Characterizing Host microRNA: Virus Interactions of Orthoavulavirus javaense
<p>Differential abundance of viral seed mimics and seed sponges in AOAV-1 pathotypes. (<b>A</b>) Average number of viral seed mimics (vSMs) in lentogenic, mesogenic, and velogenic viruses are shown in clear, hatched, and filled bars, respectively. Data represent summary of <a href="#viruses-16-01748-t001" class="html-table">Table 1</a> and <a href="#viruses-16-01748-t002" class="html-table">Table 2</a> (*** indicates <span class="html-italic">p</span> < 0.001). (<b>B</b>) Average number of viral seed sponges (vSSs) in lentogenic, mesogenic, and velogenic sequences are shown in clear, hatched, and filled bars, respectively. Data represent summary of <a href="#viruses-16-01748-t001" class="html-table">Table 1</a> and <a href="#viruses-16-01748-t002" class="html-table">Table 2</a>. Comparisons were completed using ordinary one-way ANOVA with Tukey’s multiple comparisons test with a single pooled variance.</p> "> Figure 2
<p>RNA secondary structure analysis identifies prominent stem–loop structures in vSMs and vSSs of interest. Secondary structure predictions of 100 nucleotides flanking vSM-148b-3p (<b>A</b>), vSM-15b-5p (<b>B</b>), vSM-129-5p (<b>C</b>), and vSS-27b-5p (<b>D</b>) are shown. The most stable structure based on lowest mean free energy, as predicted by RNAstructure with default parameters, is shown. Ct files obtained from RNAstructure were then analyzed using Ribosketch [<a href="#B69-viruses-16-01748" class="html-bibr">69</a>]. vSM and vSS residues are highlighted. Effects of shuffling the sequences of vSM-148b-5p (<b>E</b>) and vSM-15b-5p (<b>F</b>) are shown. Left panel represents secondary structure of original vSM, while the right panel represents the secondary structure of the scrambled sequence. Highlighted nucleotides (beginning at position 101) show the predicted vSM/vSS sequence. Only relevant parts of the full structure are shown for clarity. For vSS-27-b-5p, the reverse complement of the sequence is shown for clarity.</p> "> Figure 3
<p>Analysis of vSS-miR-27b-5p: (<b>A</b>) Sequence alignment of OAVJ P 2991-3002 interaction with gga-miR-27b-5p, as predicted by RNAhybrid, is shown. Straight lines indicate Watson–Crick base pairing. (<b>B</b>) Sequence logo demonstrates conservation of vSS-miR-27b-5p in all OAVJ strains analyzed. Height of letters corresponds to conservation. The vSS region is boxed. (<b>C</b>) Predicted mean free energy for miR-27b-5p-P gene transcript calculated from RNAhybrid and effect of progressive in silico point mutation on thermodynamic stability of the heterodimer are shown. Black sequence represents OAVJ P gene transcript while dark-blue sequence represents gga-miR-27b-5p. Changes to seed sequences are shown in red.</p> "> Figure 4
<p>vSS-miR-27b-5p modulates expression of CA18 M and P genes. Total RNA from chicken fibroblast (DF-1) cells infected with CA18 followed by transfection with controls or miR-27b-5p mimics/inhibitors was analyzed for expression of OAVJ M gene copy numbers (<b>A</b>,<b>C</b>) or fold change in P gene relative to glyceraldehyde phosphate dehydrogenase (GAPDH) (<b>B</b>,<b>D</b>). Panels A and B represent infection with CA18, while panels C and D represent infection with OAVJ strain LaSota. Data represent mean ± SD from triplicates. Standard curves conform to MIQE guidelines. ns = non-significant; * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.0005. Statistical significance was calculated using one-way ANOVA with single pooled variance and post hoc Dunnett’s test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Analysis
2.2. Viruses, Cell Culture, and Transfection Conditions
2.3. Secondary Structure Analysis
2.4. qRT-PCR
2.5. Statistical Analysis
3. Results
3.1. Computational Analysis Suggests That OAVJ Genomes Encode Host miRNA Seed Mimics and Sponge Motifs
3.2. vSM and vSS Motifs Show Distinct Distribution Patterns
Per Sequence | Per kb Gene Length | |||||||
---|---|---|---|---|---|---|---|---|
vSM | vSS | Average Gene Length | vSM | vSS | vSM/vSS Ratio | vSM | vSS | |
Fusion (total) | 120 | 79 | ||||||
Lentogenic | 16 | 30 | 1662 | 1.0 | 1.9 | 0.5 | 1.07 | 1.13 |
Mesogenic | 5 | 2 | 1662 | 1.0 | 0.4 | 2.5 | 0.60 | 0.24 |
Velogenic | 99 | 47 | 1662 | 1.3 | 0.6 | 2.1 | 0.76 | 0.36 |
HN (total) | 88 | 20 | ||||||
Lentogenic | 14 | 10 | 1787 | 0.9 | 0.6 | 1.4 | 0.49 | 0.35 |
Mesogenic | 5 | 1 | 1746 | 1.0 | 0.2 | 5.0 | 0.57 | 0.11 |
Velogenic | 69 | 9 | 1721 | 0.9 | 0.1 | 7.7 | 0.51 | 0.07 |
Matrix (total) | 281 | 64 | ||||||
Lentogenic | 19 | 20 | 1095 | 1.2 | 1.3 | 1.0 | 1.08 | 1.14 |
Mesogenic | 7 | 3 | 1095 | 1.4 | 0.6 | 2.3 | 1.28 | 0.55 |
Velogenic | 255 | 41 | 1095 | 3.3 | 0.5 | 6.2 | 2.99 | 0.48 |
Nucleoprotein (total) | 212 | 45 | ||||||
Lentogenic | 15 | 19 | 1470 | 0.9 | 1.2 | 0.8 | 0.64 | 0.81 |
Mesogenic | 5 | 5 | 1470 | 1.3 | 1.3 | 1.0 | 0.68 | 0.68 |
Velogenic | 192 | 21 | 1470 | 2.5 | 0.3 | 9.1 | 1.67 | 0.18 |
Phosphoprotein (total) | 125 | 58 | ||||||
Lentogenic | 3 | 13 | 1191.2 | 0.2 | 0.8 | 0.2 | 0.16 | 0.68 |
Mesogenic | 7 | 7 | 1190 | 1.4 | 1.4 | 1.0 | 1.18 | 1.18 |
Velogenic | 115 | 38 | 1188 | 1.5 | 0.5 | 3.0 | 1.24 | 0.41 |
Polymerase (total) | 766 | 168 | ||||||
Lentogenic | 70 | 54 | 6615 | 4.4 | 3.4 | 1.3 | 0.66 | 0.51 |
Mesogenic | 32 | 15 | 6615 | 6.4 | 3.0 | 2.1 | 0.97 | 0.45 |
Velogenic | 664 | 99 | 6615 | 8.5 | 1.3 | 6.7 | 1.24 | 0.41 |
Intergenic (total) | ||||||||
Lentogenic | 5 | 2 | N.A | 0.3 | 0.1 | 3 | N.A | N.A |
Mesogenic | 2 | 2 | N.A | 0.4 | 0.4 | 1 | N.A | N.A |
Velogenic | 57 | 39 | N.A | 0.7 | 0.5 | 1.4 | N.A | N.A |
miRNA Reads per Million | Target Gene | Pathotype Found in | ||
---|---|---|---|---|
vSM | gga-miR-148b-3p * | 42–43.5K | L | Lento (1); Velo (1) |
gga-miR-15b-5p * | 275 | L | Velo (11) | |
gga-miR-15c-5p | 250 | L | Velo (11) | |
gga-miR-129-5p * | 259 | NP | Lento (1) | |
gga-let-7a-2-3p | 12.5K | M | Velo (2) | |
gga-miR-12211-3p | 21 | L | Velo (55) | |
gga-miR-1782 | 20 | HN | Velo (1) | |
gga-let-7a-3p | 19 | L | Velo (28) | |
gga-let-7k-3p | 5.0K | L | Velo (28) | |
gga-miR-144-5p | 75–90 | L | Velo (1) | |
gga-miR-1769-3p | 0 | L | Velo (1) | |
gga-miR-12277-5p | 0 | L | Velo (1) | |
gga-miR-1759-5p | 0 | L | Lento (1); Velo (8) | |
vSS | gga-miR-21-5p | 13.0K | L | Lento (4); Meso (2) |
gga-miR-26a-2-5p | 44.4–46.5K | L | Lento (7); Velo (14) | |
gga-miR-101-3p | 11.1K | L | Lento (1) | |
gga-miR-30c-5p | 6.0K | M | Meso (1), Velo (15) | |
gga-miR-30d | ~20K | M | Lento (1); Velo (14) | |
gga-miR-26a-5p | 46.5K | F | Lento (7); Velo (14) | |
gga-miR-30a-5p | ~35.0K | M | Lento (2); Meso (1); Velo (13) | |
gga-miR-30b-5p | 1.0K | M | Lento (8); Meso (1), Velo (2) | |
gga-miR-30c-1-3p | 6.0K | IN | Lento (13) | |
gga-miR-27b-5p * | ~4.5K | P | Lento (2); Meso (1); Velo (14) | |
gga-miR-182-5p | ~2.0K | M | Lento (4) | |
gga-miR-30e-5p | 2.5–17.5K | M | Lento (1) | |
gga-miR-144-5p | 75–90 | L | Velo (4) | |
gga-miR-1769-3p | 0 | L | Lento (8) |
3.3. Sequences Flanking vSMs Show Characteristic Stem–Loop Folding Patterns
3.4. Sequence Complementarity Determines Function
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Campo-Paysaa, F.; Sémon, M.; Cameron, R.A.; Peterson, K.J.; Schubert, M. microRNA complements in deuterostomes: Origin and evolution of microRNAs. Evol. Dev. 2011, 13, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Santana, C.I.; Gallego-Gómez, J.C. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024, 16, 804. [Google Scholar] [CrossRef]
- Huang, X.; Liu, W. Role of microRNAs in host defense against porcine reproductive and respiratory syndrome virus infection: A hidden front line. Front. Immunol. 2024, 15, 1376958. [Google Scholar] [CrossRef]
- Morando, N.; Rosenzvit, M.C.; Pando, M.A.; Allmer, J. The Role of MicroRNAs in HIV Infection. Genes 2024, 15, 574. [Google Scholar] [CrossRef]
- Rumpel, N.; Riechert, G.; Schumann, J. miRNA-Mediated Fine Regulation of TLR-Induced M1 Polarization. Cells 2024, 13, 701. [Google Scholar] [CrossRef]
- Talepoor, A.G.; Doroudchi, M. Regulatory RNAs in immunosenescence. Immun. Inflamm. Dis. 2024, 12, e1209. [Google Scholar] [CrossRef]
- Zabeti Touchaei, A.; Vahidi, S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int. 2024, 24, 102. [Google Scholar] [CrossRef]
- Barrozo, E.R.; Seferovic, M.D.; Hamilton, M.P.; Moorshead, D.N.; Jochum, M.D.; Do, T.; O’Neil, D.S.; Suter, M.A.; Agaard, K.M. Zika virus co-opts microRNA networks to persist in placental niches detected by spatial transcriptomics. Am. J. Obstet. Gynecol. 2024, 230, 251.e1–251.e17. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, F.; Wang, S.; Liu, C.; Zhang, S.; Wang, R.; Song, J.; Zhang, Y. MicroRNA expression profile of human umbilical vein endothelial cells in response to coxsackievirus A10 infection reveals a potential role of miR-143-3p in maintaining the integrity of the blood-brain barrier. Front. Cell Infect. Microbiol. 2023, 13, 1217984. [Google Scholar] [CrossRef]
- Koka, P.S.; Ramdass, B. MicroRNA target homeobox messenger RNA in HIV induced hematopoietic inhibition. Front. Cell Dev. Biol. 2024, 12, 1382789. [Google Scholar] [CrossRef] [PubMed]
- Pandita, S.; Verma, A.; Kamboj, H.; Kumar, R.; Chander, Y.; Barua, S.; Tripathi, B.N.; Kumar, N. miRNA profiling of primary lamb testicle cells infected with lumpy skin disease virus. Arch. Virol. 2023, 168, 290. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.; Gokavi, J.; Wakhare, S.; Bagul, R.; Ghule, U.; Khan, I.; Ganu, V.; Mukherjee, A.; Shete, A.; Rao, A.; et al. MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors. Viruses 2023, 15, 2206. [Google Scholar] [CrossRef]
- Sharma, S.; Majumdar, A.; Basu, A. Regulation of Onecut2 by miR-9-5p in Japanese encephalitis virus infected neural stem/progenitor cells. Microbiol. Spectr. 2024, 12, e0323823. [Google Scholar] [CrossRef]
- Aslani, M.; Mortazavi-Jahromi, S.S.; Mirshafiey, A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int. Immunopharmacol. 2021, 101, 108172. [Google Scholar] [CrossRef]
- Basera, A.; Hull, R.; Demetriou, D.; Bates, D.O.; Kaufmann, A.M.; Dlamini, Z.; Marima, R. Competing Endogenous RNA (ceRNA) Networks and Splicing Switches in Cervical Cancer: HPV Oncogenesis, Clinical Significance and Therapeutic Opportunities. Microorganisms 2022, 10, 1852. [Google Scholar] [CrossRef]
- Cottrell, K.A.; Andrews, R.J.; Bass, B.L. The competitive landscape of the dsRNA world. Mol. Cell 2024, 84, 107–119. [Google Scholar] [CrossRef]
- Cullen, B.R. How do viruses avoid inhibition by endogenous cellular microRNAs? PLoS Pathog. 2013, 9, e1003694. [Google Scholar] [CrossRef]
- Kamali, M.J.; Salehi, M.; Mostafavi, M.; Morovatshoar, R.; Akbari, M.; Latifi, N.; Barzegari, O.; Ghadimi, F.; Daraei, A. Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev. Med. Virol. 2024, 34, e2530. [Google Scholar] [CrossRef]
- Lo, R.; Gonçalves-Carneiro, D. Sensing nucleotide composition in virus RNA. Biosci. Rep. 2023, 43, BSR20230372. [Google Scholar] [CrossRef]
- Lu, S.; Zhu, N.; Guo, W.; Wang, X.; Li, K.; Yan, J.; Jiang, C.; Han, S.; Xiang, H.; Wu, X.; et al. RNA-Seq Revealed a Circular RNA-microRNA-mRNA Regulatory Network in Hantaan Virus Infection. Front. Cell Infect. Microbiol. 2020, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Onomoto, K.; Onoguchi, K.; Yoneyama, M. Regulation of RIG-I-like receptor-mediated signaling: Interaction between host and viral factors. Cell Mol. Immunol. 2021, 18, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.C. Circular RNAs Act as miRNA Sponges. Adv. Exp. Med. Biol. 2018, 1087, 67–79. [Google Scholar] [PubMed]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. RNA 2019, 25, 1–16. [Google Scholar] [CrossRef]
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79, 351–379. [Google Scholar] [CrossRef]
- Chipman, L.B.; Pasquinelli, A.E. miRNA Targeting: Growing beyond the Seed. Trends Genet. 2019, 35, 215–222. [Google Scholar] [CrossRef]
- Cullen, B.R. Viruses and microRNAs. Nat. Genet. 2006, 38, 25–30. [Google Scholar] [CrossRef]
- Loureiro, D.; Tout, I.; Narguet, S.; Benazzouz, S.M.; Mansouri, A.; Asselah, T. miRNAs as Potential Biomarkers for Viral Hepatitis B and C. Viruses 2020, 12, 1440. [Google Scholar] [CrossRef]
- Mishra, R.; Kumar, A.; Ingle, H.; Kumar, H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front. Immunol. 2019, 10, 3079. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Y.; Xu, H.; Smith, L.P.; Lawrie, C.H.; Watson, M.; Nair, V. MicroRNA profile of Marek’s disease virus-transformed T-cell line MSB-1: Predominance of virus-encoded microRNAs. J. Virol. 2008, 82, 4007–4015. [Google Scholar] [CrossRef] [PubMed]
- Burnside, J.; Bernberg, E.; Anderson, A.; Lu, C.; Meyers, B.C.; Green, P.J.; Jain, N.; Isaacs, G.; Morgan, W.M. Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J. Virol. 2006, 80, 8778–8786. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Teng, M.; Fan, J.; Wang, F.; Zhou, L.; Deng, R.; Zhang, G. Marek’s disease virus-encoded microRNAs: Genomics, expression and function. Sci. China Life Sci. 2010, 53, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Anderson, A.; Bernberg, E.; Kamboj, S.; Huang, E.; Lagasse, G.; Isaacs, G.; Parcells, M.; Meyers, B.C.; Green, P.J.; et al. Sequence conservation and differential expression of Marek’s disease virus microRNAs. J. Virol. 2008, 82, 12213–12220. [Google Scholar] [CrossRef]
- Parnas, O.; Corcoran, D.L.; Cullen, B.R. Analysis of the mRNA targetome of microRNAs expressed by Marek’s disease virus. mBio 2014, 5, 1128. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Y.; Xu, H.; Smith, L.P.; Lawrie, C.H.; Sewer, A.; Nair, V. Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J. Virol. 2007, 81, 7164–7170. [Google Scholar] [CrossRef]
- Waidner, L.A.; Morgan, R.W.; Anderson, A.S.; Bernberg, E.L.; Kamboj, S.; Garcia, M.; Riblet, S.M.; Ouyang, M.; Isaacs, G.K.; Markis, M.; et al. MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. Virology 2009, 388, 128–136. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Y.; Smith, L.P.; Watson, M.; Nair, V. Novel microRNAs (miRNAs) encoded by herpesvirus of Turkeys: Evidence of miRNA evolution by duplication. J. Virol. 2009, 83, 6969–6973. [Google Scholar] [CrossRef]
- Rachamadugu, R.; Lee, J.Y.; Wooming, A.; Kong, B.W. Identification and expression analysis of infectious laryngotracheitis virus encoding microRNAs. Virus Genes. 2009, 39, 301–308. [Google Scholar] [CrossRef]
- Bakre, A.A.; Maleki, A.; Tripp, R.A. MicroRNA and Nonsense Transcripts as Putative Viral Evasion Mechanisms. Front. Cell Infect. Microbiol. 2019, 9, 152. [Google Scholar] [CrossRef]
- Butt, S.L.; Moura, V.M.B.D.; Susta, L.; Miller, P.J.; Hutcheson, J.M.; Cardenas-Garcia, S.; Brown, C.C.; West, F.D.; Afonso, C.L.; Stanton, J.B. Tropism of Newcastle disease virus strains for chicken neurons, astrocytes, oligodendrocytes, and microglia. BMC Vet. Res. 2019, 15, 317. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Samal, S.K. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016, 8, 183. [Google Scholar] [CrossRef] [PubMed]
- Vilela, J.; Rohaim, M.A.; Munir, M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines 2022, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organisation for Animal Health: Paris, France, 2021. [Google Scholar]
- Panda, A.; Huang, Z.; Elankumaran, S.; Rockemann, D.D.; Samal, S.K. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb. Pathog. 2004, 36, 1–10. [Google Scholar] [CrossRef]
- Bu, Y.; Teng, Q.; Feng, D.; Sun, L.; Xue, J.; Zhang, G. YLMY Tyrosine Residue within the Cytoplasmic Tail of Newcastle Disease Virus Fusion Protein Regulates Its Surface Expression to Modulate Viral Budding and Pathogenicity. Microbiol. Spectr. 2021, 9, e0217321. [Google Scholar] [CrossRef]
- Liu, P.; Tang, N.; Meng, C.; Yin, Y.; Qiu, X.; Tan, L.; Sun, Y.; Song, C.; Liu, W.; Liao, Y.; et al. SLC1A3 facilitates Newcastle disease virus replication by regulating glutamine catabolism. Virulence 2022, 13, 1407–1422. [Google Scholar] [CrossRef]
- Tong, L.; Chu, Z.; Gao, X.; Yang, M.; Adam, F.E.A.; Theodore, D.W.P.; Liu, H.; Wang, X.; Xiao, S.; Yang, Z. Newcastle disease virus V protein interacts with hnRNP H1 to promote viral replication. Vet. Microbiol. 2021, 260, 109093. [Google Scholar] [CrossRef]
- de Graaf, J.F.; Van Nieuwkoop, S.; De Meulder, D.; Lexmond, P.; Kuiken, T.; Groeneveld, D.; Fouchier, R.A.M.; van den Hoogen, B.G. Assessment of the virulence for chickens of Newcastle Disease virus with an engineered multi-basic cleavage site in the fusion protein and disrupted V protein gene. Vet. Microbiol. 2022, 269, 109437. [Google Scholar] [CrossRef]
- Jadhav, A.; Zhao, L.; Ledda, A.; Liu, W.; Ding, C.; Nair, V.; Ferretti, L. Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses 2020, 12, 1249. [Google Scholar] [CrossRef]
- Ling Tham, M.; Yusoff, K.; Othman, S.S.; Chia, S.L. Site-directed mutagenesis of the C-terminal of the Newcastle disease virus V protein. Acta Virol. 2022, 66, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Nan, F.L.; Zhang, H.; Nan, W.L.; Xie, C.Z.; Ha, Z.; Chen, X.; Xu, X.H.; Qian, J.; Qiu, X.S.; Ge, J.Y.; et al. Lentogenic NDV V protein inhibits IFN responses and represses cell apoptosis. Vet. Microbiol. 2021, 261, 109181. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xue, J.; Teng, Q.; Li, X.; Bu, Y.; Zhang, G. Mechanisms and consequences of Newcastle disease virus W protein subcellular localization in the nucleus or mitochondria. J. Virol. 2021, 95, 02087. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Gruning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Pearson, W.R. Selecting the Right Similarity-Scoring Matrix. Curr. Protoc. Bioinformatics 2013, 43, 351–359. [Google Scholar] [CrossRef]
- World Organization for Animal Health. Newcastle disease (Infection with Newcastle disease virus). In OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organization for Animal Health: Paris, France, 2021; pp. 964–983. [Google Scholar]
- Rehmsmeier, M.; Steffen, P.; Höchsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wise, M.G.; Suarez, D.L.; Seal, B.S.; Pedersen, J.C.; Senne, D.A.; King, D.J.; Kapczynski, D.R.; Spackman, E. Development of a real-time reverse-transcription PCR for detection of newcastle disease virus RNA in clinical samples. J. Clin. Microbiol. 2004, 42, 329–338. [Google Scholar] [CrossRef]
- Altschul, S.F. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef] [PubMed]
- Fromm, B.; Domanska, D.; Høye, E.; Ovchinnikov, V.; Kang, W.; Aparicio-Puerta, E.; Johansen, M.; Flatmark, K.; Mathelier, A.; Hovig, E.; et al. MirGeneDB 2.0: The metazoan microRNA complement. Nucleic Acids Res. 2019, 48, D1172. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; McCormick, K.; Demirci, C.; Demirci, F.; Gurazada, S.G.R.; Ramachandruni, D.; Dusia, A.; Rothhaupt, J.A.; Meyer, B.C. Next-Generation Sequence Databases: RNA and Genomic Informatics Resources for Plants. Plant Physiol. 2020, 182, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.H.; Perot, J.; Chisholm, M.A.; Kumar, D.S.; Tuddenham, L.E.E.; Cognat, V.; Marcinowski, L.; Dolken, L.; Pfeffer, S. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 2010, 16, 307–315. [Google Scholar] [CrossRef]
- Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef]
- Koh, H.R.; Ghanbariniaki, A.; Myong, S. RNA stem structure governs coupling of dicing and gene silencing in RNA interference. Proc. Natl. Acad. Sci. USA 2017, 114, E10349–E10358. [Google Scholar] [CrossRef]
- Lu, J.S.; Bindewald, E.; Kasprzak, W.K.; Shapiro, B.A. RiboSketch: Versatile visualization of multi-stranded RNA and DNA secondary structure. Bioinformatics 2018, 34, 4297–4299. [Google Scholar] [CrossRef]
- Kruger, J.; Rehmsmeier, M. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006, 34, W451–W454. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Park, M.S.; García-Sastre, A.; Cros, J.F.; Basler, C.F.; Palese, P. Newcastle disease virus V protein is a determinant of host range restriction. J. Virol. 2003, 77, 9522–9532. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.; Zhao, L.; Liu, W.; Ding, C.; Nair, V.; Ramos-Onsins, S.E.; Ferretti, L. Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses 2020, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- Kattenbelt, J.A.; Stevens, M.P.; Selleck, P.W.; Gould, A.R. Analysis of Newcastle disease virus quasispecies and factors affecting the emergence of virulent virus. Arch. Virol. 2010, 155, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, D.A.; Domingo, E.; Holland, J.J. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 1992, 122, 281–288. [Google Scholar] [CrossRef]
- Chang, J.J.; Rawlinson, D.; Pitt, M.E.; Taiaroa, G.; Gleeson, J.; Zhou, C.; Mordant, F.L.; De Paoli-Iseppi, R.; Caly, L.; Purcell, D.F.J.; et al. Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection. Cell Rep. 2021, 35, 109108. [Google Scholar] [CrossRef]
- Zhao, X.; Song, X.; Bai, X.; Fei, N.; Huang, Y.; Zhao, Z.; Du, Q.; Zhang, H.; Zhang, L.; Tong, D. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1). PeerJ 2016, 4, e1635. [Google Scholar] [CrossRef]
- Sakurai, F.; Hashimoto, R.; Inoue, C.; Wakabayashi, K.; Tsukamoto, T.; Imaizumi, T.; Andres, T.G.M.; Sakai, E.; Itsuki, K.; Sakamoto, N.; et al. miR-27b-mediated suppression of aquaporin-11 expression in hepatocytes reduces HCV genomic RNA levels but not viral titers. Virol. J. 2019, 16, 58. [Google Scholar] [CrossRef]
- Li, J.; Zheng, S.J. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020, 12, 543. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022, 14, 2309. [Google Scholar] [CrossRef]
- Kang, S.; Vu, T.H.; Heo, J.; Kim, C.; Lillehoj, H.S.; Hong, Y.H. Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus. J. Vet. Sci. 2023, 24, e73. [Google Scholar] [CrossRef]
- Chung, K.M.; Chen, Y.T.; Hong, C.C.; Chang, I.C.; Lin, S.Y.; Liang, L.Y.; Chen, Y.R.; Yeh, K.T.; Huang, S.F. CA10 is associated with HBV-related hepatocarcinogenesis. Biochem. Biophys. Rep. 2022, 31, 101303. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, G.F.; Filip, R.; Bastianelli, M.; Stern, T.; Pezacki, J.P. microRNA-27b regulates hepatic lipase enzyme LIPC and reduces triglyceride degradation during hepatitis C virus infection. J. Biol. Chem. 2022, 298, 101983. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, A.; Rider, P.J.; Yu, Y.; Wu, K.; Mu, Y.; Hao, Q.; Liu, Y.; Gong, H.; Zhu, Y.; et al. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J. 2011, 25, 4511–4521. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Cheng, A.; Wang, M.; Jia, R. The Influence of Host miRNA Binding to RNA Within RNA Viruses on Virus Multiplication. Front. Cell Infect. Microbiol. 2022, 12, 802149. [Google Scholar] [CrossRef]
- Trobaugh, D.W.; Gardner, C.L.; Sun, C.; Haddow, A.D.; Wang, E.; Chapnik, E.; Mildner, A.; Weaver, S.C.; Ryman, K.D.; Klinstra, W.B. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 2014, 506, 245–248. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, Z.; Xu, X. Pathologic Mechanisms of the Newcastle Disease Virus. Viruses 2023, 15, 864. [Google Scholar] [CrossRef]
- Chen, N.; Jin, J.; Zhang, B.; Meng, Q.; Lu, Y.; Liang, B.; Deng, L.; Qiao, B.; Zheng, L. Viral strategies to antagonize the host antiviral innate immunity: An indispensable research direction for emerging virus-host interactions. Emerg. Microbes Infect. 2024, 13, 2341144. [Google Scholar] [CrossRef]
- Chen, D.; Ji, Q.; Liu, J.; Cheng, F.; Zheng, J.; Ma, Y.; He, Y.; Zhang, J.; Song, T. MicroRNAs in the Regulation of RIG-I-like Receptor Signaling Pathway: Possible Strategy for Viral Infection and Cancer. Biomolecules 2023, 13, 1344. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Poornajaf, Y.; Dashti, F.; Hussen, B.M.; Taheri, M.; Jamali, E. Interaction Between Non-Coding RNAs and Interferons: With an Especial Focus on Type I Interferons. Front. Immunol. 2022, 13, 877243. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Bi, K.; Diao, H. Critical role of microRNAs in host and influenza A (H1N1) virus interactions. Life Sci. 2021, 277, 119484. [Google Scholar] [CrossRef]
- Dai, C.-H.; Gao, Z.-C.; Cheng, J.-H.; Yang, L.; Wu, Z.-C.; Wu, S.-L.; Bao, W.-B. The Competitive Endogenous RNA (ceRNA) Regulation in Porcine Alveolar Macrophages (3D4/21) Infected by Swine Influenza Virus (H1N1 and H3N2). Int. J. Mol. Sci. 2022, 23, 1875. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, J.; Hao, J.; Zhao, B.; Wu, B.; Sun, L.; Peng, S.; Gao, G.F.; Meng, S. Competitive virus and host RNAs: The interplay of a hidden virus and host interaction. Protein Cell 2014, 5, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, S.; Lin, K.; Zong, J.; Zheng, Q.; Su, Y.; Huang, T. Competitive Endogenous RNA Landscape in Epstein-Barr Virus Associated Nasopharyngeal Carcinoma. Front. Cell Dev. Biol. 2021, 9, 782473. [Google Scholar] [CrossRef] [PubMed]
- Polansky, H.; Javaherian, A. 3-Econsystems: microRNAs, Receptors, and Latent Viruses; Some Insights Biology Can Gain from Economic Theory. Front. Microbiol. 2016, 7, 369. [Google Scholar] [CrossRef]
- Torres, K.; Landeros, N.; Wichmann, I.A.; Polakovicova, I.; Aguayo, F.; Corvalan, A.H. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166049. [Google Scholar] [CrossRef]
- Haecker, I.; Renne, R. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 101–116. [Google Scholar] [CrossRef]
- Tagawa, T.; Serquiña, A.; Kook, I.; Ziegelbauer, J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin. Cell Dev. Biol. 2021, 111, 135–147. [Google Scholar] [CrossRef]
- Tenoever, B.R. RNA viruses and the host microRNA machinery. Nat. Rev. Microbiol. 2013, 11, 169–180. [Google Scholar] [CrossRef]
- Trobaugh, D.W.; Klimstra, W.B. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol. Med. 2017, 23, 80–93. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Y.; Wang, X.; Wang, C.; Lv, C.; Li, X.; Chu, Z.; Han, Q.; Xiao, S.; Zhang, S.; et al. MiR-375 Has Contrasting Effects on Newcastle Disease Virus Growth Depending on the Target Gene. Int. J. Biol. Sci. 2019, 15, 44–57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mears, M.C.; Bakre, A. Characterizing Host microRNA: Virus Interactions of Orthoavulavirus javaense. Viruses 2024, 16, 1748. https://doi.org/10.3390/v16111748
Mears MC, Bakre A. Characterizing Host microRNA: Virus Interactions of Orthoavulavirus javaense. Viruses. 2024; 16(11):1748. https://doi.org/10.3390/v16111748
Chicago/Turabian StyleMears, Megan C., and Abhijeet Bakre. 2024. "Characterizing Host microRNA: Virus Interactions of Orthoavulavirus javaense" Viruses 16, no. 11: 1748. https://doi.org/10.3390/v16111748
APA StyleMears, M. C., & Bakre, A. (2024). Characterizing Host microRNA: Virus Interactions of Orthoavulavirus javaense. Viruses, 16(11), 1748. https://doi.org/10.3390/v16111748