Detecting Internal Defects in FRP-Reinforced Concrete Structures through the Integration of Infrared Thermography and Deep Learning
<p>Proposed framework.</p> "> Figure 2
<p>(<b>a</b>) Unbonded damage image; (<b>b</b>) bonded damage image; (<b>c</b>) bonded thermal image; and (<b>d</b>) fusion image.</p> "> Figure 3
<p>Specimens: (<b>a</b>) unbonded concrete and (<b>b</b>) bonded concrete.</p> "> Figure 4
<p>Database used in this study. (<b>a</b>) Open-source dataset [<a href="#B43-materials-17-03350" class="html-bibr">43</a>]. (<b>b</b>) Dataset of this study.</p> "> Figure 4 Cont.
<p>Database used in this study. (<b>a</b>) Open-source dataset [<a href="#B43-materials-17-03350" class="html-bibr">43</a>]. (<b>b</b>) Dataset of this study.</p> "> Figure 5
<p>Loss curve and accuracy curve.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Sample Preparation and Damage Induction
2.2. Thermal Treatment and Imaging
2.3. Thermal Imaging Acquisition
2.4. Deep Learning Model for Object Segmentation
3. Experimental Study
3.1. Preparation of Test Specimens
3.2. Setup Equipment
4. Results and Discussion
4.1. Database
4.2. Model Evaluation
4.3. Cross Validation
5. Conclusions
- (1)
- The implementation of the Mask R-CNN model yielded an impressive average accuracy of 96.28% over a 5-fold cross-validation, indicating a robust capability to identify invisible damage within the tested samples.
- (2)
- The model demonstrated consistent performance in specificity and precision across all folds, averaging 96.78% and 96.42%, respectively. This consistency underscores the reliability of the model in correctly identifying true negatives and its precision in the delineation of damaged areas.
- (3)
- With an average recall of 96.91%, the model effectively recognized almost all the actual cases of damage, a critical metric for ensuring that damage is not overlooked and that the safety of structures is not compromised.
- (4)
- The balanced measure of the model’s precision and recall is reflected in an average F1-score of 96.78%, suggesting that the model maintains a harmonious balance between the accuracy of damage detection and the completeness of damage identification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truong, G.T.; Hwang, H.-J.; Kim, C.-S. Assessment of punching shear strength of FRP-RC slab-column connections using machine learning algorithms. Eng. Struct. 2022, 255, 113898. [Google Scholar] [CrossRef]
- Zaki, M.; Tobaa, A.; Shehata, A.; Mohamed, F.; Khalef, R.; Hagras, Y.; Abou-Ali, R.; Farag, M.; Ghaly, A.; Madi, M.; et al. Potential advantages of basalt FRP bars compared to carbon FRP bars & conventional steel. Aust. J. Civ. Eng. 2021, 19, 107–122. [Google Scholar] [CrossRef]
- Nsengiyumva, W.; Zhong, S.; Lin, J.; Zhang, Q.; Zhong, J.; Huang, Y. Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review. Compos. Struct. 2021, 256, 112951. [Google Scholar] [CrossRef]
- Ghahnavieh, M.R.; Kamgar, R.; Heidarzadeh, H. A design-oriented model for FRP well-confined concrete cylinders under axial loading. Structures 2022, 38, 1005–1017. [Google Scholar] [CrossRef]
- Wang, W.; Wu, C.; Yu, Y.; Zeng, J.-J. Dynamic responses of hybrid FRP-concrete-steel double-skin tubular column (DSTC) under lateral impact. Structures 2021, 32, 1115–1144. [Google Scholar] [CrossRef]
- Lubna, M.M.; Mohammed, Z.; Biswas, M.C.; Hoque, M.E. Fiber-reinforced polymer composites in aviation. In Fiber-Reinforced Polymers: Processes and Applications; NOVA Science Publishers: New York, NY, USA, 2021; pp. 177–210. [Google Scholar]
- Kaveh, A.; Eslamlou, A.D.; Moghani, R.M. Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework. Period. Polytech. Civ. Eng. 2021, 66, 18–29. [Google Scholar] [CrossRef]
- Dong, Y.; Ansari, F. Non-destructive testing and evaluation (NDT/NDE) of civil structures rehabilitated using fiber reinforced polymer (FRP) composites. In Service Life Estimation and Extension of Civil Engineering Structures; Elsevier: Amsterdam, The Netherlands, 2011; pp. 193–222. [Google Scholar]
- Ibrahim, M. Nondestructive evaluation of thick-section composites and sandwich structures: A review. Compos. Part A Appl. Sci. Manuf. 2014, 64, 36–48. [Google Scholar] [CrossRef]
- Xiong, L.; Jing, G.; Wang, J.; Liu, X.; Zhang, Y. Detection of rail defects using NDT methods. Sensors 2023, 23, 4627. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Deng, Y.; Cao, J.; Xiong, X.; Bai, L.; Li, Z. Multi-wave and hybrid imaging techniques: A new direction for nondestructive testing and structural health monitoring. Sensors 2013, 13, 16146–16190. [Google Scholar] [CrossRef]
- Aryan, P.; Sampath, S.; Sohn, H. An overview of non-destructive testing methods for integrated circuit packaging inspection. Sensors 2018, 18, 1981. [Google Scholar] [CrossRef]
- Kumpati, R.; Skarka, W.; Ontipuli, S.K. Current trends in integration of nondestructive testing methods for engineered materials testing. Sensors 2021, 21, 6175. [Google Scholar] [CrossRef]
- Wong, B.; McCann, J.A. Failure detection methods for pipeline networks: From acoustic sensing to cyber-physical systems. Sensors 2021, 21, 4959. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Z.; Jin, H. Nondestructive testing and evaluation techniques of defects in fiber-reinforced polymer composites: A review. Front. Mater. 2022, 9, 986645. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Hameed, K.; Chai, D.; Rassau, A. Score-based mask edge improvement of Mask-RCNN for segmentation of fruit and vegetables. Expert Syst. Appl. 2022, 190, 116205. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.; Chen, H.; Jiang, J.; Li, X. A Novel Framework based on mask R-CNN and histogram thresholding for scalable segmentation of new and old rural buildings. Remote Sens. 2021, 13, 1070. [Google Scholar] [CrossRef]
- Cao, X.; Pan, J.-S.; Wang, Z.; Sun, Z.; Haq, A.U.; Deng, W.; Yang, S. Application of generated mask method based on Mask R-CNN in classification and detection of melanoma. Comput. Methods Programs Biomed. 2021, 207, 106174. [Google Scholar] [CrossRef]
- Golasiński, K.M.; Maj, M.; Urbański, L.; Staszczak, M.; Gradys, A.; Pieczyska, E.A. Experimental study of thermomechanical behaviour of Gum Metal during cyclic tensile loadings: The quantitative contribution of IRT and DIC. Quant. Infrared Thermogr. J. 2023, 1–18. [Google Scholar] [CrossRef]
- Zhang, D.; Zhan, C.; Chen, L.; Wang, Y.; Li, G. Review of unmanned aerial vehicle infrared thermography (UAV-IRT) applications in building thermal performance: Towards the thermal performance evaluation of building envelope. Quant. Infrared Thermogr. J. 2024, 1–31. [Google Scholar] [CrossRef]
- Hess, M.; Vanoni, D.; Petrovic, V.; Kuester, F. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures. Infrared Phys. Technol. 2015, 73, 219–225. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy 2014, 134, 531–549. [Google Scholar] [CrossRef]
- Lucchi, E. Applications of the infrared thermography in the energy audit of buildings: A review. Renew. Sustain. Energy Rev. 2018, 82, 3077–3090. [Google Scholar] [CrossRef]
- Avdelidis, N.; Moropoulou, A. Applications of infrared thermography for the investigation of historic structures. J. Cult. Heritage 2004, 5, 119–127. [Google Scholar] [CrossRef]
- Sun, Y.; Zuo, W.; Liu, M. Rtfnet: Rgb-thermal fusion network for semantic segmentation of urban scenes. IEEE Robot. Autom. Lett. 2019, 4, 2576–2583. [Google Scholar] [CrossRef]
- Balakrishnan, G.K.; Yaw, C.T.; Koh, S.P.; Abedin, T.; Raj, A.A.; Tiong, S.K.; Chen, C.P. A review of infrared thermography for condition-based monitoring in electrical energy: Applications and recommendations. Energies 2022, 15, 6000. [Google Scholar] [CrossRef]
- Osornio-Rios, R.A.; Antonino-Daviu, J.A.; de Jesus Romero-Troncoso, R. Recent industrial applications of infrared thermography: A review. IEEE Trans. Ind. Inform. 2019, 15, 615–625. [Google Scholar] [CrossRef]
- Washer, G.; Fenwick, R.; Nelson, S.; Rumbayan, R. Guidelines for thermographic inspection of concrete bridge components in shaded conditions. Transp. Res. Rec. J. Transp. Res. Board 2013, 2360, 13–20. [Google Scholar] [CrossRef]
- Alexander, Q.G.; Hoskere, V.; Spencer, B.F.; Smith, M.D. Towards the application of image based monitoring of USACE Large Civil Infrastructure. In Proceedings of the 12th International Workshop on Structural Health Monitoring: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT), IWSHM 2019, Stanford, CA, USA, 10–12 September 2019; DEStech Publications Inc.: Lancaster, PA, USA, 2019; pp. 390–397. [Google Scholar]
- Lee, D.-S.; Kim, E.-J.; Cho, Y.-H.; Kang, J.-W.; Jo, J.-H. A field study on application of infrared thermography for estimating mean radiant temperatures in large stadiums. Energy Build. 2019, 202, 109360. [Google Scholar] [CrossRef]
- Jang, K.-Y.; Kim, B.; Cho, S.; An, Y.-K. Deep learning-based concrete crack detection using hybrid images. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, Denver, CO, USA, 5–8 March 2018; SPIE: Bellingham, WA, USA, 2018; pp. 273–284. [Google Scholar]
- Shivakumar, S.S.; Rodrigues, N.; Zhou, A.; Miller, I.D.; Kumar, V.; Taylor, C.J. Pst900: Rgb-thermal calibration, dataset and segmentation network. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 9441–9447. [Google Scholar]
- Tomita, K.; Chew, M.Y.L. A review of infrared thermography for delamination detection on infrastructures and buildings. Sensors 2022, 22, 423. [Google Scholar] [CrossRef]
- Antoine, R.; Fauchard, C.; Oehler, J.-F.; Joignant, P. Permeability and voids influence on the thermal signal, as inferred by multitemporal UAV-based infrared and visible images. J. Hydrol. 2020, 587, 124907. [Google Scholar] [CrossRef]
- Kim, H.; Lamichhane, N.; Kim, C.; Shrestha, R. Innovations in Building Diagnostics and Condition Monitoring: A Comprehensive Review of Infrared Thermography Applications. Buildings 2023, 13, 2829. [Google Scholar] [CrossRef]
- Memari, M.; Shekaramiz, M.; Masoum, M.A.S.; Seibi, A.C. Data Fusion and Ensemble Learning for Advanced Anomaly Detection Using Multi-Spectral RGB and Thermal Imaging of Small Wind Turbine Blades. Energies 2024, 17, 673. [Google Scholar] [CrossRef]
- Wang, S.; Sun, G.; Zheng, B.; Du, Y. A crop image segmentation and extraction algorithm based on mask RCNN. Entropy 2021, 23, 1160. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack detection and comparison study based on faster R-CNN and mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.-H.; Nian, F.-D.; Yu, M.-H.; Li, X. An improved mask R-CNN model for multiorgan segmentation. Math. Probl. Eng. 2020, 2020, 8351725. [Google Scholar] [CrossRef]
- Suganya, D.; Kalpana, R. Prognosticating various acute covid lung disorders from COVID-19 patient using chest CT Images. Eng. Appl. Artif. Intell. 2023, 119, 105820. [Google Scholar] [CrossRef]
- Rao, Y.R.; Prathapani, N.; Nagabhooshanam, E. Application of normalized cross correlation to image registration. Int. J. Res. Eng. Technol. 2014, 3, 12–16. [Google Scholar]
- Liu, F.; Liu, J.; Wang, L. Asphalt pavement crack detection based on convolutional neural network and infrared thermography. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22145–22155. [Google Scholar] [CrossRef]
Method | Accuracy | Specificity | Precision | Recall | F1 |
---|---|---|---|---|---|
ResNet41 | 90.15% | 88.20% | 92.35% | 85.45% | 88.90% |
ResNet50 | 94.75% | 93.00% | 95.60% | 91.30% | 93.45% |
ResNet65 | 92.40% | 89.85% | 93.25% | 88.50% | 90.75% |
ResNet101 | 93.60% | 90.95% | 94.70% | 89.80% | 92.25% |
Fold | Accuracy | Specificity | Precision | Recall | F1 |
---|---|---|---|---|---|
Fold-1 | 95.55% | 96.10% | 97.00% | 95.12% | 96.55% |
Fold-2 | 96.80% | 98.00% | 96.70% | 98.77% | 97.73% |
Fold-3 | 97.70% | 97.40% | 99.00% | 97.36% | 98.17% |
Fold-4 | 94.75% | 95.50% | 92.10% | 96.82% | 94.57% |
Fold-5 | 96.60% | 96.90% | 97.30% | 96.50% | 96.89% |
Mean | 96.28% | 96.78% | 96.42% | 96.91% | 96.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, P.; Zhang, R.; Zhang, Y.; Li, H. Detecting Internal Defects in FRP-Reinforced Concrete Structures through the Integration of Infrared Thermography and Deep Learning. Materials 2024, 17, 3350. https://doi.org/10.3390/ma17133350
Pan P, Zhang R, Zhang Y, Li H. Detecting Internal Defects in FRP-Reinforced Concrete Structures through the Integration of Infrared Thermography and Deep Learning. Materials. 2024; 17(13):3350. https://doi.org/10.3390/ma17133350
Chicago/Turabian StylePan, Pengfei, Rongpeng Zhang, Yi Zhang, and Hongbo Li. 2024. "Detecting Internal Defects in FRP-Reinforced Concrete Structures through the Integration of Infrared Thermography and Deep Learning" Materials 17, no. 13: 3350. https://doi.org/10.3390/ma17133350
APA StylePan, P., Zhang, R., Zhang, Y., & Li, H. (2024). Detecting Internal Defects in FRP-Reinforced Concrete Structures through the Integration of Infrared Thermography and Deep Learning. Materials, 17(13), 3350. https://doi.org/10.3390/ma17133350