[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detection and Specific Elimination of EGFR+ Ovarian Cancer Cells Using a Near Infrared Photoimmunotheranostic Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Targeted theranostics is an alternative strategy in cancer management that aims to improve cancer detection and treatment simultaneously. This approach combines potent therapeutic and diagnostic agents with the specificity of different cell receptor ligands in one product. The success of antibody drug conjugates (ADCs) in clinical practice has encouraged the development of antibody theranostics conjugates (ATCs). However, the generation of homogeneous and pharmaceutically-acceptable ATCs remains a major challenge. The aim of this study is to detect and eliminate ovarian cancer cells on-demand using an ATC directed to EGFR.

Methods

An ATC with a defined drug-to-antibody ratio was generated by the site-directed conjugation of IRDye®700 to a self-labeling protein (SNAP-tag) fused to an EGFR-specific antibody fragment (scFv-425).

Results

In vitro and ex vivo imaging showed that the ATC based on scFv-425 is suitable for the highly specific detection of EGFR+ ovarian cancer cell, human tissues and ascites samples. The construct was also able to eliminate EGFR+ cells and human ascites cells with IC50 values of 45–66 nM and 40–90 nM, respectively.

Conclusion

Our experiments provide a framework to create a versatile technology platform for the development of ATCs for precise detection and treatment of ovarian cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADC:

Antibody drug conjugate

ATC:

Antibody theranostic conjugate

EGFR:

Epidermal growth factor receptor

FITC:

Fluorescein isothiocyanate

ICG:

Indocyanine green

NIR:

Near-infrared

scFv:

Single-chain variable fragment

SLN:

Sentinel lymph nodes

References

  1. Vargas AN. Natural history of ovarian cancer. Ecancermedicalscience. 2014;8:465–75.

    PubMed  PubMed Central  Google Scholar 

  2. Coleman RL, Monk BJ, Sood AK, Herzog TJ. Latest research and clinical treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol. 2013;10:211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oliver KE, McGuire WP. Ovarian cancer and antiangiogenic therapy: Caveat Emptor. J Clin Oncol. 2014;32:3353–6.

    Article  CAS  PubMed  Google Scholar 

  4. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of Bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–83.

    Article  CAS  PubMed  Google Scholar 

  5. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A Phase 3 trial of Bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96.

    Article  CAS  PubMed  Google Scholar 

  6. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials. Cancer. 2009;115:1234–44.

    Article  PubMed  Google Scholar 

  8. Sato K, Hanaoka H, Watanabe R, Nakajima T, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer. Mol Cancer Ther. 2015;14:141–50.

    Article  CAS  PubMed  Google Scholar 

  9. Spring BQ, Abu-Yousif AO, Palanisami A, Rizvi I, Zheng X, Mai Z, et al. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A. 2014;111:E933–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20:161–7.

    Article  CAS  PubMed  Google Scholar 

  11. Gronemeyer T, Chidley C, Juillerat A, Heinis C, Johnsson K. Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Engineering. Design Select. 2006;19:309–16.

    Article  CAS  Google Scholar 

  12. Hussain AF, Amoury M, Barth S. SNAP-tag technology: a powerful tool for site specific conjugation of therapeutic and imaging agents. Curr Pharm Des. 2013;19:5437–42.

    Article  CAS  PubMed  Google Scholar 

  13. Hussain AF, Kampmeier F, von Felbert V, Merk HF, Tur MK, Barth S. SNAP-tag technology mediates site specific conjugation of antibody fragments with a photosensitizer and improves target specific phototoxicity in tumor cells. Bioconjug Chem. 2011;22:2487–95.

    Article  CAS  PubMed  Google Scholar 

  14. Hussain AF, Kruger HR, Kampmeier F, Weissbach T, Licha K, Kratz F, et al. Targeted delivery of dendritic polyglycerol-doxorubicin conjugates by scFv-SNAP fusion protein suppresses EGFR+ cancer cell growth. Biomacromolecules. 2013;14:2510–20.

    Article  CAS  PubMed  Google Scholar 

  15. Amoury M, Bauerschlag D, Zeppernick F, von Felbert V, Berges N, Di Fiore S et al. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand. Oncotarget. 2016; 54925–36.

  16. von Felbert V, Bauerschlag D, Maass N, Brautigam K, Meinhold-Heerlein I, Woitok M, et al. A specific photoimmunotheranostics agent to detect and eliminate skin cancer cells expressing EGFR. J Cancer Res Clin Oncol. 2016;142:1003–11.

    Article  Google Scholar 

  17. Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H. Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate. Bioconjug Chem. 2012;23:604–9.

    Article  PubMed  Google Scholar 

  18. Knutson S, Raja E, Bomgarden R, Nlend M, Chen A, Kalyanasundaram R. Development and evaluation of a fluorescent antibody-drug conjugate for molecular imaging and targeted therapy of pancreatic cancer. PLoS One. 2016;11:e0157762.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma SK, Pourat J, Carlin S, Abdel-Atti D, Bankovich A, Sisodiya V, et al. A DLL3-targeted theranostic for small cell lung cancer: Imaging a low density target with a site-specifically modified radioimmunoconjugate. J Nucl Med. 2016;57:50.

    Google Scholar 

  20. Mitsunaga M, Nakajima T, Sano K, Kramer-Marek G, Choyke PL, Kobayashi H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer. 2012;12:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011;17:1685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013;13:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011;17:1315–9.

    Article  PubMed  Google Scholar 

  24. Tummers QR, Hoogstins CE, Gaarenstroom KN, de Kroon CD, van Poelgeest MI, Vuyk J et al. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17. Oncotarget. 2016: 32144–55.

  25. Tummers QR, Hoogstins CE, Peters AA, de Kroon CD, Trimbos JB, van de Velde CJ, et al. The value of intraoperative near-infrared fluorescence imaging based on enhanced permeability and retention of indocyanine green: feasibility and false-positives in ovarian cancer. PLoS One. 2015;10:e0129766.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cohen R, Stammes MA, de Roos IH, Stigter-van Walsum M, Visser GW, van Dongen GA. Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets. EJNMMI Res. 2011;1:31.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Dr. Richard M Twyman for editing the manuscript. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fawzi Hussain.

Additional information

Dirk Bauerschlag and Ivo Meinhold-Heerlein contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauerschlag, D., Meinhold-Heerlein, I., Maass, N. et al. Detection and Specific Elimination of EGFR+ Ovarian Cancer Cells Using a Near Infrared Photoimmunotheranostic Approach. Pharm Res 34, 696–703 (2017). https://doi.org/10.1007/s11095-017-2096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2096-4

KEY WORDS