miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors
<p>miR-24-3p inhibits SARS-CoV-2 replication and virion production. (<b>A</b>) Calu3 Cells were reverse transfected with miR-24-3p or con-miR for 24 h prior to infection with SARS-CoV-2, MOI of 0.01, for 24 h, 48 h, or 72 h. RT qPCR (technical triplicate) was then performed to quantify relative vRNA in samples. (<b>B</b>) Production of SARS-CoV-2 was assessed by collecting an aliquot of the supernatant at each time point. (<b>C</b>) Subgenomic cellular RNA of SARS-CoV-2 was assessed by lysing cells at each time point. <span class="html-italic">n</span> = 3. Error bars represent SEM. <span class="html-italic">p</span> < 0.01 **, 0.001 ***, 0.0001 ****.</p> "> Figure 2
<p>Pathway Gene Ontology (GO) of highly expressed miR-24-3p targets. Panther GO was performed on miRDB predicted targets that are highly expressed (RPKM ≥ 20) in the cell lines used in the present study: Huh7, Calu-3, and A549. Most genes belong to unclassified categories; however, these were removed for clarity. A total of 75–102 targets were highly expressed in each cell line.</p> "> Figure 3
<p>miR-24-3p downregulates Furin and SREBP2 mRNA. Calu-3 cells were reverse transfected with 100 nM miR-24-3p or con-miR for 72 h before lysis for RT-qPCR. Treatment with miR-24-3p post-transcriptionally represses (<b>A</b>) furin and (<b>B</b>) SREBP2 at the mRNA level. <span class="html-italic">n</span> = 3. Error bars represent SEM. <span class="html-italic">p</span> < 0.01 **, 0.001 ***.</p> "> Figure 4
<p>miR-24-3p decreases the entry of SARS-CoV-2 in an S pseudovirus model. (<b>A</b>) Scheme depicting the generation of SARS-CoV-2 S pseudotyped virus. (<b>B</b>) Validation of pseudovirus components via western blot of HEK293T producing cell lysates and extracellular supernatant. (<b>C</b>) Pseudovirus entry assay quantified by luciferase microplate reader (technical triplicate). Assay was performed after 24 h reverse transfection of miR-24-3p followed by 48 h pseudovirus infection and lysis using a passive lysis buffer in either (<b>C</b>) Huh7 or (<b>D</b>) Calu-3 cells. Both con-miR and miR-24-3p values were normalized to the average con-mR value. <span class="html-italic">n</span> = 3. Error bars represent SEM. <span class="html-italic">p</span> < 0.001 ***.</p> "> Figure 5
<p>miR-24-3p maintains effectiveness against common SARS-CoV-2 S mutations. Pseudovirus entry assay quantified by luciferase microplate reader in technical triplicate. The assay was performed after 24 h reverse transfection of miR-24-3p or con-miR followed by 48 h pseudovirus S infection with D614G or N501Y S mutants in either (<b>A</b>) Huh7 or (<b>B</b>) ACE2 stably expressing A549 cell line. Lysis was performed using a passive lysis buffer. Both con-miR and miR-24-3p values were normalized to the average con-miR value. <span class="html-italic">n</span> = 3. Error bars represent SEM. <span class="html-italic">p</span> < 0.05 *, 0.001 ***.</p> "> Figure 6
<p>miR-24-3p downregulates Furin, SREBP2, and NRP2 impairing production and entry of SARS-CoV-2. (<b>A</b>) Scheme depicting experimental workflow for assessing target abundance and pseudovirus S production during miRNA pre-treatment. Briefly, HEK293T cells were pre-treated with miR-24-3p or con-miR 24 h before transfection with the plasmids to produce pseudovirions. After 48 h, the pseudovirus was collected and the pseudovirus produced during miR-24-3p treatment or con-miR treatment were then used to infect healthy untreated Huh7 cells. A luciferase assay was then performed on these Huh7 cells to quantify the amount of pseudovirus produced. (<b>B</b>) Western blot analysis of lysates from control or miR-24-3p-treated HEK293Ts producing S-pseudovirus. Several essential proviral targets and the viral S protein were probed for. (<b>C</b>) Western blot analysis of supernatant from control or miR-24-3p-treated HEK293Ts cells producing S-pseudovirus. (<b>D</b>) S-pseudovirus entry assay performed on non-treated Huh7 cells following production in HEK293T cells reverse transfected with miR-24-3p or con-miR. (<b>E</b>) S-pseudovirus entry assay from (<b>C</b>) normalized to total S production from (<b>D</b>). <span class="html-italic">n</span> = 2. Error bars represent SEM. For the luciferase data, both con-miR and miR-24-3p values were normalized to the average con-mR value. <span class="html-italic">p</span> < 0.01 **, 0.0001 ****.</p> "> Figure 7
<p>Diagram illustrating the targets and effects of miR-24-3p during SARS-CoV-2 infection.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Cell Culture
2.2. Introduction of D614G and N501Y Mutations in SARS-CoV-2 Spike
2.3. Production of SARS-CoV-2 S Pseudovirus
2.4. miRNA Transfections in Pseudovirus-Producing Cells
2.5. miRNA Transfections of Host Cells and Pseudovirus Entry Assays
2.6. Detection of Proteins by Western Blotting
2.7. RNA Extraction and Quantitative Real-Time PCR (RT-qPCR) for HCoV-229E and Host Genes
2.8. Viral RNA Extraction and Quantitative Real-Time PCR (RT-qPCR) for SARS-CoV-2
2.9. Bioinformatic (miRDB and Gene Ontology) and Hypothesis-Driven Approach in Selecting Targets
2.10. Statistical Analysis
3. Results
3.1. miR-24-3p Inhibits SARS-CoV-2 Infection In Vitro
3.2. Predicting Antiviral Effectors of miR-24-3p Using Bioinformatic Tools
Title 1 | Virus | Promote Viral Infection or Upregulated | Reference |
---|---|---|---|
NRP1 | SARS-CoV-2 | Promote infection | [39] |
HTLV-1 | Promote infection | [70] | |
NRP2 | LUJV | Promote infection | [45] |
SARS-CoV-2 | Promote infection | [47] | |
HCMV | Promote infection | [44] | |
HCMV | Promote infection | [45] | |
SARS-CoV-2; IAV | Upregulated | [42] | |
FURIN | SARS-CoV-2 | Promote infection | [35] |
IAV | Promote infection | [33] | |
HIV | Promote infection | [32] | |
SR-B1 | HCV | Promote infection | [71] |
SARS-CoV-2 | Promote infection | [64] | |
SARS-CoV-2 | Promote infection | [65] | |
SREBP2 | SARS-CoV-2 | Promote infection | [17] |
HCV | Promote infection | [49] | |
HCV | Promote infection | [14] | |
PTGER4 | LCMV | Promote infection | [66] |
RABV | Upregulated | [72] | |
BEFV | Promote infection | [73] | |
CDH7 | MERS-CoV; HCoV-229E | Promote infection | [68] |
TOP1 | EBOV | Promote infection | [74] |
EV71 | Promote infection | [75] | |
HBV | Promote infection | [76] | |
HIV | Promote infection | [77] |
3.3. miR-24-3p Downregulates Predicted Targets Related to Viral Entry
3.4. SARS-CoV-2 S Protein Pseudoviruses Experience Reduced Viral Entry Following miR-24-3p Treatment
3.5. miR-24-3p Maintains Antiviral Effectiveness in Response to Common SARS-CoV-2 Mutants D614G and N501Y
3.6. miR-24-3p Downregulates Furin, NRP2 and SREBP2 While Reducing Virion Production and Infectivity
3.7. The Antiviral Effects of miR-24-3p Are Reduced for Human Coronavirus 229E Compared to SARS-CoV-2
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Towsend, J.P.; Hassler, H.B.; Lamb, A.D.; Sah, P.; Nishio, A.A.; Nguyen, C.; Tew, A.D.; Galvani, A.P.; Dornburg, A. Seasonality of endemic COVID-19. Virology 2023, 14, e01426-23. [Google Scholar] [CrossRef]
- V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus Biology and Replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 16 July 2024).
- Walmsley, T.; Rose, A.; John, R.; Wei, D.; Hlávka, J.P.; Machado, J.; Byrd, K. Macroeconomic Consequences of the COVID-19 Pandemic. Econ. Model. 2023, 120, 106147. [Google Scholar] [CrossRef]
- McLean, G.; Kamil, J.; Lee, B.; Moore, P.; Schulz, T.F.; Muik, A.; Sahin, U.; Türeci, Ö.; Pather, S. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. mBio 2022, 13, e0297921. [Google Scholar] [CrossRef] [PubMed]
- El-Shabasy, R.M.; Nayel, M.A.; Taher, M.M.; Abdelmonem, R.; Shoueir, K.R.; Kenawy, E.R. Three Waves Changes, New Variant Strains, and Vaccination Effect against COVID-19 Pandemic. Int. J. Biol. Macromol. 2022, 204, 161–168. [Google Scholar] [CrossRef]
- Iketani, S.; Mohri, H.; Culbertson, B.; Hong, S.J.; Duan, Y.; Luck, M.I.; Annavajhala, M.K.; Guo, Y.; Sheng, Z.; Uhlemann, A.C.; et al. Multiple Pathways for SARS-CoV-2 Resistance to Nirmatrelvir. Nature 2023, 613, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Iwakawa, H.O.; Tomari, Y. Life of RISC: Formation, Action, and Degradation of RNA-Induced Silencing Complex. Mol. Cell 2022, 82, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Petri, R.; Malmevik, J.; Fasching, L.; Åkerblom, M.; Jakobsson, J. MiRNAs in Brain Development. Exp. Cell Res. 2014, 321, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed]
- Filip, R.; Desrochers, G.F.; Lefebvre, D.M.; Reed, A.; Singaravelu, R.; Cravatt, B.F.; Pezacki, J.P. Profiling of MicroRNA Targets Using Activity-Based Protein Profiling: Linking Enzyme Activity to MicroRNA-185 Function. Cell Chem. Biol. 2021, 28, 202–212.e6. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, G.F.; Filip, R.; Bastianelli, M.; Stern, T.; Pezacki, J.P. MicroRNA-27b Regulates Hepatic Lipase Enzyme LIPC and Reduces Triglyceride Degradation during Hepatitis C Virus Infection. J. Biol. Chem. 2022, 298, 101983. [Google Scholar] [CrossRef]
- Evers, P.; Pezacki, J.P. Unraveling Complex MicroRNA Signaling Pathways with Activity-Based Protein Profiling to Guide Therapeutic Discovery. Isr. J. Chem. 2023, 63, e202200088. [Google Scholar] [CrossRef]
- Singaravelu, R.; O’Hara, S.; Jones, D.M.; Chen, R.; Taylor, N.G.; Srinivasan, P.; Quan, C.; Roy, D.G.; Steenbergen, R.H.; Kumar, A.; et al. MicroRNAs Regulate the Immunometabolic Response to Viral Infection in the Liver. Nat. Chem. Biol. 2015, 11, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA. Science 2005, 309, 1577–1581. [Google Scholar] [CrossRef] [PubMed]
- Barbu, M.G.; Condrat, C.E.; Thompson, D.C.; Bugnar, O.L.; Cretoiu, D.; Toader, O.D.; Suciu, N.; Voinea, S.C. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front. Cell Dev. Biol. 2020, 8, 143. [Google Scholar] [CrossRef]
- Ahmed, N.; Francis, M.E.; Ahmed, N.; Kelvin, A.A.; Pezacki, J.P. MicroRNA-185 Inhibits SARS-CoV-2 Infection through the Modulation of the Host’s Lipid Microenvironment. Viruses 2023, 15, 1921. [Google Scholar] [CrossRef] [PubMed]
- Ottosen, S.; Parsley, T.B.; Yang, L.; Zeh, K.; Van Doorn, L.J.; Van Der Veer, E.; Raney, A.K.; Hodges, M.R.; Patick, A.K. In Vitro Antiviral Activity and Preclinical and Clinical Resistance Profile of Miravirsen, a Novel Anti-Hepatitis C Virus Therapeutic Targeting the Human Factor MiR-122. Antimicrob. Agents Chemother. 2015, 59, 599–608. [Google Scholar] [CrossRef]
- Janssen, H.L.A.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; et al. Treatment of HCV Infection by Targeting MicroRNA. N. Engl. J. Med. 2013, 368, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Ng, R.; Wu, H.; Xiao, H.; Chen, X.; Willenbring, H.; Steer, C.J.; Song, G. Inhibition of MicroRNA-24 Expression in Liver Prevents Hepatic Lipid Accumulation and Hyperlipidemia. Hepatology 2014, 60, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Wu, Y.; Wang, J.; Chen, J.; Huang, Y.; Rao, J.; Feng, C. MicroRNA-24 Promotes 3T3-L1 Adipocyte Differentiation by Directly Targeting the MAPK7 Signaling. Biochem. Biophys. Res. Commun. 2016, 474, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, T.; Wakita, T.; Yang, W. Systematic Identification of MicroRNA and Messenger RNA Profiles in Hepatitis C Virus-Infected Human Hepatoma Cells. Virology 2010, 398, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Loveday, E.K.; Diederich, S.; Pasick, J.; Jean, F. Human MicroRNA-24 Modulates Highly Pathogenic Avian-Origin H5N1 Influenza A Virus Infection in A549 Cells by Targeting Secretory Pathway Furin. J. Gen. Virol. 2015, 96, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, M.; Jing, Q.; Georgel, P.; New, L.; Chen, J.; Mols, J.; Kang, Y.J.; Jiang, Z.; Du, X.; Cook, R.; et al. Hypersusceptibility to Vesicular Stomatitis Virus Infection in Dicer1-Deficient Mice Is Due to Impaired MiR24 and MiR93 Expression. Immunity 2007, 27, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Wang, C.; Kessler, P.; Sen, G.C. Herpes Simplex Virus 1 Evades Cellular Antiviral Response by Inducing MicroRNA-24, Which Attenuates STING Synthesis. PLoS Pathog. 2021, 17, e1009950. [Google Scholar] [CrossRef] [PubMed]
- Bakre, A.; Mitchell, P.; Coleman, J.K.; Jones, L.P.; Saavedra, G.; Teng, M.; Tompkins Mark, S.; Tripp, R.A. Respiratory Syncytial Virus Modifies MicroRNAs Regulating Host Genes That Affect Virus Replication. J. Gen. Virol. 2012, 93, 2346–2356. [Google Scholar] [CrossRef] [PubMed]
- McCaskill, J.L.; Ressel, S.; Alber, A.; Redford, J.; Power, U.F.; Schwarze, J.; Dutia, B.M.; Buck, A.H. Broad-Spectrum Inhibition of Respiratory Virus Infection by MicroRNA Mimics Targeting P38 MAPK Signaling. Mol. Ther. Nucleic Acids 2017, 7, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, J.; Coppola, A.; Izzo, R.; Fiorentino, G.; Trimarco, B.; Santulli, G. Role of Endothelial MiR-24-3p in COVID-19 Cerebrovascular Events. Crit. Care 2021, 25, 306. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. MiRDB: An Online Database for Prediction of Functional MicroRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed]
- Klimpel, K.R.; Molloy, S.S.; Thomas, G.; Leppla, S.H. Anthrax Toxin Protective Antigen Is Activated by a Cell Surface Protease with the Sequence Specificity and Catalytic Properties of Furin. Proc. Natl. Acad. Sci. USA 1992, 89, 10277–10281. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78, 779–784.e5. [Google Scholar] [CrossRef] [PubMed]
- Hallenberger, S.; Bosch, V.; Angliker, H.; Shaw, E.; Klenk, H.-D.; Garten, W. Inhibition of Furin-Mediated Cleavage Activation of HIV-1 Glycoprotein Gp160. Nature 1992, 360, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Stieneke-Grober, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C.; Klenk, H.D.; Garten, W. Influenza Virus Hemagglutinin with Multibasic Cleavage Site Is Activated by Furin, a Subtilisin-like Endoprotease. EMBO J. 1992, 11, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- Mille, J.K.; Whittaker, G.R. Host Cell Entry of Middle East Respiratory Syndrome Coronavirus after Two-Step, Furin-Mediated Activation of the Spike Protein. Proc. Natl. Acad. Sci. USA 2014, 111, 15214–15219. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell Entry Mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef]
- Johnson, B.A.; Xie, X.; Bailey, A.L.; Kalveram, B.; Lokugamage, K.G.; Muruato, A.; Zou, J.; Zhang, X.; Juelich, T.; Smith, J.K.; et al. Loss of Furin Cleavage Site Attenuates SARS-CoV-2 Pathogenesis. Nature 2021, 591, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Peacock, T.P.; Goldhill, D.H.; Zhou, J.; Baillon, L.; Frise, R.; Swann, O.C.; Kugathasan, R.; Penn, R.; Brown, J.C.; Sanchez-David, R.Y.; et al. The Furin Cleavage Site in the SARS-CoV-2 Spike Protein Is Required for Transmission in Ferrets. Nat. Microbiol. 2021, 6, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.-E.; Kavanagh Williamson, M.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 Is a Host Factor for SARS-CoV-2 Infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 Facilitates SARS-CoV-2 Cell Entry and Infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef]
- Li, Z.l.; Buck, M. Neuropilin-1 Assists SARS-CoV-2 Infection by Stimulating the Separation of Spike Protein S1 and S2. Biophys. J. 2021, 120, 2828–2837. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Sulpice, E.; Plouët, J.; Bergé, M.; Allanic, D.; Tobelem, G.; Merkulova-Rainon, T. Neuropilin-1 and Neuropilin-2 Act as Coreceptors, Potentiating Proangiogenic Activity. Blood 2008, 111, 2036–2045. [Google Scholar] [CrossRef]
- Martinez-Martin, N.; Marcandalli, J.; Huang, C.S.; Arthur, C.P.; Perotti, M.; Foglierini, M.; Ho, H.; Dosey, A.M.; Shriver, S.; Payandeh, J.; et al. An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell 2018, 174, 1158–1171.e19. [Google Scholar] [CrossRef]
- Wrapp, D.; Ye, X.; Ku, Z.; Su, H.; Jones, H.G.; Wang, N.; Mishra, A.K.; Freed, D.C.; Li, F.; Tang, A.; et al. Structural Basis for HCMV Pentamer Recognition by Neuropilin 2 and Neutralizing Antibodies. Sci. Adv. 2022, 8, 2546. [Google Scholar] [CrossRef] [PubMed]
- Raaben, M.; Jae, L.T.; Herbert, A.S.; Kuehne, A.I.; Stubbs, S.H.; Chou, Y.y.; Blomen, V.A.; Kirchhausen, T.; Dye, J.M.; Brummelkamp, T.R.; et al. NRP2 and CD63 Are Host Factors for Lujo Virus Cell Entry. Cell Host Microbe 2017, 22, 688–696.e5. [Google Scholar] [CrossRef] [PubMed]
- Ishitoku, M.; Mokuda, S.; Araki, K.; Watanabe, H.; Kohno, H.; Sugimoto, T.; Yoshida, Y.; Sakaguchi, T.; Masumoto, J.; Hirata, S.; et al. Tumor Necrosis Factor and Interleukin-1β Upregulate NRP2 Expression and Promote SARS-CoV-2 Proliferation. Viruses 2023, 15, 1498. [Google Scholar] [CrossRef] [PubMed]
- Mone, P.; Gambardella, J.; Wang, X.; Jankauskas, S.S.; Matarese, A.; Santulli, G. MiR-24-3p Targets the Transmembrane Glycoprotein Neuropilin-1 in Human Brain Microvascular Endothelial Cells. Noncoding RNA 2021, 7, 9. [Google Scholar] [CrossRef]
- Li, Q.; Pène, V.; Krishnamurthy, S.; Cha, H.; Liang, T.J. Hepatitis C Virus Infection Activates an Innate Pathway Involving IKK-α in Lipogenesis and Viral Assembly. Nat. Med. 2013, 19, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Jun, H.J.; Wakita, T.; Cheong, J.H.; Hwang, S.B. Hepatitis C Virus Nonstructural 4B Protein Modulates Sterol Regulatory Element-Binding Protein Signaling via the AKT Pathway. J. Biol. Chem. 2009, 284, 9237–9246. [Google Scholar] [CrossRef]
- Theken, K.N.; Tang, S.Y.; Sengupta, S.; FitzGerald, G.A. The Roles of Lipids in SARS-CoV-2 Viral Replication and the Host Immune Response. J. Lipid Res. 2021, 62, 100129. [Google Scholar] [CrossRef]
- Yuan, S.; Chu, H.; Chan, J.F.W.; Ye, Z.W.; Wen, L.; Yan, B.; Lai, P.M.; Tee, K.M.; Huang, J.; Chen, D.; et al. SREBP-Dependent Lipidomic Reprogramming as a Broad-Spectrum Antiviral Target. Nat. Commun. 2019, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Liut, R.; Ellmeier, W.; Choet, S.; Unutmaz, D.; Burkhart, M.; Di Marziot, P.; Marmon, S.; Sutton, R.E.; Hill, C.M.; et al. Identification of a Major Co-Receptor for Primary Isolates of HIV-1. Nature 1996, 381, 661–666. [Google Scholar] [CrossRef]
- Paquette, S.G.; Banner, D.; Huang, S.S.H.; Almansa, R.; Leon, A.; Xu, L.; Bartoszko, J.; Kelvin, D.J.; Kelvin, A.A. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses. PLoS Pathog. 2015, 11, e1005173. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-NCoV) by Real-Time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Banes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.W.; Zang, J.B.; Mele, A.; Darnell, R.B. Argonaute HITS-CLIP Decodes MicroRNA-MRNA Interaction Maps. Nature 2009, 460, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Riolo, G.; Cantara, S.; Marzocchi, C.; Ricci, C. MiRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc. 2021, 4, 1. [Google Scholar] [CrossRef]
- John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human MicroRNA Targets. PLoS Biol. 2004, 2, e363. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting Effective MicroRNA Target Sites in Mammalian MRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Thomas, P. PANTHER Pathway: An Ontology-Based Pathway Database Coupled with Data Analysis Tools. Methods Mol. Biol. 2009, 563, 123–140. [Google Scholar] [CrossRef]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.P.; Mi, H. PANTHER: Making Genome-Scale Phylogenetics Accessible to All. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Osman, E.E.A.; Rehemtulla, A.; Neamati, N. Why All Fury Over Furin? J. Med. Chem. 2022, 65, 2747–2784. [Google Scholar] [CrossRef]
- Papa, G.; Mallery, D.L.; Albecka, A.; Welch, L.G.; Cattin-Ortolá, J.; Luptak, J.; Paul, D.; McMahon, H.T.; Goodfellow, I.G.; Carter, A.; et al. Furin Cleavage of SARS-CoV-2 Spike Promotes but Is Not Essential for Infection and Cell-Cell Fusion. PLoS Pathog. 2021, 17, e1009246. [Google Scholar] [CrossRef]
- Wei, C.; Wan, L.; Yan, Q.; Wang, X.; Zhang, J.; Yang, X.; Zhang, Y.; Fan, C.; Li, D.; Deng, Y.; et al. HDL-Scavenger Receptor B Type 1 Facilitates SARS-CoV-2 Entry. Nat. Metab. 2020, 2, 1391–1400. [Google Scholar] [CrossRef]
- Ramirez, S.; Fernandez-Antunez, C.; Galli, A.; Underwood, A.; Pham, L.V.; Ryberg, L.A.; Feng, S.; Pedersen, M.S.; Mikkelsen, L.S.; Belouzard, S.; et al. Overcoming Culture Restriction for SARS-CoV-2 in Human Cells Facilitates the Screening of Compounds Inhibiting Viral Replication. Antimicrob. Chemother. 2021, 65, e00097-21. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Perry, C.J.; Tsui, Y.C.; Staron, M.M.; Parish, I.A.; Dominguez, C.X.; Rosenberg, D.W.; Kaech, S.M. Prostaglandin E2 and Programmed Cell Death 1 Signaling Coordinately Impair CTL Function and Survival during Chronic Viral Infection. Nat. Med. 2015, 21, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.e19. [Google Scholar] [CrossRef] [PubMed]
- Kratzel, A.; Kelly, J.N.; Vkovski, P.; Portmann, J.; Brüggemann, Y.; Todt, D.; Ebert, N.; Shrestha, N.; Plattet, P.; Staab-Weijnitz, C.A.; et al. A Genome-Wide CRISPR Screen Identifies Interactors of the Autophagy Pathway as Conserved Coronavirus Targets. PLoS Biol. 2021, 19, e3001490. [Google Scholar] [CrossRef] [PubMed]
- Ghez, D.; Lepelletier, Y.; Lambert, S.; Fourneau, J.-M.; Blot, V.; Janvier, S.; Arnulf, B.; van Endert, P.M.; Heveker, N.; Pique, C.; et al. Neuropilin-1 Is Involved in Human T-Cell Lymphotropic Virus Type 1 Entry. J. Virol. 2006, 80, 6844–6854. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Lan, Q.; Su, S.; Wang, X.; Xu, W.; Liu, Z.; Zhu, Y.; Wang, Q.; Lu, L.; Jiang, S. The Role of Furin Cleavage Site in SARS-CoV-2 Spike Protein-Mediated Membrane Fusion in the Presence or Absence of Trypsin. Signal Transduct. Target Ther. 2020, 5, 92. [Google Scholar] [CrossRef] [PubMed]
- Préhaud, C.; Mégret, F.; Lafage, M.; Lafon, M. Virus Infection Switches TLR-3-Positive Human Neurons To Become Strong Producers of Beta Interferon. J. Virol. 2005, 79, 12893–12904. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Huang, W.R.; Chi, P.I.; Chiu, H.C.; Liu, H.J. Cell Entry of Bovine Ephemeral Fever Virus Requires Activation of Src-JNK-AP1 and PI3K-Akt-NF-ΚB Pathways as Well as Cox-2-Mediated PGE2/EP Receptor Signalling to Enhance Clathrin-Mediated Virus Endocytosis. Cell Microbiol. 2015, 17, 967–987. [Google Scholar] [CrossRef]
- Takahashi, K.; Halfmann, P.; Oyama, M.; Kozuka-Hata, H.; Noda, T.; Kawaoka, Y. DNA Topoisomerase 1 Facilitates the Transcription and Replication of the Ebola Virus Genome. J. Virol. 2013, 87, 8862–8869. [Google Scholar] [CrossRef]
- Wu, K.X.; Chu, J.J.H. Antiviral Screen Identifies EV71 Inhibitors and Reveals Camptothecin-Target, DNA Topoisomerase 1 as a Novel EV71 Host Factor. Antivir. Res. 2017, 143, 122–133. [Google Scholar] [CrossRef]
- Sheraz, M.; Cheng, J.; Tang, L.; Chang, J.; Guo, J.-T. Cellular DNA Topoisomerases Are Required for the Synthesis of Hepatitis B Virus Covalently Closed Circular DNA. J. Virol. 2019, 93, e02230-18. [Google Scholar] [CrossRef] [PubMed]
- Lista, M.J.; Jousset, A.C.; Cheng, M.; Saint-André, V.; Perrot, E.; Rodrigues, M.; Di Primo, C.; Gadelle, D.; Toccafondi, E.; Segeral, E.; et al. DNA Topoisomerase 1 Represses HIV-1 Promoter Activity through Its Interaction with a Guanine Quadruplex Present in the LTR Sequence. Retrovirology 2023, 20, 10. [Google Scholar] [CrossRef]
- Cox, M.G.; Peacock, T.P.; Harvey, W.T.; Hughes, J.; Wright, D.W.; Willett, B.J.; Thomson, E.; Gupta, R.K.; Peacock, S.J.; Robertson, D.L.; et al. SARS-CoV-2 Variant Evasion of Monoclonal Antibodies Based on in Vitro Studies. Nat. Rev. Microbiol. 2023, 21, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Götte, M.; Feld, J.J. Direct-Acting Antiviral Agents for Hepatitis C: Structural and Mechanistic Insights. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Cihlar, T.; Fordyce, M. Current Status and Prospects of HIV Treatment. Curr. Opin. Virol. 2016, 18, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Li, Z. Medicinal Chemistry Strategies toward Host Targeting Antiviral Agents. Med. Res. Rev. 2020, 40, 1519–1557. [Google Scholar] [CrossRef] [PubMed]
- Gobeil, S.M.C.; Janowska, K.; McDowell, S.; Mansouri, K.; Parks, R.; Manne, K.; Stalls, V.; Kopp, M.F.; Henderson, R.; Edwards, R.J.; et al. D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Rep. 2021, 34, 108630. [Google Scholar] [CrossRef] [PubMed]
- Mannar, D.; Saville, J.W.; Zhu, X.; Srivastava, S.S.; Berezuk, A.M.; Zhou, S.; Tuttle, K.S.; Kim, A.; Li, W.; Dimitrov, D.S.; et al. Structural Analysis of Receptor Binding Domain Mutations in SARS-CoV-2 Variants of Concern That Modulate ACE2 and Antibody Binding. Cell Rep. 2021, 37, 110156. [Google Scholar] [CrossRef] [PubMed]
- Hum, C.; Loiselle, J.; Ahmed, N.; Shaw, T.A.; Toudic, C.; Pezacki, J.P. MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs 2021, 81, 517–531. [Google Scholar] [CrossRef]
- Saiz, M.L.; De Diego, M.L.; López-García, D.; Corte-Iglesias, V.; Baragaño Raneros, A.; Astola, I.; Asensi, V.; López-Larrea, C.; Suarez-Alvarez, B. Epigenetic Targeting of the ACE2 and NRP1 Viral Receptors Limits SARS-CoV-2 Infectivity. Clin. Epigenetics 2021, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Federal Drug Administration (FDA). Fact Sheet for Healthcare Providers: Emergency Use Authorization for Paxlovid; 2024. Available online: https://www.fda.gov/media/155050/download (accessed on 16 July 2024).
- Moody, E.R.; Obexer, R.; Nickl, F.; Spiess, R.; Lovelock, S.L. An Enzyme Cascade Enables Production of Therapeutic Oligonucleotides in a Single Operation. Science 2023, 380, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.W.; Ilyas, I.; Weng, J. ping Endothelial Dysfunction in COVID-19: An Overview of Evidence, Biomarkers, Mechanisms and Potential Therapies. Acta Pharmacol. Sin. 2023, 44, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.; Krajewski, M.; Scherer, C.; Scholz, V.; Mordhorst, V.; Truschow, P.; Schöbel, A.; Reimer, R.; Schwudke, D.; Herker, E. Complex Lipid Metabolic Remodeling Is Required for Efficient Hepatitis C Virus Replication. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1041–1056. [Google Scholar] [CrossRef] [PubMed]
- Catanese, M.T.; Ansuini, H.; Graziani, R.; Huby, T.; Moreau, M.; Ball, J.K.; Paonessa, G.; Rice, C.M.; Cortese, R.; Vitelli, A.; et al. Role of Scavenger Receptor Class B Type I in Hepatitis C Virus Entry: Kinetics and Molecular Determinants. J. Virol. 2010, 84, 34–43. [Google Scholar] [CrossRef]
- Dubois, C.M.; Laprise, M.H.; Blanchette, F.; Gentry, L.E.; Leduc, R. Processing of transforming growth factor β1 precursor by human furin convertase. J. Biol. Chem. 1995, 270, 10618–10624. [Google Scholar] [CrossRef]
- Rocconi, R.P.; Grosen, E.A.; Ghamande, S.A.; Chan, J.K.; Barve, M.A.; Oh, J.; Tewari, D.; Morris, P.C.; Stevens, E.E.; Bottsford-Miller, J.N.; et al. Gemogenovatucel-T (Vigil) immunotherapy as maintenance in frontline stage III/IV ovarian cancer (VITAL): A randomized double-blind, placebo-controlled, phase 2b trial. Lancet Oncol. 2020, 21, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evers, P.; Uguccioni, S.M.; Ahmed, N.; Francis, M.E.; Kelvin, A.A.; Pezacki, J.P. miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses 2024, 16, 1844. https://doi.org/10.3390/v16121844
Evers P, Uguccioni SM, Ahmed N, Francis ME, Kelvin AA, Pezacki JP. miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses. 2024; 16(12):1844. https://doi.org/10.3390/v16121844
Chicago/Turabian StyleEvers, Parrish, Spencer M. Uguccioni, Nadine Ahmed, Magen E. Francis, Alyson A. Kelvin, and John P. Pezacki. 2024. "miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors" Viruses 16, no. 12: 1844. https://doi.org/10.3390/v16121844
APA StyleEvers, P., Uguccioni, S. M., Ahmed, N., Francis, M. E., Kelvin, A. A., & Pezacki, J. P. (2024). miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses, 16(12), 1844. https://doi.org/10.3390/v16121844