a novel strategy to overcome chemotherapeutic multidrug resistance and TRAIL resistance of colorectal cancer. Theranostics 2021, 11, 4281–4297. [Google Scholar] [CrossRef]
- Lucky, S.S.; Idris, N.M.; Huang, K.; Kim, J.; Li, Z.; Thong, P.S.P.; Xu, R.; Soo, K.C.; Zhang, Y. In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics 2016, 6, 1844–1865. [Google Scholar] [CrossRef]
- He, H.; Nieminen, A.L.; Xu, P. A bioactivatable self-quenched nanogel for targeted photodynamic therapy. Biomater. Sci. 2019, 7, 5143–5149. [Google Scholar] [CrossRef] [PubMed]
- Toporkiewicz, M.; Meissner, J.; Matusewicz, L.; Czogalla, A.; Sikorski, A.F. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: Principles, hopes, and challenges. Int. J. Nanomedicine 2015, 10, 1399–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sefah, K.; Shangguan, D.; Xiong, X.; O’Donoghue, M.B.; Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 2010, 5, 1169–1185. [Google Scholar] [CrossRef]
- Zhou, J.; Bobbin, M.L.; Burnett, J.C.; Rossi, J.J. Current progress of RNA aptamer-based therapeutics. Front. Genet. 2012, 3, 234. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.W.; Jeong, H.Y.; Kang, S.J.; Jeong, I.H.; Choi, M.J.; You, Y.M.; Im, C.S.; Song, I.H.; Lee, T.S.; Lee, J.S.; et al. Anti-EGF Receptor Aptamer-Guided Co-Delivery of Anti-Cancer siRNAs and Quantum Dots for Theranostics of Triple-Negative Breast Cancer. Theranostics 2019, 9, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Nguyen, H.H.; Byrom, M.; Ellington, A.D. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 2011, 6, e20299. [Google Scholar] [CrossRef]
- Yan, J.; Gao, T.; Lu, Z.; Yin, J.; Zhang, Y.; Pei, R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS Appl. Mater. Interfaces 2021, 13, 27749–27773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, L.; Zhang, X.; Li, N.; Zheng, J.; Guan, M.; Fang, X.; Wang, C.; Shu, C. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem.-An Asian J. 2013, 8, 2370–2376. [Google Scholar] [CrossRef]
- Zhu, F.; Xu, L.; Li, X.; Li, Z.; Wang, J.; Chen, H.; Li, X.; Gao, Y. Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC. Eur. J. Pharm. Sci. 2021, 167, 106004. [Google Scholar] [CrossRef]
- Shen, Y.; Loessner, M.J. Beyond antibacterials—exploring bacteriophages as antivirulence agents. Curr. Opin. Biotechnol. 2021, 68, 166–173. [Google Scholar] [CrossRef]
- Hyman, P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barderas, R.; Benito-Peña, E. The 2018 Nobel Prize in Chemistry: Phage display of peptides and antibodies. Anal. Bioanal. Chem. 2019, 411, 2475–2479. [Google Scholar] [CrossRef]
- Lee, J.-W.; Song, J.; Hwang, M.P.; Lee, K.H. Nanoscale bacteriophage biosensors beyond phage display. Int. J. Nanomed. 2013, 8, 3917–3925. [Google Scholar] [CrossRef] [Green Version]
- Henry, K.A.; Arbabi-Ghahroudi, M.; Scott, J.K. Beyond phage display: Non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front. Microbiol. 2015, 6, 755. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Liu, C.; Han, X.; Zhong, H.; Cheng, C. Viral nanoparticle system: An effective platform for photodynamic therapy. Int. J. Mol. Sci. 2021, 22, 1728. [Google Scholar] [CrossRef] [PubMed]
- Bakhshinejad, B.; Karimi, M.; Khalaj-Kondori, M. Phage display: Development of nanocarriers for targeted drug delivery to the brain. Neural Regen. Res. 2015, 10, 862–865. [Google Scholar] [CrossRef]
- Wu, L.-P.; Ahmadvand, D.; Su, J.; Hall, A.; Tan, X.; Farhangrazi, Z.S.; Moghimi, S.M. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat. Commun. 2019, 10, 4635. [Google Scholar] [CrossRef] [Green Version]
- Ulfo, L.; Cantelli, A.; Petrosino, A.; Costantini, P.E.; Nigro, M.; Starinieri, F.; Turrini, E.; Zadran, S.K.; Zuccheri, G.; Saporetti, R.; et al. Orthogonal nanoarchitectonics of M13 phage for receptor targeted anticancer photodynamic therapy. Nanoscale 2022. [Google Scholar] [CrossRef]
- Bortot, B.; Apollonio, M.; Baj, G.; Andolfi, L.; Zupin, L.; Crovella, S.; di Giosia, M.; Cantelli, A.; Saporetti, R.; Ulfo, L.; et al. Advanced photodynamic therapy with an engineered M13 phage targeting EGFR: Mitochondrial localization and autophagy induction in ovarian cancer cell lines. Free Radic. Biol. Med. 2022, 179, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, R.; Lee, J.; Yang, S.-G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 2018, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, X.; Song, W.; Fang, Y.; Yu, L.; Liu, S.; Churilov, L.P.; Zhang, F. The roles and applications of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours. Autoimmun. Rev. 2017, 16, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Liu, L.; Deng, Y.; Guo, Z.; Zhang, G.; Ge, Z.; Ke, H.; Chen, H. Ultrastable Near-Infrared Conjugated-Polymer Nanoparticles for Dually Photoactive Tumor Inhibition. Adv. Mater. 2017, 29, 1700487. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhao, L.; Zhang, Q.; Chang, M.; Li, C.; Zhang, H.; Lu, Y.; Chen, Y. An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer. Adv. Funct. Mater. 2020, 30, 1910301. [Google Scholar] [CrossRef]
- Sugita, N.; Iwase, Y.; Yumita, N.; Ikeda, T.; Umemura, S.-I. Sonodynamically Induced Cell Damage Using Rose Bengal Derivative. Anticancer Res. 2010, 30, 3361–3366. [Google Scholar] [PubMed]
Targeting Agent | PS | Cargo | In Vitro Studies | Ref. |
---|---|---|---|---|
EGF | Sn(IV)chlorin e6 (SnCe6) | Dextran (Dex) | A431 | [94] |
EGF | Sn(IV)chlorin e6 (SnCe6) | Polyvinylalcohol (PVA) | A431 | [94] |
EGF | Sn(IV)chlorin e6 (SnCe6) | Dextran (Dex) | MDA-MB-468 | [95] |
EGF | Sn(IV)chlorin e6 (SnCe6) | Human Serum Albumin (HSA) | MDA-MB-468 | [95] |
EGF | Curcumin | Chitosan | MKN45, GES | [96] |
EGF | Chlorin e6 (Ce6) | Gold nanoparticles | MDA-MB-468, MCF 10A | [97,98] |
Targeting Agent | PS | In Vitro Studies | In Vivo studies | Ref. |
---|---|---|---|---|
LARLLT | Zinc phthalocyanine (ZnPc) | A431, MCF-7 | A431 cells in female BALB/c nude mice | [105] |
YHWYGYTPQNVI | Chlorin e4 (Ce4) | PCA-SMCs, MDA-MB-231, MDA-MB-468, HCC70 | MDA-MB-468 cells in mice | [106,107] |
KLARLLT | Zinc phthalocyanine (ZnPc) | A431, A549, MCF-7, PC-3 | A431 cells in BALB/c female nude mice | [108] |
YHWYGYTPQNVI | Zinc phthalocyanine (ZnPc) | A431, MCF-7 | A431 cells in BALB/c female nude mice | [109] |
QRHKPREGGGGSK | Zinc phthalocyanine (ZnPc) | HT29, HEK-293, HepG2 | HT29 cells in female Balb/c nude mice | [110] |
Cyclic CMYIEALDKYAC | Zinc phthalocyanine (ZnPc) | HT29, HCT116, HeLa, HEK293 | HT29 cells in female Balb/c nude mice | [111] |
Targeting Agent | PS | Cargo | In Vitro studies | In Vivo studies | Ref. |
---|---|---|---|---|---|
YHWYGYTPQNVI | Silicon phthalocyanine Pc4 | Gold nanoparticles | 9L.E29 rat glioma cancer cells, engineered to overexpress EGFR | Human glioma (Gli36D5) cells in mice | [112] |
CYHWYGYTPQNVI | Silicon phthalocyanine Pc4 | PEG (poly(ethylene glycol))-PCL (poly(ɛ-caprolactone) micelles | A431, MCF-7, SCC-15, | SCC-15 cells in SCID mice | [113,114,115] |
YHWYGYTPQNVIGGGGC | Chlorin e6 (Ce6) | Methoxypoly(ethylene glycol)/poly(ε-caprolactone) (mPEG–PCL) | HCT-116, SW620 | CT-116 and SW620 cells in BALB/c athymic (nut/nut) mice | [116] |
FITC-βAAEYLRK | Zinc phthalocyanine C11Pc | Gold nanoparticles | A549, HEK293 | [117] | |
LARLLT | 5-aminolevulinic acid (ALA) (prodrug of protoporphyrin IX) | Dendrimer | MDA-MB-231 | [118] |
Targeting Agent | PS | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|
Erlotinib | Zinc(II) phthalocyanine (ZnPc) | HepG2, HELF | A431 cells in nude mice | [120,121,122] |
Erlotinib | Silicon phthalocyanine (SiPc) | HepG2, A549, PC-9, HELF | [123,124] | |
Vandetanib analogues (4- arylaminoquinazolines) | Chlorin e6 (Ce6) | A431, HeLa, CHO | CT-26 cells in Balb/c female mice | [125] |
Gefitinib | Silicon phthalocyanine (SiPc) | A549, MDA-MB 468, HeLa, HELF | [126] | |
Erlotinib | Chlorin derivatives | UMUC3, T24 | UMUC3 cells in SCID mice | [127] |
Neratinib (Ne) | Nile blue with S-substitution (NBS) | MCF-7, 4T1, HCC827, H1650-M3, NIH 3T3 | 4T1 cells in Bal/bc mice | [128] |
Targeting Agent | PS | Cargo | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|---|
Erlotinib | Heptamethine cyanine dye (Cy7) | Chitosan nanoparticles | A549, PC-9, H1975 | A549, PC-9, or H1975 cells in female Balb/c-nude mice | [130] |
Erlotinib | Indocyanine green (ICG) | Chitosan nanoparticles | PC9 | [131] | |
Erlotinib | Indocyanine green (ICG) | Mesoporous silica nanoparticles (MSN) | A549, PC-9, and H1975 | A549, PC-9, or H1975 cells in Balb/c nude mice | [132] |
Targeting Agent | PS | In Vitro Studies | In Vivo/Ex Vivo Studies | Ref. |
---|---|---|---|---|
mMAb 425 | Temoporfin (mTHPC) | UM- SCC-11B, UM-SCC-22A, A431 | HNX-OE in nude mice | [136] |
Cetuximab | Chlorin e6 (Ce6) | A431, HCPC-1 | Syrian Golden hamsters treated with 7,12-dimethylbenz(a)anthracene (DMBA) | [137] |
Cetuximab | Benzoporphyrin derivative (BPD) | A431, 3T3-NR6 | [139] | |
Cetuximab | Benzoporphyrin derivative (BPD) | A431, J774, 3T3-NR6, OVCAR-5 | [140] | |
Panitumumab | IR700DX | A431 | A431 cells in six-to-eight-week-old female homozygous athymic nude mice | [144] |
Panitumumab | IR700DX | A431 | A431 cells in six-to-eight-week-old female homozygous athymic nude mice | [145] |
Panitumumab | IR700DX | MDA-MB-468luc | MDA-MB-468luc cells in six-to-eight-week-old female homozygote athymic nude mice | [146] |
Panitumumab | IR700DX | A431 | A431 cells in female nude mice | [147] |
Cetuximab | Benzoporphyrin derivative monoacid ring A (BPD) | OVCAR-5, CHO-WT, CHO-EGFR | [141] | |
Panitumumab | IR700DX | A431 | A431 cells in six-to-eight-week-old female homozygous athymic nude mice | [148] |
Panitumumab | IR700DX | HER2 gene–transfected NIH/3T3; A431, Balb3T3/DsRed | A431 or Balb3T3/DsRed cells in six-to-eight-week-old female homozygote athymic nude mice | [149] |
Cetuximab | IR700DX | A431, MDAMB468-luc | A431 and MDAMB468-luc cells in six- to eight-week- old female homozygote athymic nude mice | [150] |
Panitumumab | IR700DX | A431, MDAMB468-luc | A431 and MDAMB468-luc cells in six- to eight-week- old female homozygote athymic nude mice | [150] |
Panitumumab | IR700DX | A431, Balb3T3/DsRed | A431 and Balb3T3/DsRed in six-to-eight-week-old female homozygote athymic nude mice | [151] |
Panitumumab | IR700DX | MDA-MB | MDA-MB-468luc cells in six-to-eight-week-old female homozygote athymic nude mice | [152] |
Panitumumab | IR700DX | A431 | A431 in mice | [153] |
Cetuximab | IR700DX | MDAMB231, MDAMB468 | MDAMB231 and MDAMB468 cells in six-to-eight-week-old female homozygote athymic nude mice | [154] |
Panitumumab | IR700DX | SCC- 1-Luc | SCC- 1-Luc in athymic female nude mice, aged 5–6 weeks, tumor specimens obtained from histologically confirmed SCCHN patients | [155] |
Panitumumab | IR700DX | A431 | A431 cells in six-to-eight-week-old female homozygous athymic nude mice | [156] |
Cetuximab | IR700DX | OE33, FLO-1, SW1573, MCF-7 | [157] | |
Panitumumab | IR700DX | TCCSUP, 5637, RT4, T24, ScaBER, HT1197, HT1376, UMUC-3, SW780, A431, MDA-MB-453, RT112. Metastatic lines of T24, UMUC-3, T24T, FL3, SLT3, Lul-2. MGH-U3, UMUC-5, UOBL103, UPS 54 | UMUC-5 and UMUC-3 cells in female Athymic Nu/Nu mice | [158] |
Panitumumab | IR700DX | hEGFR TL transgenic mice | [159] | |
Cetuximab | IR700DX | A431 | [160] | |
Cetuximab | IR700DX | Scc-U2, scc-U8, OSC19, A431 | [161] | |
Cetuximab | IR700DX | Luciferase- and GFP-expressing A431, MDAMB468, 3T3/Her2, Calu3 | A431-luc-GFP, 3T3/Her2-luc- GFP, MDAMB468-luc-GFP, or Calu3-luc-GFP cells in six-to-eight-week-old female homozygote athymic nude mice | [162] |
Panitumumab | IR700DX | Luciferase- and GFP-expressing A431, MDAMB468, 3T3/Her2, Calu3 | A431-luc-GFP, 3T3/Her2-luc- GFP, MDAMB468-luc-GFP, or Calu3-luc-GFP cells in six-to-eight-week-old female homozygote athymic nude mice | [162] |
Panitumumab | IR700Dx | A431, H520 | A431 and H520 cells in female athymic nude mice | [163] |
Panitumumab | IR700DX | A431-luc | A431-luc in female homozygote athymic nude mice aged 6 to 8 weeks | [164] |
Panitumumab | IR700DX | A431-luc | A431-luc in female homozygote athymic nude mice aged 6 to 8 weeks | [165] |
Panitumumab | IR700DX | A431-GFP-luc | A431-GFP-luc cells in Balb/c Slc-nu/nu nude mice (six-week-old, females) | [166] |
Cetuximab | IR700DX | A431, HeLa, HEK293T, UM-SCC-14C | Patient-Derived Head and Neck Cancer Organoids | [167] |
Panitumumab | IR700DX | TCCSUP, 5637, RT4, T24, ScaBER, HT1197, HT1376, SW780, NIH/3T3, SK-BR-3, RT112. Metastatic lines of T24-T24T, FL3, SLT3. 253 J, UMUC-5, UMUC-1, MGH-U3. | SW780 in five-week old athymic Nu/nu female mice | [168] |
Cetuximab | Benzoporphyrin derivative (BPD) | U25, U87 | [142] | |
Cetuximab | IR700DX | OSC-19-luc2- cGFP | OSC-19 in female BALB/c athymic nude mice 12 weeks old | [169] |
Cetuximab | Benzoporphyrin derivative (BPD) | OVCAR-5 | [143] | |
Cetuximab | IR700DX | OSC-19-luc2-cGFP, scc-U2, scc-U8 | OSC-19-luc2-cGFP in BALB/c nu/nu mice. | [170] |
Cetuximab | Chlorin e6 | L-929, Capan-1, Panc-1, Aspc-1 | Capan-1 and Aspc-1 cells in 5-week-old BALB/c nude mice. | [138] |
Targeting Agent | PS | Cargo | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|---|
Anti-EGFR murine IgG2a antibody | Verteporfin | Poly [2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate-co-p-nitrophenylcarbonyloxyethyl methacrylate] (PMBN) nanoparticles | A431, H69 | A431, H69 cells in female BALB/cA nude mice | [175] |
Anti-EGFR antibody (ab2430, Abcam Inc., USA) | Indocyanine green (ICG) | Ormosil PEBBLE nanoparticles | Female CD1 mice treated with 7,12-dimethylbenz(a)anthracene (DMBA) | [176] | |
Cetuximab | Pyropheophorbide-a derivative (PPa) | Micellar aggregate of Ac-sPPp (pyropheophorbide-a linked via a peptide to a short polyethylene glycol tail) | A431 | A431cells in female athymic NCr-nu/nu mice, 4–5 weeks old, | [182] |
Cetuximab | Temoporfin derivative (mTHPC) | ORMOSIL nanoparticles | HeLa, HeLa EGFR +, A431 | [183] | |
αEGFR monoclonal antibody (MAB1095) | Chlorin e6 (Ce6) | Chimeric immunopotentiating reconstituted influenza virosomes (CIRIVs) | CAL-27 | Syrian Golden hamsters treated with 7,12-dimethylbenz(a)anthracene (DMBA) | [185] |
Cetuximab | IRDye800CW | Cerasomes | CT26-fLuc | CT26-fLuc in Male Balb/c mice | [186] |
Cetuximab | Chlorin e6 (Ce6) | Methoxy poly(ethylene glycol)-b-poly(lactide) (mPEG-b-PLA) micelles | A431, HT-29 | [187] | |
Anti-EGFR-monoclonal antibody (mAb) (cell signaling; Danvers, MA, USA) | Indocyanine green (ICG) | Perfluorocarbon double nanoemulsion | T24 | [188] | |
EGFR antibody (EGFR (WB: 1:1000; MA5-13070, Thermo Fischer Scientific) | Chlorin e6 (Ce6) | Fucoidan and alginates with gellan gum hydrogel | HT-29 | [180] | |
Cetuximab | Benzoporphyrin derivative monoacid A (BPD) | Pre-formed plain liposome (PPL) | Ovcar-5, CAMA-1, A431 | [184] | |
Cetuximab | 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) | Porphyrin-implanted carbon nanodots (PNDs) | HCC827, H23, MDB-MA-231, HBL-100, HeLa | MDA-MB-231 cells in nude mice | [189] |
Cetuximab | Zinc Phthalocyanine, ZnPcOBP | Mesoporous silica nanoparticles | AsPC-1, PANC-1, MIA PaCa-2 | [177] | |
VI Cetuximab | Benzoporphyrin derivative (BPD) | Nanoliposome (Nal) | A431, MIA PaCa-2 cells, OVCAR-5, T47D, CHO-WT, CHO-EGFR, PCAF | MIA Paca-2+PCAF in Swiss nude mice | [178] |
Cetuximab | Benzoporphyrin derivative (BPD) | Nanoliposome (Nal) | A431, MIA PaCa-2, SCC-9, T47D, CHO-WT, SKOV-3 | [179] | |
Cetuximab | Benzoporphyrin derivative (BPD) | Nanoliposome (Nal) | OVCAR-5, U87, J774 | [181] |
Targeting Agent | PS | In Vitro Studies | In Vivo/Ex Vivo Studies | Ref. |
---|---|---|---|---|
scFv-425 | Chlorin e6 (Ce6) | A431, MDA- MB468, MDA-MB-231, SiHa, CHO-K1 | [195] | |
scFv-425 | IR700DX | MDA-MB-468, MDA-MB-453, MDA-MB-231, Hs758T, MCF-7 | Human breast cancer biopsies and normal breast tissues | [196] |
scFv-425 | IR700DX | A431, HEK-293T, A2058 | [197] | |
scFv-425 | IR700DX | OVCAR-3, SKOV-3, IGROV-1, A2780 | Human ovarian cancer biopsies and ascite samples | [198] |
Targeting Agent | PS | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|
7D12, 7D12-9G8 | IRDye700DX | 3T3 2.2, 14C, A431, HeLa | [211] | |
7D12, 7D12-9G8 | IRDye700DX | OSC- 19-luc2-cGFP, HeLa, SW620 | OSC-19-luc2-cGFP cells in nude Balb/c female mice | [212] |
7D12 | IRDye700DX | A431, E98, SKOV-3 | Clinical ascites samples | [213] |
7D12, 7D12-9G8 | IRDye700DX | A431, HeLa, HEK293T, UM-SCC-14C | Patient-Derived Head and Neck Cancer Organoids | [167] |
7C12 | RuII Polypyridyl | A431, MDA-MB 435S | [214] | |
7D12, 7D12-9G8 | RDye700DX | OSC-19-luc2-cGFP | OSC-19-luc2-cGFP cells in female BALB/c nude mice | [215] |
7D12, 7D12-9G8 | IRDye700DX | A431, scc-U8 | [216] | |
7D12 | IRDye700DX | MS1, OSC | [217] | |
NBA | IRDye700DX | SCCF1, SCCF2, SCCF3, HeLa, MCF7 | [218] | |
7D12 | IRDye700DX | A431 | Mice bearing A431 xenografts. | [219] |
7D12 | Benzophenothiazine | A431, 4T1, MCF-7, HeLa | 4T1cells in female Balb/c mice | [220] |
Targeting Agent | PS | Cargo | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|---|
7D12 | IR700DX | Elastin-like peptides (ELP) diblock polypeptide nanoparticles | A431, E98 | [221] | |
7D12 | Manganese phthalocyanine (MnPc) | Ferritin | A431, MCF-7 | [222] | |
EGa1 | Temoporfin (mTHPC) | benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) (PCLn-PEG) micelles | A431, HeLa | A431 cells in female Balb/c nude mice, | [39] |
7D12 | IR1048-MZ | mPEG-SS-PLGA-SH Nanoparticles | A549 | A549 cells in female BALB/c mice | [223] |
Targeting Agent | PS | In Vitro Studies | In Vivo Studies | Ref |
---|---|---|---|---|
Anti EGFR-specific affibody (ZEGFR:1907) | IR700DX | COLO205, COLO 320 DR, COLO 320 HSR, LS174T, HT29, HCT-8, LOVO, RKO, LS180, T84, HCT116 | COLO 205, LS174T, HT29 cells in 4- to 6-week-old female BALB/c nude mice. | [229] |
Targeting Agent | PS | Cargo | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|---|
Anti-EGFR Affibody | TiO2 | Core–shell nanoparticle—titanium dioxide (TiO2) on a NaYF4:Yb, Tm UCN core | OSCC, A431, MCF-7, | OSCC cells in 6–8 week female Balb/c nude mice | [230] |
Anti-EGFR Affibody | Pheophorbide A (PhA) | Poly[(2-(pyridin-2-yldisulfanyl)ethyl acrylate)-co-[poly(ethylene glycol)]] (PDA-PEG) nanogel | UMSCC 22A | UMSCC 22A cells in female Balb/c nude mice (8–10 week old) | [231] |
Targeting Agent | PS | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|
anti-EGFR DNA R13 aptamer 5′-TTT ATG GGT GGG TGG GGG GTT TTT; S14, 5′-GAT TGT CCC CGC GCC TGG TTG AAG | Trimalonic acid-modified C70 fullerene (TF70) | A549 | [238] |
Targeting Agent | PS | Cargo | In Vitro Studies | In Vivo Studies | Ref. |
---|---|---|---|---|---|
Anti-EGFR DNA aptamer 5′ -COOH- TGA ATG TTG TTT CTC TTT TCT ATA GTA-3′ (Apt) | Hematoporphyrin (Hp) | Fluorinated dendrimer | Helf, NSCLC PC-9, H1975 | [239] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulfo, L.; Costantini, P.E.; Di Giosia, M.; Danielli, A.; Calvaresi, M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022, 14, 241. https://doi.org/10.3390/pharmaceutics14020241
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics. 2022; 14(2):241. https://doi.org/10.3390/pharmaceutics14020241
Chicago/Turabian StyleUlfo, Luca, Paolo Emidio Costantini, Matteo Di Giosia, Alberto Danielli, and Matteo Calvaresi. 2022. "EGFR-Targeted Photodynamic Therapy" Pharmaceutics 14, no. 2: 241. https://doi.org/10.3390/pharmaceutics14020241
APA StyleUlfo, L., Costantini, P. E., Di Giosia, M., Danielli, A., & Calvaresi, M. (2022). EGFR-Targeted Photodynamic Therapy. Pharmaceutics, 14(2), 241. https://doi.org/10.3390/pharmaceutics14020241