Experimental Evaluation of Concrete Blended with Eco-Friendly Bio-Sulfur as a Cement Replacement Material
<p>Process for the production of BS.</p> "> Figure 2
<p>BS production process using a bio-reactor.</p> "> Figure 3
<p>Bio-sulfur.</p> "> Figure 4
<p>Slump of fresh mortar.</p> "> Figure 5
<p>Compressive strength of mortar.</p> "> Figure 6
<p>Compressive strength of mortar.</p> "> Figure 7
<p>Slump and flow of fresh concrete.</p> "> Figure 8
<p>28 d unit weight of concrete.</p> "> Figure 9
<p>Compressive strength of concrete according to BS admixture rate.</p> "> Figure 10
<p>UPV of concrete according to BS admixture rate.</p> "> Figure 11
<p>XRD analysis of concrete.</p> "> Figure 12
<p>Regression analysis between compressive strength and UPV on concrete.</p> ">
Abstract
:1. Introduction
2. Bio-Sulfur
2.1. Production Process
2.2. Modification
3. Experimental Procedure
3.1. Experimental Plan
3.2. Materials
3.3. Concrete Mix Proportion and Test Method
4. Results and Discussion
4.1. Results of Mortar Evaluation
4.1.1. Flow of Mortar
4.1.2. Compressive Strength of Mortar
4.2. Results of Concrete Evaluation
4.2.1. Slump, Flow and Unit Weight of Concrete
4.2.2. Compressive Strength of Concrete
4.2.3. Ultrasonic Pulse Velocity of Concrete
4.3. Results of XRD
4.4. Results of Regression Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kishore, K.; Gupta, N. Application of domestic & industrial waste materials in concrete: A review. Mater. Today Proc. 2020, 26, 2926–2931. [Google Scholar]
- Dash, M.K.; Patro, S.K.; Rath, A.K. Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete—A review. Int. J. Sustain. Built Environ. 2016, 5, 484–516. [Google Scholar] [CrossRef]
- Shukla, A.; Gupta, N.; Goel, R.; Kumar, S. Study on the Behaviour of Green Concrete by the use of Industrial waste Material: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 804, 012036. [Google Scholar] [CrossRef]
- Kim, T.; Tae, S.; Roh, S. Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system. Renew. Sustain. Energy Rev. 2013, 25, 729–741. [Google Scholar] [CrossRef]
- Latawiec, R.; Woyciechowski, P.; Kowalski, K.J. Sustainable concrete performance—CO2-emission. Environments 2018, 5, 27. [Google Scholar] [CrossRef]
- Lum, M.M.X.; Ng, K.H.; Lai, S.Y.; Mohamed, A.R.; Alsultan, A.G.; Taufiq-Yap, Y.H.; Koh, M.K.; Mohamed, M.A.; Vo, D.V.; Subramaniam, M.; et al. Sulfur dioxide catalytic reduction for environmental sustainability and circular economy: A review. Process Saf. Environ. Prot. 2023, 176, 580–604. [Google Scholar] [CrossRef]
- Yuan, X.; Teng, Y.; Yuan, Q.; Liu, M.; Fan, X.; Wang, Q.; Ma, Q.; Hong, J.; Zuo, J. Economic transition and industrial sulfur dioxide emissions in the Chinese economy. Sci. Total Environ. 2020, 744, 140826. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, S.H.; Jang, Y.I.; Park, H.M. Evaluation of reducing no and SO2 concentration in nano SiO2-TiO2 photocatalytic concrete blocks. Materials 2021, 14, 7182. [Google Scholar] [CrossRef]
- Han, G.B.; Park, N.K.; Lee, J.D.; Ryu, S.O.; Lee, T.J. A study on the characteristics of the SO2 reduction using coal gas over SnO2-ZrO2 catalysts. Catal. Today 2006, 111, 205–211. [Google Scholar] [CrossRef]
- Pei-dong, Z.; Guomei, J.; Gang, W. Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China. Renew. Sustain. Energy Rev. 2007, 11, 1903–1912. [Google Scholar] [CrossRef]
- Ikhile, E.; SCF, E.; Elkamel, A.; Ahmadi, L.; Yetilmezsoy, K. Modeling the dispersion of NOx and SO2 emissions from a proposed biogas producing facility. Glob. Nest J. 2016, 18, 674–689. [Google Scholar]
- Fediuk, R.; Mugahed Amran, Y.H.; Mosaberpanah, M.A.; Danish, A.; El-Zeadani, M.; Klyuev, S.V.; Vatin, N. A critical review on the properties and applications of sulfur-based concrete. Materials 2020, 13, 4712. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Lu, X.; Zhao, J.; He, R.; Chen, H.; Geng, Y. Influence of industrial by-product sulfur powder on properties of cement-based composites for sustainable infrastructures. Constr. Build. Mater. 2023, 367, 130171. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Evtushenko, A.; Chernil’nik, A.; El’shaeva, D.; Karalar, M.; et al. Physical, mechanical and structural characteristics of sulfur concrete with bitumen modified sulfur and fly ash. J. Compos. Sci. 2023, 7, 356. [Google Scholar] [CrossRef]
- Shim, M.; Park, J.; Lee, M.; Kwon, I. Development of Bridge Deck Technology Using Bio-sulfur Concrete with Rapid-setting Cement. J. Korea Concr. Inst. 2024, 36, 309–315. [Google Scholar] [CrossRef]
- Bae, S.G.; Gwon, S.W.; Kim, S.W.; Cha, S.W. Physical properties of sulfur concrete with modified sulfur binder. KSCE J. Civ. Environ. Eng. Res. 2014, 34, 763–771. [Google Scholar]
- Vlahovic, M.M.; Martinovic, S.P.; Boljanac, T.D.; Jovanic, P.B.; Volkov-Husovic, T.D. Durability of sulfur concrete in various aggressive environments. Constr. Build. Mater. 2011, 25, 3926–3934. [Google Scholar] [CrossRef]
- Gulzar, M.A.; Rahim, A.; Ali, B.; Khan, A.H. An investigation on recycling potential of sulfur concrete. J. Build. Eng. 2021, 38, 102175. [Google Scholar] [CrossRef]
- Maraghechi, H.; Fotovat Ahmadi, I.; Motahari, S. Effect of adding crumb tire rubber particles on the mechanical properties of DCPD-modified sulfur polymer mortars. J. Mech. Mater. Struct. 2012, 6, 1283–1294. [Google Scholar] [CrossRef]
- Colorado, H.A.; Yuan, W.; Meza, J.; Jaramillo, F.; Gutierrez-Velasquez, E.I. Enhancing Thermomechanical Strength and Thermal Stability of Poly (dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications. Polymers 2023, 15, 4418. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, T.J.; Qin, L.; Jin, Y. Urea particle coating for controlled release by using DCPD modified sulfur. Powder Technol. 2008, 183, 88–93. [Google Scholar] [CrossRef]
- ACI 347R; Guide to Formwork for Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2014.
- BS 8010; Pipeline Systems. BSI Group: London, UK, 2024.
- Abdel Hamid, M.F.; Aboul-Fotouh, T.M.; El-Shafie, M.A. A comparison between Claus and THIOPAQ sulfur recovery techniques in natural gas plants. J. Eng. Appl. Sci. 2024, 71, 27. [Google Scholar] [CrossRef]
- Lee, H.; Cody, R.D.; Cody, A.M.; Spry, P.G. The formation and role of ettringite in Iowa highway concrete deterioration. Cem. Concr. Res. 2005, 35, 332–343. [Google Scholar] [CrossRef]
- ISO 679; Cement, Test Methods, Determination of Strength. International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- ASTM C31/C31M-18; Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International: West Conshohocken, PA, USA, 2018; 6p.
- ASTM C 143/C 143 M; Standard Test Method for Slump of Hydraulic-Cement Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2004.
- ASTM C39/C39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM C 597-22; Standard Test Method for Ultrasonic Pulse Velocity through Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- Li, C.; Jiang, L. Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Constr. Build. Mater. 2020, 253, 119257. [Google Scholar] [CrossRef]
- Savić, A.; Martinović, S.; Vlahović, M.; Volkov-Husović, T. Effects of waste sulfur content on properties of self-compacting concrete. Mater. Constr. 2020, 70, e216. [Google Scholar] [CrossRef]
- Li, C. Relationship between water absorption and porosity in concrete with limestone powder addition. Struct. Concr. 2022, 23, 3284–3293. [Google Scholar] [CrossRef]
- Yamashita, M.; Harada, T.; Sakai, E.; Tsuchiya, K. Influence of sulfur trioxide in clinker on the hydration heat and physical properties of Portland cement. Constr. Build. Mater. 2020, 250, 118844. [Google Scholar] [CrossRef]
- Yu, L.; Yu, Q.; Liu, L. Hybrid modified wasted rubber powder and its hydration reaction in the cement-based material. Procedia Eng. 2012, 27, 394–404. [Google Scholar] [CrossRef]
- Shi, C.; Zou, X.; Wang, P. Influences of EVA and methylcellulose on mechanical properties of Portland cement-calcium aluminate cement-gypsum ternary repair mortar. Constr. Build. Mater. 2020, 241, 118035. [Google Scholar] [CrossRef]
- Othman, M.; Sarayreh, A.; Abdullah, R.; Sarbini, N.; Yassin, M.; Ahmad, H. Experimental study on lightweight concrete using lightweight expanded clay aggregate (LECA) and expanded perlite aggregate (EPA). J. Eng. Sci. Technol. 2020, 15, 1186–1201. [Google Scholar]
- Costa, C.; Marques, J.C. Feasibility of eco-friendly binary and ternary blended binders made of fly-ash and oil-refinery spent catalyst in ready-mixed concrete production. Sustainability 2018, 10, 3136. [Google Scholar] [CrossRef]
- Sua-iam, G.; Chatveera, B. A study on workability and mechanical properties of eco-sustainable self-compacting concrete incorporating PCB waste and fly ash. J. Clean. Prod. 2021, 329, 129523. [Google Scholar] [CrossRef]
- Karimaei, M.; Dabbaghi, F.; Dehestani, M.; Rashidi, M. Estimating compressive strength of concrete containing untreated coal waste aggregates using ultrasonic pulse velocity. Materials 2021, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Choi, H.; Lee, T. Residual compressive strength prediction model for concrete subject to high temperatures using ultrasonic pulse velocity. Materials 2023, 16, 515. [Google Scholar] [CrossRef] [PubMed]
- Asheghi Mehmandari, T.; Fahimifar, A.; Asemi, F. The effect of the crack initiation and propagation on the P-wave velocity of limestone and plaster subjected to compressive loading. AUT J. Civ. Eng. 2020, 4, 55–62. [Google Scholar]
- Zhang, J.; Shen, Y.; Yang, G.; Zhang, H.; Wang, Y.; Hou, X.; Sun, Q.; Li, G. Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments. J. Rock Mech. Geotech. Eng. 2021, 13, 143–153. [Google Scholar] [CrossRef]
- Nam, Y.; Kim, W.; Kim, Y.; Lee, T.; Park, S. Analysis of influence of concrete aggregate in evaluation of form removal time of concrete using ultrasonic pulse velocity methods. J. Build. Eng. 2024, 86, 108775. [Google Scholar] [CrossRef]
- ACI 314R; Guide to Simplified Design for Reinforced Concrete Buildings. American Concrete Institute: Farmington Hills, MI, USA, 2016.
Classification | Program | |
---|---|---|
Specimen dimension | Mortar (400 × 400 × 1600 mm), Concrete (Φ 100 × 200 mm) | |
Cement | Ordinary Portland cement (Type I) | |
Mineral admixture (mortar) | Bio-sulfur (0%, 3%, 6%, 9%, 12%, 15%) | |
Mineral admixture (concrete) | Bio-sulfur (0%, 5%, 7%) | |
Bio-sulfur types | BS1 | Sulfur/limestone = 1:1.5 |
BS2 | Sulfur/limestone = 1:3 | |
BS3 | Sulfur/limestone = 1:5 | |
BS4 | Sulfur/limestone = 1:1 | |
BS5 | Sulfur/limestone = 1:0.5 | |
W/B ratio | 0.40, 0.32 | |
Curing conditions | Water, Room temperature (20 ± 2 °C) | |
Curing | Mortar: 3, 7 days Concrete: 3, 7, 28 days | |
Test items | Slump, Unit weight, Compressive strength, Ultrasonic pulse velocity, XRD, Regression analysis |
Materials | Properties |
---|---|
Cement | Type I Ordinary Portland cement Density: 3.14 g/cm3, Fineness: 3200 cm2/g |
Bio-sulfur | Bio-sulfur Density: 1.41 g/cm3, Fineness: 3900 cm2/g |
Limestone | Limestone Density: 2.80 g/cm3, Fineness: 4500~5000 cm2/g |
Coarse aggregate | Crushed granite aggregate Density: 2.70 g/cm3, Absorption: 1.0% |
Fine aggregate | River sand Density: 2.63 g/cm3, Absorption: 1.3% |
Super plasticized | Polycarboxylic-based acid |
Materials | Chemical Composition (%) | ||||||
---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | K2O | |
OPC 1 | 60.34 | 19.82 | 4.85 | 3.30 | 3.83 | 2.88 | 1.08 |
BS 2 | 27.62 | 0.36 | 0.17 | 0.09 | 1.32 | 69.36 | 0.03 |
ID | W/B | S/a (%) | Unit Weight (kg/m3) | ||||
---|---|---|---|---|---|---|---|
W | C | MBS | S | G | |||
Plain40 | 0.40 | 46.0 | 160 | 400 | - | 814 | 981 |
BSC40-5 | 380 | 20 | 804 | 969 | |||
BSC40-7 | 372 | 28 | 800 | 965 | |||
Plain32 | 0.32 | 500 | - | 775 | 934 | ||
BSC32-5 | 475 | 25 | 763 | 920 | |||
BSC32-7 | 465 | 35 | 759 | 914 |
Quality | Velocity |
---|---|
Excellent | 4500 m/s or faster |
Good | 3500–4500 m/s |
Medium | 3000–3500 m/s |
Doubtful | 2000–3000 m/s |
Very weak | 2000 m/s or slower |
ID | Formula | a | b | R-Square (R2) | RMSE | p-Value |
---|---|---|---|---|---|---|
Plain40 | y = a*eb*UPV | 0.8631 | 0.0008 | 0.70 | 5.55 | <0.0001 |
BSC40-5 | 0.6678 | 0.0009 | 0.83 | 2.67 | <0.0001 | |
BSC40-7 | 0.3952 | 0.0010 | 0.83 | 2.79 | <0.0001 | |
Plain32 | 0.0047 | 0.0020 | 0.80 | 7.76 | <0.0001 | |
BSC32-5 | 0.3633 | 0.0011 | 0.89 | 10.80 | <0.0001 | |
BSC32-7 | 0.8335 | 0.0009 | 0.78 | 2.57 | <0.0001 |
Standard | Plain40 | BSC40-5 | BSC40-7 | Plain32 | BSC32-5 | BSC32-7 |
---|---|---|---|---|---|---|
ACI 347R | 4183 m/s | 4003 m/s | 4127 m/s | 4406 m/s | 4057 m/s | 4036 m/s |
BS 8010 | 3062 | 3007 | 3231 | 3832 | 3014 | 2761 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Kim, T.; Lee, T. Experimental Evaluation of Concrete Blended with Eco-Friendly Bio-Sulfur as a Cement Replacement Material. Materials 2024, 17, 6016. https://doi.org/10.3390/ma17236016
Kim W, Kim T, Lee T. Experimental Evaluation of Concrete Blended with Eco-Friendly Bio-Sulfur as a Cement Replacement Material. Materials. 2024; 17(23):6016. https://doi.org/10.3390/ma17236016
Chicago/Turabian StyleKim, Wonchang, Taehyung Kim, and Taegyu Lee. 2024. "Experimental Evaluation of Concrete Blended with Eco-Friendly Bio-Sulfur as a Cement Replacement Material" Materials 17, no. 23: 6016. https://doi.org/10.3390/ma17236016
APA StyleKim, W., Kim, T., & Lee, T. (2024). Experimental Evaluation of Concrete Blended with Eco-Friendly Bio-Sulfur as a Cement Replacement Material. Materials, 17(23), 6016. https://doi.org/10.3390/ma17236016