Enhancing Thermomechanical Strength and Thermal Stability of Poly(dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications
<p>Curing experiments conducted on DCPD–fly ash composite materials.</p> "> Figure 2
<p>Scanning electron microscopic (SEM) image of fly ash particle morphology.</p> "> Figure 3
<p>Compression test results: (<b>a</b>) selected stress–strain curves; (<b>b</b>) yielding and compressive strength values. The arrow shows the axis corresponding to the curve.</p> "> Figure 4
<p>SEM micrographs of samples post-compression testing: (<b>a</b>) 0.0 wt.%; (<b>b</b>) 1.0 wt.%; (<b>c</b>) 10.0 wt.%; and (<b>d</b>) 50.0 wt.% fly ash samples.</p> "> Figure 5
<p>Raman spectroscopic analysis of fabricated composite variants. Raman spectroscopic analysis for (<b>a</b>) fabricated composite variants, (<b>b</b>) magnification of part (<b>a</b>) between 1500 and 1750 cm<sup>−1</sup>. The arrows show the absorption band locations.</p> "> Figure 6
<p>Nanoindentation test results: (<b>a</b>) elastic modulus and (<b>b</b>) nano-hardness.</p> "> Figure 7
<p>Dynamic mechanical analysis characteristics: (<b>a</b>) storage modulus (E′), (<b>b</b>) loss modulus (E″), and (<b>c</b>) tangent δ for fly ash samples at different loading levels of 0.0 wt.%, 1.0 wt.%, 10.0 wt.%, and 50.0 wt.%.</p> "> Figure 8
<p>TGA findings: (<b>a</b>) weight loss and (<b>b</b>) heat flow.</p> ">
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, F.; Beier, U.; Wolff-Fabris, F.; Altstädt, V. Toughened High Performance Epoxy Resin System for Aerospace Applications. Sci. Eng. Compos. Mater. 2011, 18, 209–215. [Google Scholar] [CrossRef]
- Remya, V.R.; Pious, C.V.; Adeyemi, O.O.; Parani, S.; Sakho, E.H.M.; Rajendran, J.V.; Maluleke, R.; Kalarikkal, N.; Thomas, S.; Oluwafemi, O.S. Self-Assembled Nanostructured Viscoelastic and Thermally Stable High Performance Epoxy Based Nanomaterial for Aircraft and Automobile Applications: An Experimental and Theoretical Modeling Approach. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127236. [Google Scholar] [CrossRef]
- Sreejith, M.; Rajeev, R.S. Fiber Reinforced Composites for Aerospace and Sports Applications. Fiber Reinf. Compos. Const. Compat. Perspect. Appl. 2021, 821–859. [Google Scholar] [CrossRef]
- Olivera, A.F.; Chica, E.; Colorado, H.A. Evaluation of Recyclable Thermoplastics for the Manufacturing of Wind Turbines Blades H-Darrieus. Miner. Met. Mater. Ser. 2022, 341–348. [Google Scholar] [CrossRef]
- Rua, J.; Buchely, M.F.; Monteiro, S.N.; Echeverri, G.I.; Colorado, H.A. Impact Behavior of Laminated Composites Built with Fique Fibers and Epoxy Resin: A Mechanical Analysis Using Impact and Flexural Behavior. J. Mater. Res. Technol. 2021, 14, 428–438. [Google Scholar] [CrossRef]
- Oliveira, M.S.; da Luz, F.S.; Lopera, H.A.C.; Nascimento, L.F.C.; da Costa Garcia Filho, F.; Monteiro, S.N. Energy Absorption and Limit Velocity of Epoxy Composites Incorporated with Fique Fabric as Ballistic Armor—A Brief Report. Polymers 2021, 13, 2727. [Google Scholar] [CrossRef]
- Tao, G.; Xia, Z. Mean Stress/Strain Effect on Fatigue Behavior of an Epoxy Resin. Int. J. Fatigue 2007, 29, 2180–2190. [Google Scholar] [CrossRef]
- Rahman, M.M.; Akhtarul Islam, M. Application of epoxy resins in building materials: Progress and prospects. Polym. Bull. 2022, 79, 1949–1975. [Google Scholar] [CrossRef]
- He, Q.; Zhang, H.; Li, J.; Duan, H. Performance Evaluation of Polyurethane/Epoxy Resin Modified Asphalt as Adhesive Layer Material for Steel-UHPC Composite Bridge Deck Pavements. Constr. Build. Mater. 2021, 291, 123364. [Google Scholar] [CrossRef]
- Kuliczkowski, A.; Mogielski, K. Results of Laboratory Tests of Concrete, Vitrified Clay and Pvc Sewer Pipes with CIPP Liners. Environment 2012, 4, 23–34. [Google Scholar]
- Adi Kristiawan, S.; Bekti Prakoso, A. Flexural Behaviour of Patch-Repair Material Made from Unsaturated Polyester Resin (UPR)-Mortar. Mater. Sci. Forum 2016, 857, 426–430. [Google Scholar] [CrossRef]
- Mohan, P. A Critical Review: The Modification, Properties, and Applications of Epoxy Resins. Polym. Plast. Technol. Eng. 2013, 52, 107–125. [Google Scholar] [CrossRef]
- Kovačič, S.; Slugovc, C. Ring-Opening Metathesis Polymerisation Derived Poly(Dicyclopentadiene) Based Materials. Mater. Chem. Front. 2020, 4, 2235–2255. [Google Scholar] [CrossRef]
- Long, T.R.; Knorr, D.B.; Masser, K.A.; Elder, R.M.; Sirk, T.W.; Hindenlang, M.D.; Yu, J.H.; Richardson, A.D.; Boyd, S.E.; Spurgeon, W.A.; et al. Ballistic Response of Polydicyclopentadiene vs. Epoxy Resins and Effects of Crosslinking. In Dynamic Behavior of Materials; Casem, D., Lamberson, L., Kimberley, J., Eds.; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2016; Volume 1. [Google Scholar] [CrossRef]
- Andjelkovic, D.D.; Larock, R.C. Novel Rubbers from Cationic Copolymerization of Soybean Oils and Dicyclopentadiene. 1. Synthesis and Characterization. Biomacromolecules 2006, 7, 927–936. [Google Scholar] [CrossRef]
- Chiu, H.T.; Chen, S.C. Curing Reaction of Unsaturated Polyester Resin Modified by Dicyclopentadiene. J. Polym. Res. 2001, 8, 183–190. [Google Scholar] [CrossRef]
- Kong, W.S.; Ju, T.J.; Park, J.H.; Joo, S.R.; Yoon, H.G.; Lee, J.W. Synthesis and Characterization of Hydrogenated Sorbic Acid Grafted Dicyclopentadiene Tackifier. Int. J. Adhes. Adhes. 2012, 38, 38–44. [Google Scholar] [CrossRef]
- Verbruggen, M.A.L.; van der Does, L.; Noordermeer, J.W.M.; van Duin, M. Influence of the Diene Monomer on Devulcanization of EPDM Rubber. J. Appl. Polym. Sci. 2008, 109, 976–986. [Google Scholar] [CrossRef]
- Mol, J.C. Industrial Applications of Olefin Metathesis. J. Mol. Catal. A Chem. 2004, 213, 39–45. [Google Scholar] [CrossRef]
- Rule, J.D.; Moore, J.S. ROMP Reactivity of Endo- and Exo-Dicyclopentadiene. Macromolecules 2002, 35, 7878–7882. [Google Scholar] [CrossRef]
- Brown, E.N.; White, S.R.; Sottos, N.R. Microcapsule Induced Toughening in a Self-Healing Polymer Composite. J. Mater. Sci. 2004, 39, 1703–1710. [Google Scholar] [CrossRef]
- Yuan, W.; Yuan, K.-Y.; Zou, L.; Yang, J.-M.; Ju, J.-W.; Kao, W.; Carlson, L.; Edgecombe, B.; Stephen, T. DCPD Resin Catalyzed with Grubbs Catalysts for Reinforcing Pothole Patching Materials. In Proceedings of the Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2012, San Diego, CA, USA, 11–15 March 2012; Volume 8347, pp. 312–323. [Google Scholar] [CrossRef]
- Ren, X.; Sancaktar, E. Use of Fly Ash as Eco-Friendly Filler in Synthetic Rubber for Tire Applications. J. Clean. Prod. 2019, 206, 374–382. [Google Scholar] [CrossRef]
- Barrera, C.S.; Cornish, K. Fly Ash as a Potential Filler for the Rubber Industry. Handb. Fly. Ash 2022, 1, 763–792. [Google Scholar] [CrossRef]
- Patsidis, A.C.; Souliotis, M. End-Of-Use Fly Ash as an Effective Reinforcing Filler in Green Polymer Composites. Polymers 2023, 15, 3418. [Google Scholar] [CrossRef]
- Rajawat, A.S.; Singh, S.; Gangil, B.; Ranakoti, L.; Sharma, S.; Asyraf, M.R.M.; Razman, M.R. Effect of Marble Dust on the Mechanical, Morphological, and Wear Performance of Basalt Fibre-Reinforced Epoxy Composites for Structural Applications. Polymers 2022, 14, 1325. [Google Scholar] [CrossRef] [PubMed]
- Mostovoi, A.S.; Kurbatova, E.A. Controlling the Properties of Epoxy Composites Filled with Brick Dust. Russ. J. Appl. Chem. 2017, 90, 267–276. [Google Scholar] [CrossRef]
- Ma, X.F.; Yu, J.G.; Wang, N. Fly Ash-Reinforced Thermoplastic Starch Composites. Carbohydr. Polym. 2007, 67, 32–39. [Google Scholar] [CrossRef]
- Simoes, M.I.; Fernandes, J.V.; Cavaleiro, A.; Simoes, M.I.; Fernandes, J.V.; Cavaleiro, A. The Influence of Experimental Parameters on Hardness and Young’s Modulus Determination Using Depth-Sensing Testing. PMagA 2002, 82, 1911–1919. [Google Scholar] [CrossRef]
- Meza, J.M.; Farias, M.C.M.; de Souza, R.M.; Riaño, L.J.C. Using the Ratio: Maximum Load over Unload Stiffness Squared, Pm/Su2, on the Evaluation of Machine Stiffness and Area Function of Blunt Indenters on Depth-Sensing Indentation Equipment. Mater. Res. 2007, 10, 437–447. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Colorado, H.A.; Yuan, W.; Guo, Z.; Juanri, J.; Yang, J.-M. Poly-Dicyclopentadiene-Wollastonite Composites toward Structural Applications. J. Compos. Mater. 2014, 48, 2023–2031. [Google Scholar] [CrossRef]
- Davidson, T.A.; Wagener, K.B. The Polymerization of Dicyclopentadiene: An Investigation of Mechanism. J. Mol. Catal. A Chem. 1998, 133, 67–74. [Google Scholar] [CrossRef]
- Barnes, S.E.; Brown, E.C.; Corrigan, N.; Coates, P.D.; Harkin-Jones, E.; Edwards, H.G.M. Raman Spectroscopic Studies of the Cure of Dicyclopentadiene (DCPD). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2946–2952. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.A.; Edwards, H.G.M. Application of FT-Raman Spectroscopy for the Characterisation of New Functionalised Macromers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 3287–3294. [Google Scholar] [CrossRef]
- Restrepo, J.J.; Colorado, H.A. Additive manufacturing of composites made of epoxy resin with magnetite particles fabricated with the direct ink writing technique. J. Compos. Mater. 2020, 54, 647–657. [Google Scholar] [CrossRef]
- Keßler, L.; Matlin, S.A.; Kümmerer, K. The Contribution of Material Circularity to Sustainability—Recycling and Reuse of Textiles. Curr. Opin. Green. Sustain. Chem. 2021, 32, 100535. [Google Scholar] [CrossRef]
- Esposito, P.; Ricci, P.; Sancino, A. Leading for Social Change: Waste Management in the Place of Social (Ir)Responsibility. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 667–674. [Google Scholar] [CrossRef]
- Vergara, L.A.; Colorado, H.A. Additive Manufacturing of Portland Cement Pastes with Additions of Kaolin, Superplastificant and Calcium Carbonate. Constr. Build. Mater. 2020, 248, 118669. [Google Scholar] [CrossRef]
- Kovačič, S.; Žagar, E.; Slugovc, C. Strength versus Toughness of Emulsion Templated Poly(Dicyclopentadiene) Foams. Polymer 2019, 169, 58–65. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwon, D.J.; Shin, P.S.; Park, H.S.; Baek, Y.M.; DeVries, K.L.; Park, J.M. Evaluation of Interfacial and Mechanical Properties of Glass Fiber and P-DCPD Composites with Surface Treatment of Glass Fiber. Compos. B Eng. 2018, 153, 420–428. [Google Scholar] [CrossRef]
Sample Reference | Composition (wt.%) | Sample Reference |
---|---|---|
Fly Ash | 59–63 | |
0.0 wt.% | 0 | 100 |
1.0 wt.% | 1 | 99 |
10.0 wt.% | 5 | 95 |
50.0 wt.% | 50 | 50 |
Composition | Percentage |
---|---|
CaO | 5–22 |
SiO2 | 59–63 |
Fe2O3 | 2–5 |
Al2O3 | 11–15 |
Sample Reference | Maximum Contact Depth µm | Elastic Modulus [GPa] | Hardness [GPa] |
---|---|---|---|
0.0 wt.% | 1.58 ± 0.05 | 2.94 ± 0.10 | 0.19 ± 0.02 |
1.0 wt.% | 1.62 ± 0.05 | 2.95 ± 0.12 | 0.17 ± 0.02 |
10.0 wt.% | 1.52 ± 0.28 | 4.90 ± 1.65 | 0.21 ± 0.11 |
50.0 wt.% | 1.24 ± 0.30 | 7.01 ± 3.33 | 0.44 ± 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colorado, H.A.; Yuan, W.; Meza, J.; Jaramillo, F.; Gutierrez-Velasquez, E.I. Enhancing Thermomechanical Strength and Thermal Stability of Poly(dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications. Polymers 2023, 15, 4418. https://doi.org/10.3390/polym15224418
Colorado HA, Yuan W, Meza J, Jaramillo F, Gutierrez-Velasquez EI. Enhancing Thermomechanical Strength and Thermal Stability of Poly(dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications. Polymers. 2023; 15(22):4418. https://doi.org/10.3390/polym15224418
Chicago/Turabian StyleColorado, Henry A., Wei Yuan, Juan Meza, Franklin Jaramillo, and Elkin I. Gutierrez-Velasquez. 2023. "Enhancing Thermomechanical Strength and Thermal Stability of Poly(dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications" Polymers 15, no. 22: 4418. https://doi.org/10.3390/polym15224418
APA StyleColorado, H. A., Yuan, W., Meza, J., Jaramillo, F., & Gutierrez-Velasquez, E. I. (2023). Enhancing Thermomechanical Strength and Thermal Stability of Poly(dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications. Polymers, 15(22), 4418. https://doi.org/10.3390/polym15224418