[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Viruses and microRNAs

Abstract

The discovery of RNA interference and cellular microRNAs (miRNAs) has not only affected how biological research is conducted but also revealed an entirely new level of post-transcriptional gene regulation. Here, I discuss the potential functions of the virally encoded miRNAs recently identified in several pathogenic human viruses and propose that cellular miRNAs may have had a substantial effect on viral evolution and may continue to influence the in vivo tissue tropism of viruses. Our increasing knowledge of the role and importance of virally encoded miRNAs will probably offer new insights into how viruses that establish latent infections, such as herpesviruses, avoid elimination by the host innate or adaptive immune system. Research into viral miRNA function might also suggest new approaches for treating some virally induced diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biogenesis and function of human miRNAs.

Katie Ris

Figure 2: Potential mechanisms by which miRNAs can affect virus replication.

Katie Ris

Similar content being viewed by others

References

  1. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  3. Farh, K.K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  Google Scholar 

  4. Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 (2004).

    Article  CAS  Google Scholar 

  5. Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    Article  CAS  Google Scholar 

  6. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  Google Scholar 

  7. Lee, Y. et al. The nuclear RNase III drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  8. Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  Google Scholar 

  9. Gregory, R.I. et al. The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  Google Scholar 

  10. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  Google Scholar 

  11. Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  Google Scholar 

  12. Zeng, Y. & Cullen, B.R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32, 4776–4785 (2004).

    Article  CAS  Google Scholar 

  13. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  Google Scholar 

  14. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  Google Scholar 

  15. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–295 (2000).

    Article  CAS  Google Scholar 

  16. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).

    Article  CAS  Google Scholar 

  17. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  18. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  19. Schwarz, D.S., Hutvágner, G., Haley, B. & Zamore, P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548 (2002).

    Article  CAS  Google Scholar 

  20. Zeng, Y., Yi, R. & Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784 (2003).

    Article  CAS  Google Scholar 

  21. Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  Google Scholar 

  22. Hutvágner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  Google Scholar 

  23. Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  Google Scholar 

  24. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  Google Scholar 

  25. Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    Article  CAS  Google Scholar 

  26. Zeng, Y. & Cullen, B.R. Sequence requirements for microRNA processing and function in human cells. RNA 9, 112–123 (2003).

    Article  CAS  Google Scholar 

  27. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  Google Scholar 

  28. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral micro-RNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102, 5570–5575 (2005).

    Article  CAS  Google Scholar 

  29. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    Article  CAS  Google Scholar 

  30. Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005).

    Article  CAS  Google Scholar 

  31. Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005).

    Article  CAS  Google Scholar 

  32. Andersson, M.G. et al. Suppression of RNA interference by adenovirus virus-associated RNA. J. Virol. 79, 9556–9565 (2005).

    Article  CAS  Google Scholar 

  33. Sano, M., Kato, Y. & Taira, K. Sequence-specific interference by small RNAs derived from adenovirus VA1 RNA. FEBS Lett. 580, 1553–1564 (2006).

    Article  CAS  Google Scholar 

  34. Cai, X. et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23 (2006).

    Article  Google Scholar 

  35. Grundhoff, A., Sullivan, C.S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12, 1–18 (2006).

    Article  Google Scholar 

  36. Mathews, M.B. & Shenk, T. Adenovirus virus-associated RNA and translation control. J. Virol. 65, 5657–5662 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Thimmappaya, B., Weinberger, C., Schneider, R.J. & Shenk, T. Adenovirus VA1 RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31, 543–551 (1982).

    Article  CAS  Google Scholar 

  38. Gwizdek, C. et al. Terminal minihelix, a novel RNA motif that directs polymerase III transcripts to the cell cytoplasm. J. Biol. Chem. 276, 25910–25918 (2001).

    Article  CAS  Google Scholar 

  39. Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  Google Scholar 

  40. Lu, S. & Cullen, B.R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 12868–12876 (2004).

    Article  CAS  Google Scholar 

  41. Aparicio, O., Razquin, N., Zaratiegui, M., Narvaiza, I. & Fortes, P. Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J. Virol. 80, 1376–1384 (2006).

    Article  CAS  Google Scholar 

  42. Fraser, N.W., Block, T.M. & Spivack, J.G. The latency-associated transcripts of herpes simplex virus: RNA in search of function. Virology 191, 1–8 (1992).

    Article  CAS  Google Scholar 

  43. Branco, F.J. & Fraser, N.W. Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J. Virol. 79, 9019–9025 (2005).

    Article  CAS  Google Scholar 

  44. Cai, X. & Cullen, B.R. Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J. Virol. 80, 2234–2242 (2006).

    Article  CAS  Google Scholar 

  45. Samols, M.A., Hu, J., Skalsky, R.L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305 (2005).

    Article  CAS  Google Scholar 

  46. Furnari, F.B., Adams, M.D. & Pagano, J.S. Unconventional processing of the 3′ termini of the Epstein-Barr virus DNA polymerase mRNA. Proc. Natl. Acad. Sci. USA 90, 378–382 (1993).

    Article  CAS  Google Scholar 

  47. Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. & Ploegh, H.L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  Google Scholar 

  48. Katze, M.G., He, Y. & Gale, M.G. Jr. Viruses and interferon: A fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    Article  CAS  Google Scholar 

  49. Macrae, A.I. et al. Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus important for acute pathogenesis. J. Virol. 75, 5315–5327 (2001).

    Article  CAS  Google Scholar 

  50. Gitlin, L. & Andino, R. Nucleic acid-based immune system: The antiviral potential of mammalian RNA silencing. J. Virol. 77, 7159–7165 (2003).

    Article  CAS  Google Scholar 

  51. Lecellier, C.-H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    Article  CAS  Google Scholar 

  52. Linial, M.L. Foamy viruses are unconventional retroviruses. J. Virol. 73, 1747–1755 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  Google Scholar 

  54. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

Research from my laboratory described in this manuscript was supported by grant GM071408 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, B. Viruses and microRNAs. Nat Genet 38 (Suppl 6), S25–S30 (2006). https://doi.org/10.1038/ng1793

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing