Phenological Spatial Divergences Promoted by Climate, Terrain, and Forest Height in a Cold Temperate Forest Landscape: A Case Study of the Greater Khingan Mountain in Hulun Buir, China
<p>The study area, (<b>a</b>) location and forest height of Hulun Buir in China; (<b>b</b>) the elevation of Hulun Buir; (<b>c</b>) the slope of Hulun Buir; and (<b>d</b>) the aspect of Hulun Buir.</p> "> Figure 2
<p>Scatter plots of SOS with pre-season temperature (<b>a</b>) and precipitation (<b>c</b>). LISA maps of SOS with pre-season temperature (<b>b</b>) and precipitation (<b>d</b>).</p> "> Figure 3
<p>Scatter plots of EOS with autumn temperature (<b>a</b>) and precipitation (<b>c</b>). LISA maps of EOS with autumn temperature (<b>b</b>) and precipitation (<b>d</b>).</p> "> Figure 4
<p>Scatter plots of SOS with elevation (<b>a</b>) and slope (<b>c</b>). LISA maps of SOS with elevation (<b>b</b>) and slope (<b>d</b>).</p> "> Figure 5
<p>Scatter plots of EOS with elevation (<b>a</b>) and slope (<b>c</b>). LISA maps of EOS with elevation (<b>b</b>) and slope (<b>d</b>).</p> "> Figure 6
<p>Box plots of SOS (<b>a</b>) and EOS (<b>b</b>) in different aspects. The green dashed lines and numbers in each box represent mean values, the orange lines represent median values, and the top and bottom edges of each box represent 75th and 25th percentiles, respectively.</p> "> Figure 7
<p>Scatter plot of SOS with forest height (<b>a</b>). LISA map of SOS with forest height (<b>b</b>).</p> "> Figure 8
<p>Scatter plot of EOS with forest height (<b>a</b>). LISA map of EOS with forest height (<b>b</b>).</p> "> Figure 9
<p>Scatter plots of elevation and slop with pre-season temperature (<b>a</b>,<b>b</b>) and pre-season precipitation (<b>c</b>,<b>d</b>). Scatter plots without fitted curves indicated a non-significant relationship.</p> "> Figure 10
<p>Scatter plots of elevation and slope with autumn temperature (<b>a</b>,<b>b</b>) and autumn precipitation (<b>c</b>,<b>d</b>). Scatter plots without fitted curves indicated a non-significant relationship.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Forest Stand Mean Height and Coverage
2.2.2. Spring and Autumn Phenology
2.2.3. Climatic Factors
2.2.4. Topographical Factors
2.3. Methodology
2.3.1. Linear and Curve Regression Analysis
2.3.2. Local Indicator of Spatial Association
2.3.3. Geo-Detector Analysis
3. Results
3.1. Effects of Climatic Factors on Forest Phenology
3.2. Effects of Topographical Factors on Forest Phenology
3.3. Effects of Forest Height on Forest Phenology
3.4. Effects of Topographic Factors on Climate
3.5. Interactive Effects of Various Factors on Forest Phenology
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Chuine, I.; Morin, X.; Bugmann, H. Warming, photoperiods, and tree phenology. Science 2010, 329, 277–278. [Google Scholar] [CrossRef]
- Adams, B.; Matthews, S.; Iverson, L.; Prasad, A.; Peters, M.; Zhao, K. Spring phenological variability promoted by topography and vegetation assembly processes in a temperate forest landscape. Agric. For. Meteorol. 2021, 308, 108578. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Broich, M.; Huete, A.; Tulbure, M.G.; Ma, X.; Xin, Q.; Paget, M.; Restrepo-Coupe, N.; Davies, K.; Devadas, R.; Held, A. Land surface phenological response to decadal climate variability across Australia using satellite remote sensing. Biogeosciences 2014, 11, 5181–5198. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Shen, M.; Liang, W.; Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Change Biol. 2015, 21, 652–665. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, J.; Li, X.; Cheng, G.; Ma, M.; Zhu, G.; Arain, M.A.; Black, T.A.; Jassal, R.S. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 2019, 10, 2389. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Zhou, G.; Mao, F.; Zhang, M.; Han, N.; Fan, W.; Liu, H.; Huang, Z.; He, S.; et al. Phenology estimation of subtropical bamboo forests based on assimilated MODIS LAI time series data. ISPRS-J. Photogramm. Remote Sens. 2021, 173, 262–277. [Google Scholar] [CrossRef]
- Garonna, I.; de Jong, R.; Stockli, R.; Schmid, B.; Schenkel, D.; Schimel, D.; Schaepman, M.E. Shifting relative importance of climatic constraints on land surface phenology. Environ. Res. Lett. 2018, 13, 024025. [Google Scholar] [CrossRef]
- Zani, D.; Crowther, T.W.; Mo, L.; Renner, S.S.; Zohner, C.M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 2020, 370, 1066–1071. [Google Scholar] [CrossRef]
- Beil, I.; Kreyling, J.; Meyer, C.; Lemcke, N.; Malyshev, A. Late to bed, late to rise-Warmer autumn temperatures delay spring phenology by delaying dormancy. Glob. Change Biol. 2021, 27, 5806–5817. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ma, X.; Dou, X.; Zhu, J.; Zhao, C. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Sci. Total Environ. 2021, 796, 149055. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Feng, Z. Response of vegetation phenology to urbanization in urban agglomeration areas: A dynamic urban-rural gradient perspective. Sci. Total Environ. 2023, 864, 161109. [Google Scholar] [CrossRef] [PubMed]
- Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 2016, 217, 10–21. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Ren, P.; Liu, Z.; Zhou, X.; Peng, C.; Xiao, J.; Wang, S.; Li, X.; Li, P. Strong controls of daily minimum temperature on the autumn photosynthetic phenology of subtropical vegetation in China. For. Ecosyst. 2021, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Mao, J.; Zhou, Y.; Richardson, A.D.; Lee, X.; Thornton, P.E.; Ricciuto, D.M.; Li, X.; Dai, Y.; Shi, X.; et al. Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proc. Natl. Acad. Sci. USA 2020, 117, 4228–4233. [Google Scholar] [CrossRef]
- Kabano, P.; Lindley, S.; Harris, A. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc. Urban Plan. 2021, 206, 103989. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Janssens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, Y.; Zhu, J.; Pan, Y. Precipitation dominates the relative contributions of climate factors to grasslands spring phenology on the Tibetan Plateau. Remote Sens. 2022, 14, 517. [Google Scholar] [CrossRef]
- Du, J.; He, Z.; Piatek, K.B.; Chen, L.; Lin, P.; Zhu, X. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 2019, 269, 71–77. [Google Scholar] [CrossRef]
- Wang, X.; Du, P.; Chen, D.; Lin, C.; Zheng, H.; Guo, S. Characterizing urbanization-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001–2018). J. Clean Prod. 2020, 274, 122487. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Meng, L. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on Landsat data. Sci. Total Environ. 2017, 605, 721–734. [Google Scholar] [CrossRef]
- Fitzjarrald, D.R.; Acevedo, O.C.; Moore, K.E. Climatic consequences of leaf presence in the eastern United States. J. Clim. 2001, 14, 598–614. [Google Scholar] [CrossRef]
- Chmura, H.E.; Kharouba, H.M.; Ashander, J.; Ehlman, S.M.; Rivest, E.B.; Yang, L.H. The mechanisms of phenology: The patterns and processes of phenological shifts. Ecol. Monogr. 2019, 89, e01337. [Google Scholar] [CrossRef]
- Melaas, E.K.; Friedl, M.A.; Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 2013, 132, 176–185. [Google Scholar] [CrossRef]
- Liang, L.; Schwartz, M.D.; Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens. Environ. 2011, 115, 143–157. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, S.; Zhang, X.; Liu, S.; Henebry, G.M.; Liu, L. Urbanization imprint on land surface phenology: The urban-rural gradient analysis for Chinese cities. Glob. Change Biol. 2021, 27, 2895–2904. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Zhou, G.; Mao, F.; Zhu, D.; Zhang, M.; Xu, Y.; Zhou, L.; Huang, Z. Spatiotemporal patterns of remotely sensed phenology and their response to climate change and topography in subtropical bamboo forests during 2001–2017: A case study in Zhejiang Province, China. GISci. Remote Sens. 2023, 60, 2163575. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, L.; Lin, A.; Liu, Z.; Li, Q.; Qu, S. Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin, China. Ecol. Indic. 2020, 108, 105760. [Google Scholar] [CrossRef]
- Vitasse, Y.; Signarbieux, C.; Fu, Y.H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. USA 2018, 115, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Niu, C.; Liu, X.; Hu, T.; Feng, Y.; Zhao, Y.; Liu, S.; Liu, Z.; Dai, G.; Zhang, Y.; et al. Canopy structure regulates autumn phenology by mediating the microclimate in temperate forests. Nat. Clim. Change 2024, 14, 1299–1305. [Google Scholar] [CrossRef]
- Jucker, T.; Hardwick, S.; Both, S.; Elias, D.; Ewers, R.; Milodowski, D.; Swinfield, T.; Coomes, D. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Change Biol. 2018, 24, 5243–5258. [Google Scholar] [CrossRef]
- Smith-Tripp, S.M.; Eskelson, B.N.I.; Coops, N.C.; Schwartz, N.B. Canopy height impacts on the growing season and monthly microclimate in a burned forest of British Columbia, Canada. Agric. For. Meteorol. 2022, 323, 109067. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Osada, N.; Hiura, T. Intraspecific differences in spring leaf phenology in relation to tree size in temperate deciduous trees. Tree Physiol. 2019, 39, 782–791. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Yang, Z.; Yang, Q.; Liu, W.; Huang, G.; Ren, Y.; Cheng, K.; Xiang, T.; Chen, M.; et al. Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data. Earth Syst. Sci. Data 2024, 16, 5267–5285. [Google Scholar] [CrossRef]
- Lorer, E.; Verheyen, K.; Blondeel, H.; De Pauw, K.; Sanczuk, P.; De Frenne, P.; Landuyt, D. Forest understorey flowering phenology responses to experimental warming and illumination. New Phytol. 2024, 241, 1476–1491. [Google Scholar] [CrossRef]
- Keenan, T.; Gray, J.; Friedl, M.; Toomey, M.; Bohrer, G.; Hollinger, D.; Munger, J.; O’Keefe, J.; Schmid, H.; Suewing, I.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Osada, N. Differential springtime branch warming controls intra-crown nitrogen allocation and leaf photosynthetic traits in understory saplings of a temperate deciduous species. Oecologia 2021, 196, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Balzarolo, M.; Valdameri, N.; Fu, Y.; Schepers, L.; Janssens, I.; Campioli, M. Different determinants of radiation use efficiency in cold and temperate forests. Glob. Ecol. Biogeogr. 2019, 28, 1649–1667. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Papale, D.; Ardö, J.; Goulden, M.L.; Kiely, G.; Richardson, A.D.; Rotenberg, E.; Veenendaal, E.M.; Filella, I. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial eco-systems. Glob. Ecol. Biogeogr. 2010, 19, 253–267. [Google Scholar] [CrossRef]
- Chasmer, L.; McCaughey, H.; Barr, A.; Black, A.; Shashkov, A.; Treitz, P.; Zha, T. Investigating light-use efficiency across a jack pine chronosequence during dry and wet years. Tree Physiol. 2008, 28, 1395–1406. [Google Scholar] [CrossRef]
- Mäkelä, A.; Pulkkinen, M.; Kolari, P.; Lagergren, F.; Berbigier, P.; Lindroth, A.; Loustau, D.; Nikinmaa, E.; Vesala, T.; Hari, P. Developing an empirical model of stand GPP with the LUE approach: Analysis of eddy covariance data at five contrasting conifer sites in Europe. Glob. Change Biol. 2008, 14, 92–108. [Google Scholar] [CrossRef]
- Inner Mongolia Statistical Bureau. Inner Mongolia Statistical Yearbook 2020; Inner Mongolia Statistical Bureau: Hohhot, China, 2020. [Google Scholar]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Zhou, Y. Urbanization impacts on vegetation phenology in China. Remote Sens. 2018, 10, 1905. [Google Scholar] [CrossRef]
- Yin, P.; Li, X.; Mao, J.; Johnson, B.A.; Wang, B.; Huang, J. A comprehensive analysis of the crop effect on the urban-rural differences in land surface phenology. Sci. Total Environ. 2023, 861, 160604. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, Y.; Roman, M.O.; Stokes, E.C.; Wang, Z.; Asrar, G.R.; Mao, J.; Richardson, A.D.; Gu, L.; Wang, Y. Artificial light at night: An underappreciated effect on phenology of deciduous woody plants. PNAS Nexus 2022, 1, pgac046. [Google Scholar] [CrossRef]
- Wang, L.; De Boeck, H.J.; Chen, L.; Song, C.; Chen, Z.; McNulty, S.; Zhang, Z. Urban warming increases the temperature sensitivity of spring vegetation phenology at 292 cities across China. Sci. Total Environ. 2022, 834, 155154. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Liu, B.; Tian, Y.; Guo, M.; Tran, D.; Alwah, A.; Xu, D. Evaluating the disparity between supply and demand of park green space using a multi-dimensional spatial equity evaluation framework. Cities 2022, 121, 103484. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Shi, W.; Deng, Z.; Wang, H. Residential clustering and spatial access to public services in Shanghai. Habitat Int. 2015, 46, 119–129. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Modell. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Yin, J.; Wu, X.; Shen, M.; Zhang, X.; Zhu, C.; Xiang, H.; Shi, C.; Guo, Z.; Li, C. Impact of urban greenspace spatial pattern on land surface temperature: A case study in Beijing metropolitan area, China. Landsc. Ecol. 2019, 34, 2949–2961. [Google Scholar] [CrossRef]
- Xue, Z.; Meng, X.; Liu, B. Spatiotemporal evolution and driving factors of ecosystem services in the upper Fenhe watershed, China. Ecol. Indic. 2024, 160, 111803. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.; Jin, C.; Xiao, X.; Xia, J. Spatiotemporal patterns of vegetation phenology along the urban–rural gradient in Coastal Dalian, China. Urban For. Urban Green. 2020, 54, 126784. [Google Scholar] [CrossRef]
- Klosterman, S.; Melaas, E.; Wang, J.; Martinez, A.; Frederick, S.; O’Keefe, J.; Orwig, D.A.; Wang, Z.; Sun, Q.; Schaaf, C.; et al. Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography. Agric. For. Meteorol. 2018, 248, 397–407. [Google Scholar] [CrossRef]
- Misra, G.; Buras, A.; Heurich, M.; Asam, S.; Menzel, A. LiDAR derived topography and forest stand characteristics largely explain the spatial variability observed in MODIS land surface phenology. Remote Sens. Environ. 2018, 218, 231–244. [Google Scholar] [CrossRef]
- Xie, Y.; Ahmed, K.F.; Allen, J.M.; Wilson, A.M.; Silander, J.A. Green-up of deciduous forest communities of northeastern North America in response to climate variation and climate change. Landsc. Ecol. 2015, 30, 109–123. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, B.; Henderson, M.; Shen, X.; Su, Y.; Zhou, W. Changing spring phenology of northeast China forests during rapid warming and short-term slowdown periods. Forests 2022, 13, 2173. [Google Scholar] [CrossRef]
- Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 2012, 18, 656–674. [Google Scholar] [CrossRef]
- Tian, R.; Liu, L.; Zheng, J.; Li, J.; Han, W.; Liu, Y. Combined Effects of Meteorological Factors, Terrain, and Greenhouse Gases on Vegetation Phenology in Arid Areas of Central Asia from 1982 to 2021. Land 2024, 13, 180. [Google Scholar] [CrossRef]
- Hua, X.B.; Ohlemüller, R.; Sirguey, P. Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environ. Adv. 2022, 8, 100234. [Google Scholar] [CrossRef]
- An, S.; Zhang, X.; Chen, X.; Yan, D.; Henebry, G. An Exploration of Terrain Effects on Land Surface Phenology across the Qinghai–Tibet Plateau Using Landsat ETM+ and OLI Data. Remote Sens. 2018, 10, 1069. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Wu, T.; Ding, Y.; Xin, Y.; Zou, D.; Xiao, Y.; Jiao, Y.; Qin, Y.; Sun, L. Temporal and spatial variations of global solar radiation over the Qinghai-Tibetan Plateau during the past 40 years. Theor. Appl. Climatol. 2013, 113, 573–583. [Google Scholar] [CrossRef]
- Li, D.; Stucky, B.J.; Baiser, B.; Guralnick, R. Urbanization delays plant leaf senescence and extends growing season length in cold but not in warm areas of the Northern Hemisphere. Glob. Ecol. Biogeogr. 2022, 31, 308–320. [Google Scholar] [CrossRef]
- Desta, F.; Colbert, J.J.; Rentch, J.S.; Gottschalk, K.W. Aspect induced differences in vegetation, soil, and microclimatic characteristics of an Appalachian watershed. Castanea 2004, 69, 92–108. [Google Scholar] [CrossRef]
- Radcliffe, D.C.; Matthews, S.N.; Hix, D.M. Beyond oak regeneration: Modeling mesophytic sapling density drivers along topographic, edaphic, and stand-structural gradients in mature oak-dominated forests of Appalachian Ohio. Can. J. For. Res. 2020, 50, 1215–1227. [Google Scholar] [CrossRef]
- Ding, C.; Li, Y.; Xie, Q.; Li, H.; Zhang, B. Impacts of terrain on land surface phenology derived from Harmonized Landsat 8 and Sentinel-2 in the Tianshan Mountains, China. GISci. Remote Sens. 2023, 60, 2242621. [Google Scholar] [CrossRef]
- Vitasse, Y.; Baumgarten, F.; Zohner, C.M.; Kaewthongrach, R.; Fu, Y.H.; Walde, M.G.; Moser, B. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytol. 2021, 232, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, W.; Wu, X.; Yao, M.; Niu, F.; Lin, Z. Heterogeneity of Surface heat exchange of slopes and potential drivers of the initiation of thaw slump, Qinghai-Tibet Plateau. Int. J. Disaster Risk Sci. 2023, 14, 549–565. [Google Scholar] [CrossRef]
- de Souza, A.C.P.; da Costa, R.C. Differences in leaf phenology between juvenile and adult individuals of two tree species in a seasonally dry tropical woodland. Aust. Ecol. 2020, 45, 240–248. [Google Scholar] [CrossRef]
- Vinod, N.; Slot, M.; McGregor, I.R.; Ordway, E.M.; Smith, M.N.; Taylor, T.C.; Sack, L.; Buckley, T.N.; Anderson-Teixeira, K.J. Thermal sensitivity across forest vertical profiles: Patterns, mechanisms, and ecological implications. New Phytol. 2023, 237, 22–47. [Google Scholar] [CrossRef]
- Timmers, R.; van Kuijk, M.; Verweij, P.A.; Ghazoul, J.; Hautier, Y.; Laurance, W.F.; Arriaga-Weiss, S.L.; Askins, R.A.; Battisti, C.; Berg, Å.; et al. Conservation of birds in fragmented landscapes requires protected areas. Front. Ecol. Environ. 2022, 20, 361–369. [Google Scholar] [CrossRef]
NO. | Mean Forest SOS (DOY) | Mean Forest EOS (DOY) |
---|---|---|
1 | q (X1 ∩ X2) < Min (q (X1), q (X2)) | The factors nonlinearly weaken each other. |
2 | Min (q (X1), q (X2)) < q (X1 ∩ X2) < Max (q (X1), q (X2)) | One factor nonlinearly weakens the other. |
3 | q (X1 ∩ X2) > Max (q (X1), q (X2)) | The factors bilaterally enhance each other. |
4 | q (X1 ∩ X2) = q (X1) + q (X2) | The factors are independent of each other. |
5 | q (X1 ∩ X2) > q (X1) + q (X2) | The factors nonlinearly enhance each other. |
Aspect Type | Mean Forest SOS (DOY) | Mean Forest EOS (DOY) |
---|---|---|
North | 117.99 | 276.85 |
Northeast | 117.76 | 277.40 |
East | 117.65 | 278.42 |
Southeast | 117.86 | 279.00 |
South | 118.24 | 279.25 |
Southwest | 118.43 | 278.98 |
West | 118.46 | 278.17 |
Northwest | 118.34 | 277.15 |
Aspect | Mean Pre-Season Temperature (°C) | Mean Pre-Season Precipitation (mm) | Mean Autumn Temperature (°C) | Mean Autumn Precipitation (mm) |
---|---|---|---|---|
North | −6.218 | 534.79 | 0.393 | 3336.51 |
Northeast | −6.140 | 562.50 | 0.410 | 3403.40 |
East | −6.148 | 569.49 | 0.387 | 3411.87 |
Southeast | −6.200 | 571.83 | 0.338 | 3427.94 |
South | −6.199 | 565.76 | 0.354 | 3424.64 |
Southwest | −6.202 | 551.19 | 0.375 | 3389.15 |
West | −6.224 | 525.08 | 0.403 | 3319.87 |
Northwest | −6.267 | 520.50 | 0.384 | 3301.01 |
Independent Variable | β | p | VIF |
---|---|---|---|
Forest SOS: R2 = 0.329 | |||
Intercept | 118.371 | <0.001 | – |
Temperature | 0.389 | <0.001 | 1.796 |
Precipitation | 0.060 | <0.001 | 1.305 |
Elevation | 0.009 | <0.001 | 2.024 |
Slope | −1.484 | <0.001 | 1.317 |
Forest Height | −0.113 | =0.062 | 1.548 |
Forest EOS: R2 = 0.315 | |||
Intercept | 282.275 | <0.001 | – |
Temperature | 0.621 | <0.001 | 1.532 |
Precipitation | −0.010 | <0.001 | 1.088 |
Elevation | −0.007 | <0.001 | 1.815 |
Slope | 0.559 | <0.001 | 1.254 |
Forest Height | 0.196 | <0.001 | 1.368 |
Interactive Variables | q | Interactive Type | |
---|---|---|---|
Forest SOS | |||
Temperature ∩ Precipitation | 0.350 | Enhance | B |
Temperature ∩ Elevation | 0.435 | N | |
Temperature ∩ Slope | 0.408 | B | |
Temperature ∩ Forest Height | 0.307 | N | |
Precipitation ∩ Elevation | 0.258 | N | |
Precipitation ∩ Slope | 0.302 | B | |
Precipitation ∩ Forest Height | 0.174 | N | |
Elevation ∩ Slope | 0.323 | N | |
Elevation ∩ Forest Height | 0.175 | N | |
Slope ∩ Forest Height | 0.211 | B | |
Forest EOS | |||
Temperature ∩ Precipitation | 0.366 | Enhance | N |
Temperature ∩ Elevation | 0.366 | B | |
Temperature ∩ Slope | 0.372 | N | |
Temperature ∩ Forest Height | 0.349 | B | |
Precipitation ∩ Elevation | 0.304 | N | |
Precipitation ∩ Slope | 0.078 | N | |
Precipitation ∩ Forest Height | 0.143 | N | |
Elevation ∩ Slope | 0.288 | N | |
Elevation ∩ Forest Height | 0.251 | B | |
Slope ∩ Forest Height | 0.118 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Wang, L.; Liu, B.; Yao, Y.; Xu, D. Phenological Spatial Divergences Promoted by Climate, Terrain, and Forest Height in a Cold Temperate Forest Landscape: A Case Study of the Greater Khingan Mountain in Hulun Buir, China. Forests 2025, 16, 490. https://doi.org/10.3390/f16030490
Tian Y, Wang L, Liu B, Yao Y, Xu D. Phenological Spatial Divergences Promoted by Climate, Terrain, and Forest Height in a Cold Temperate Forest Landscape: A Case Study of the Greater Khingan Mountain in Hulun Buir, China. Forests. 2025; 16(3):490. https://doi.org/10.3390/f16030490
Chicago/Turabian StyleTian, Yu, Lei Wang, Bingxi Liu, Yunlong Yao, and Dawei Xu. 2025. "Phenological Spatial Divergences Promoted by Climate, Terrain, and Forest Height in a Cold Temperate Forest Landscape: A Case Study of the Greater Khingan Mountain in Hulun Buir, China" Forests 16, no. 3: 490. https://doi.org/10.3390/f16030490
APA StyleTian, Y., Wang, L., Liu, B., Yao, Y., & Xu, D. (2025). Phenological Spatial Divergences Promoted by Climate, Terrain, and Forest Height in a Cold Temperate Forest Landscape: A Case Study of the Greater Khingan Mountain in Hulun Buir, China. Forests, 16(3), 490. https://doi.org/10.3390/f16030490