Long-Term Effects of Biochar Application on Soil Heterotrophic Respiration in a Warm–Temperate Oak Forest
<p>Temporal changes in (<b>a</b>) soil respiration rate (<span class="html-italic">R</span><sub>S</sub>) and (<b>b</b>) heterotrophic respiration rate (<span class="html-italic">R</span><sub>H</sub>) in the plots with or without biochar. C0, C5, and C10 represent the experimental plots with 0, 5, and 10 Mg ha<sup>−1</sup> biochar application, respectively. Values are means (<span class="html-italic">n</span> = 3–4).</p> "> Figure 2
<p>Temporal changes in (<b>a</b>) soil temperature and (<b>b</b>) soil moisture (volumetric soil water content) recorded during the respiration measurements in plots with or without biochar. C0, C5, and C10 represent experimental plots with 0, 5, and 10 Mg ha<sup>−1</sup> biochar application, respectively. Values are means (<span class="html-italic">n</span> = 3–4).</p> "> Figure 3
<p>Soil pH in plots with or without biochar. C0, C5, and C10 represent experimental plots with 0, 5, and 10 Mg ha<sup>−1</sup> biochar application, respectively. Bars and error bars indicate the mean ± SD (<span class="html-italic">n</span> = 4). Bars labeled with different lowercase letters differ significantly (Tukey’s test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Soil microbial biomass carbon determined with the adenosine triphosphate method in plots with or without biochar. C0, C5, and C10 represent experimental plots with 0, 5, and 10 Mg ha<sup>−1</sup> biochar application, respectively. Bars and error bars represent the mean ± SD (<span class="html-italic">n</span> = 4). Bars labeled with different lowercase letters differ significantly (Tukey’s test, <span class="html-italic">p</span> < 0.05). n.d., not determined.</p> "> Figure 5
<p>(<b>a</b>) Annual soil respiration (SR) and (<b>b</b>) annual heterotrophic respiration (HR) in the plots with or without biochar from the second to the eighth year. C0, C5, and C10 represent the experimental plots with 0, 5, and 10 Mg ha<sup>−1</sup> biochar application, respectively. Bars and error bars represent the mean ± SD (<span class="html-italic">n</span> = 4). Bars labeled with different lowercase letters differ significantly (Tukey’s test, <span class="html-italic">p</span> < 0.05). n.d., not determined.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Plots
2.3. Measurement of Soil Respiration
2.4. Separation of HR from SR
2.5. Measurement of Physiological and Biological Soil Parameters
2.6. Data Processing
2.7. Statistical Analysis
3. Results
3.1. Temporal Variation of RS and RH
3.2. Soil Environmental Factors
3.3. Relationship Between Soil Temperature and Respiration
3.4. Annual SR and HR
4. Discussion
4.1. Long-Term Temporal Variation of SR and HR
4.2. Excess Carbon Emission from the Plots with Biochar Application
4.3. Factors That Stimulate Microbial Organic Matter Decomposition After Biochar Application
4.4. Effectiveness of Carbon Sequestration Using Biochar in Forests and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J. Bio-Energy in the Black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Wu, W.; Yang, M.; Feng, Q.; McGrouther, K.; Wang, H.; Lu, H.; Chen, Y. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg. 2012, 47, 268–276. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2020, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Devonshire, B.J.; Brookes, P.C. Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol. Biochem. 2013, 57, 513–523. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Chang, S.X.; Yang, Y.; Fu, S.; Jiang, P.; Luo, Y.; Yang, M.; Chen, Z.; Hu, S.; et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol. Biochem. 2018, 122, 173–185. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Azim, R.; Wang, Q.; Sadiq, M.; Zhou, X.; Zhang, D.; Zhao, X.; Xu, Y.; Sun, Y.; Qi, W.; Zhu, J.; et al. Exploring the potential of straw and biochar application on soil quality indicators and crop yield in semi-arid regions. J. Soil Sci. Plant Nutr. 2024, 24, 1907–1923. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, L.; Wang, M.; Sun, S.; Yang, Y.; Xu, C. Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability 2024, 16, 6397. [Google Scholar] [CrossRef]
- Gundale, M.J.; Nilsson, M.C.; Pluchon, N.; Wardle, D.A. The effect of biochar management on soil and plant community properties in a boreal forest. GCB Bioenergy 2016, 8, 777–789. [Google Scholar] [CrossRef]
- Palviainen, M.; Berninger, F.; Bruckman, V.J.; Köster, K.; de Assumpção, C.R.M.; Aaltonen, H.; Makita, N.; Mishra, A.; Kulmala, L.; Adamczyk, B.; et al. Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant Soil 2018, 425, 71–85. [Google Scholar] [CrossRef]
- Yasuki, N.; Saso, W.; Koizumi, H.; Iimura, Y.; Ohtsuka, T.; Yoshitake, S. Decrease in inorganic nitrogen and net nitrogen transformation rates with biochar application in a warm-temperate broadleaved forest. Forests 2024, 15, 572. [Google Scholar] [CrossRef]
- Ge, X.; Cao, Y.; Zhou, B.; Xiao, W.; Tian, X.; Li, M.H. Combined application of biochar and N increased temperature sensitivity of soil respiration but still decreased the soil CO2 emissions in moso bamboo plantations. Sci. Total Environ. 2020, 730, 139003. [Google Scholar] [CrossRef]
- Xu, L.; Fang, H.; Deng, X.; Ying, J.; Lv, W.; Shi, Y.; Zhou, G.; Zhou, Y. Biochar application increased ecosystem carbon sequestration capacity in a Moso bamboo forest. For. Ecol. Manag. 2020, 475, 118447. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, T.; Pumpanen, J.; Palviainen, M.; Zhou, X.; Kulmala, L.; Bruckman, V.J.; Köster, E.; Köster, K.; Aaltonen, H.; et al. Short-term effects of biochar on soil CO2 efflux in boreal Scots pine forests. Ann. For. Sci. 2020, 77, 59. [Google Scholar] [CrossRef]
- Sackett, T.E.; Basiliko, N.; Noyce, G.L.; Winsborough, C.; Schurman, J.; Ikeda, C.; Thomas, S.C. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 2015, 7, 1062–1074. [Google Scholar] [CrossRef]
- Zhou, G.; Hhou, X.; Zhang, T.; Du, Z.; He, Y.; Wang, X.; Shao, J.; Cao, Y.; Xue, S.; Wang, H.; et al. Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. For. Ecol. Manag. 2017, 405, 339–349. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Larionova, A.A. Root and rhizomicrobial respiration: A review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J. Plant Nutr. Soil Sci. 2005, 168, 503–520. [Google Scholar] [CrossRef]
- Li, Y.F.; Hu, S.D.; Chen, J.H.; Muller, K.; Li, Y.C.; Fu, W.J.; Lin, Z.W.; Wang, H.L. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. J. Soil. Sediment. 2017, 18, 546–563. [Google Scholar] [CrossRef]
- Sun, N.; Sarkar, B.; Li, S.; Tian, Y.; Sha, L.; Gao, Y.; Luo, X.; Yang, X. Biochar addition increased soil carbon storage but did not exacerbate soil carbon emission in young subtropical plantation forest. Forests 2024, 15, 917. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Tomotsune, M.; Ando, M.; Tsukimori, Y.; Koizumi, H.; Yoshitake, S. Effects of the application of biochar to plant growth and net primary production in an oak forest. Forests 2021, 12, 152. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Tomotsune, M.; Masuda, R.; Yoshitake, S.; Anzai, T.; Koizumi, H. Seasonal and inter-annual variations in contribution ratio of heterotrophic respiration to soil respiration in a cool-temperate deciduous forest. J. Geogr. 2013, 122, 745–754. [Google Scholar] [CrossRef]
- Olson, J. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Nakane, K.; Kohno, T.; Horikoshi, T. Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest. Ecol. Res. 1996, 11, 111–119. [Google Scholar] [CrossRef]
- Nakane, K. A mathematical model of the behavior and vertical distribution of organic carbon in forest Soils ll. A revised model taking the supply of root litter into consideration. Jap. J. Ecol. 1978, 28, 169–177. [Google Scholar]
- Oades, J.M.; Jenkinson, D.S. Adenosine triphosphate content of the soil microbial biomass. Soil Biol. Biochem. 1979, 11, 201–204. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Abiven, S.; Hund, A.; Martinsen, V.; Cornelissen, G. Biochar amendment increases maize root surface areas and branching: A shovelomics study in Zambia. Plant Soil 2015, 395, 45–55. [Google Scholar] [CrossRef]
- Ventura, M.; Zhang, C.; Baldi, E.; Fornasier, F.; Sorrenti, G.; Panzacchi, P.; Tonon, G. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur. J. Soil Sci. 2014, 65, 186–195. [Google Scholar] [CrossRef]
- Razaq, M.; Salahuddin; Shen, H.L.; Sher, H.; Zhang, P. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono. Sci. Rep. 2017, 7, 5367. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, A.J.; Soong, R.; Simpson, M.J. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol. Biochem. 2015, 81, 244–254. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Wang, H.; Singh, B.P.; Hu, S.; Luo, Y.; Li, J.; Xiao, Y.; Cai, X.; Li, Y. Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agric. For. Meteorol. 2019, 271, 168–179. [Google Scholar] [CrossRef]
- Jones, D.L.; Murphy, D.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 2011, 43, 1723–1731. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef]
- Spokas, K.A. Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 2013, 5, 165–176. [Google Scholar] [CrossRef]
- Yoo, G.; Kang, H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J. Environ. Qual. 2012, 41, 1193–1202. [Google Scholar] [CrossRef]
- Minamino, Y.; Fujitake, N.; Suzuki, T.; Yoshitake, S.; Koizumi, H.; Tomotsune, M. Effect of biochar addition on leaf-litter decomposition at soil surface during three years in a warm-temperate secondary deciduous forest, Japan. Sci. Rep. 2019, 9, 16961. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Meyer, S.; Bright, R.M.; Fischer, D.; Schulz, H.; Glaser, B. Albedo impact on the suitability of biochar systems to mitigate global warming. Environ. Sci. Technol. 2012, 46, 12726–12734. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Herbert, S.; Xing, B. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Hassink, J.; Neutel, A.M.; De ruiter, P.C. C and N mineralization in sandy and loamy grassland soils: The role of microbes and microfauna. Soil Biol. Biochem. 1994, 26, 1565–1571. [Google Scholar] [CrossRef]
- Ge, X.; Cao, Y.; Zhou, B.; Wang, X.; Yang, Z.; Li, M.H. Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations. Appl. Soil Ecol. 2019, 142, 155–165. [Google Scholar] [CrossRef]
- Steiner, C.; De Arruda, M.R.; Teixeira, W.G.; Zech, W. Soil respiration curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal, and mineral or organic fertilisers. Trop. Sci. 2007, 47, 218–230. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Liu, X.; Yan, Q.; Hu, Y. Short-term impact of fire-deposited charcoal on soil microbial community abundance and composition in a subtropical plantation in China. Geoderma 2020, 359, 113992. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Metaanalysis of decomposition and priming effects. Glob. Change Biol. 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Iimura, Y.; Natsuhara, M.; Ohtsuka, T.; Tomotsune, M.; Yoshitake, S.; Koizumi, H. Priming effect of Miscanthus sinensis derived biochar on brown forest soil. J. Soil Sci. Plant Nutr. 2019, 65, 550–556. [Google Scholar] [CrossRef]
- Uchimiya, M.; Ohno, T.; He, Z. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. J. Anal. Appl. Pyrolysis 2013, 104, 84–94. [Google Scholar] [CrossRef]
Year | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R20 | Q10 | R20 | Q10 | R20 | Q10 | R20 | Q10 | R20 | Q10 | R20 | Q10 | R20 | Q10 | R20 | Q10 | |
Soil respiration rate (RS) | ||||||||||||||||
C0 | n.d. | n.d. | 432 a | 3.12 a | 349 a | 3.10 a | 421 a | 3.57 a | 380 a | 2.75 a | 444 a | 4.01 a | 409 a | 3.72 a | 376 a | 2.49 a |
C5 | n.d. | n.d. | 461 ab | 2.91 a | 388 ab | 2.91 a | 453 a | 3.30 ab | 439 b | 2.79 a | 480 a | 3.39 a | 454 ab | 3.67 a | 413 a | 2.26 a |
C10 | n.d. | n.d. | 500 b | 2.95 a | 421 b | 3.09 a | 457 a | 2.95 b | 425 ab | 2.96 a | 466 a | 3.40 a | 476 b | 3.47 a | 410 a | 2.26 a |
Heterotrophic respiration (RH) | ||||||||||||||||
C0 | n.d. | n.d. | n.d. | n.d. | 266 a | 8.55 a | 363 a | 4.52 a | 346 a | 2.94 a | 363 a | 3.79 a | 346 a | 4.14 a | 308 a | 2.38 a |
C5 | n.d. | n.d. | n.d. | n.d. | 331 ab | 5.22 a | 405 a | 3.88 a | 410 a | 2.80 a | 419 a | 3.54 a | 438 b | 3.86 a | 349 a | 2.39 a |
C10 | n.d. | n.d. | n.d. | n.d. | 358 b | 7.77 a | 350 a | 4.30 a | 343 a | 2.65 a | 384 a | 3.93 a | 362 ab | 3.84 a | 302 a | 2.30 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshitake, S.; Enichi, K.; Tsukimori, Y.; Ohtsuka, T.; Koizumi, H.; Tomotsune, M. Long-Term Effects of Biochar Application on Soil Heterotrophic Respiration in a Warm–Temperate Oak Forest. Forests 2025, 16, 489. https://doi.org/10.3390/f16030489
Yoshitake S, Enichi K, Tsukimori Y, Ohtsuka T, Koizumi H, Tomotsune M. Long-Term Effects of Biochar Application on Soil Heterotrophic Respiration in a Warm–Temperate Oak Forest. Forests. 2025; 16(3):489. https://doi.org/10.3390/f16030489
Chicago/Turabian StyleYoshitake, Shinpei, Kakuya Enichi, Yuki Tsukimori, Toshiyuki Ohtsuka, Hiroshi Koizumi, and Mitsutoshi Tomotsune. 2025. "Long-Term Effects of Biochar Application on Soil Heterotrophic Respiration in a Warm–Temperate Oak Forest" Forests 16, no. 3: 489. https://doi.org/10.3390/f16030489
APA StyleYoshitake, S., Enichi, K., Tsukimori, Y., Ohtsuka, T., Koizumi, H., & Tomotsune, M. (2025). Long-Term Effects of Biochar Application on Soil Heterotrophic Respiration in a Warm–Temperate Oak Forest. Forests, 16(3), 489. https://doi.org/10.3390/f16030489