Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments
<p>Microscopy images taken at 0 min (1), 0.5 min (2), 10 min (3), 180 min (4), and 300 min (5) during the dynamic bacterial adhesion experiments of <span class="html-italic">S. aureus</span> to the PLA surface into each experimental condition. Scale bar in the bottom right corner represents 36 µm.</p> "> Figure 2
<p>Example of the exponential fit of the system enriched with 0.9 g/L glucose on growth and adhesion (G1). Images taken every 30 s during the first 10 min. Images taken every 60 s during the next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 3
<p>Parameters obtained from the exponential approximation of bacterial adhesion curves. A is the characteristic time of the system based on the exponential fit. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mn>300</mn> </mrow> </msub> </mrow> </semantics></math> is the bacterial coverage density corresponding to 300 min of adhesion. The left ordinate axis corresponds to the values of parameter <span class="html-italic">A</span>. The right ordinate axis corresponds to the data of parameter <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mn>300</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>Approximation by sections of the evolution of bacterial adhesion on PLA (without diabetic enrichment in growth and adhesion). Images taken every 30 s during the first 10 min. Images taken every 60 s during next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 5
<p>Approximation by sections of the evolution of bacterial adhesion on PLA when growth and adhesion are enriched with 0.9 g/L glucose (G1). Images taken every 30 s during the first 10 min. Images taken every 60 s during next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 6
<p>Approximation by sections of the evolution of bacterial adhesion on PLA when growth and adhesion are enriched with 1.9 g/L glucose (G2). Images taken every 30 s during the first 10 min. Images taken every 60 s during next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 7
<p>Approximation by sections of the evolution of bacterial adhesion on PLA when growth and adhesion are enriched with 1 mmol/L of ketone bodies (K1). Images taken every 30 s during the first 10 min. Images taken every 60 s during next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 8
<p>Approximation by sections of the evolution of bacterial adhesion on PLA when growth and adhesion are enriched with 9 mmol/L of ketone bodies (K2). Images taken every 30 s during the first 10 min. Images taken every 60 s during next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 9
<p>Approximation by sections of the evolution of bacterial adhesion on PLA when growth and adhesion are enriched with 0.9 g/L glucose and 1 mmol/L of ketone bodies (GK1). Images taken every 30 s during the first 10 min. Images taken every 60 s during next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 10
<p>Approximation by sections of the evolution of bacterial adhesion on PLA when growth and adhesion are enriched with 1.9 g/L glucose and 9 mmol/L of ketone bodies (GK2). Images taken every 30 s during the first 10 min. Images taken every 60 s during next 10 min. Images taken every 5 min from 20 min to 3 h. Images taken every 15 min from 3 h to 5 h.</p> "> Figure 11
<p>Parameters obtained from the approximation by sections of bacterial adhesion curves. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>j</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> is the initial adhesion rate during the first 10 min. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>j</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </semantics></math> is the adhesion rate at the end of the adhesion experiment. <span class="html-italic">D</span> is the percentage of reduction decrease. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi mathvariant="normal">e</mi> </mrow> </msub> </mrow> </semantics></math> is the bacterial coverage density corresponding to the steady state of adhesion.</p> "> Figure 12
<p>Zeta potential of the different systems analyzed in this work.</p> "> Figure 13
<p>Percentage of the relative light units (RLU %) of the bacteria cultured in media enriched with glucose and/or ketone bodies, compared to the control samples before contact with PBS. The data are presented for samples before (no-striped columns) and after 300 min (striped columns) of contact with PBS with the same enrichment as culture media. Significant differences (<span class="html-italic">p</span> < 0.05) among samples before contact with PBS are marked as A, B, C, D, E, and F with respect to control samples G1, G2, K1, K2, and GK1, respectively. Significant differences (<span class="html-italic">p</span> < 0.05) among samples after 300 min contact with PBS are marked as H, I, J, K, L, and M with respect to control samples G1, G2, K1, K2, and GK1, respectively; control samples before contact with PBS have been taken as reference. Labels marked with * indicate significant difference (<span class="html-italic">p</span> < 0.05) between the samples after and before contact with enriched PBS, as indicated in the label.</p> "> Figure 14
<p>Percentage of the relative light units (RLU %) obtained from biofilms cultured in media enriched with glucose and/or ketone bodies, relative to the biofilm control growth in non-enriched media. Significant differences (<span class="html-italic">p</span> < 0.05) among samples are indicated by *, ^, +, ¬, ″, and ~ with respect to control samples, G1, G2, K1, K2, and GK1, respectively.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Bacterial Strain and Growth Media
2.3. Bacterial Adhesion
2.3.1. Experimental Parameters
2.3.2. Data Analysis
2.4. Bacterial Metabolic State
2.5. Biofilm Formation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bacterial Adhesion under Dynamic Conditions on Polylactic Acid Films in an Enriched Environment with Diabetic Conditions
3.1.1. First Analysis Strategy: Exponential Approximation
3.1.2. Second Analysis Strategy: Approximation by Sections
3.2. Bacterial Metabolic State in the Adhesion Process in an Enriched Environment with Diabetic Conditions
3.3. Biofilm Formation on Polylactic Acid Films in an Enriched Environment under Diabetic Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Association, A.D. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Gomes, M.; Amorim, J.B.; Giannas, L.C.; Castillo-Salgado, M.A. Biomaterials for Tissue Engineering Applications in Diabetes Mellitus. In Biomaterials in Regenerative Medicine; En Dobrzański, L.A., Ed.; InTech: Houston, TX, USA, 2018; pp. 409–435. [Google Scholar]
- Chávez-Reyes, J.; Escárcega-González, C.E.; Chavira-Suárez, E.; León-Buitimea, A.; Vázquez-León, P.; Morones-Ramírez, J.R.; Villalón, C.M.; Quintanar-Stephano, A.; Marichal-Cancino, B.A. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front. Public. Health 2021, 9, 559595. [Google Scholar] [CrossRef] [PubMed]
- Casqueiro, J.; Casqueiro, J.; Alves, C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian. J. Endocrinol. Metab. 2012, 16, 27–36. [Google Scholar]
- Machado-Villarroel, L.; Montano-Candia, M.; Dimakis-Ramírez, D.A. Diabetes mellitus y su impacto en la etiopatogenia de la sepsis. Acta Med. 2017, 15, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Yano, K.; Sorasaki, M.; Ngo, L.; Hilaire, M.S.; Lucas, J.M.; Aird, W.; Shapiro, N.I. Influence of diabetes on endothelial cell response during sepsis. Diabetologia 2011, 54, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.J.M. Complicaciones de la diabetes mellitus. Diagnóstico y tratamiento. Med. Fam.-Semer. 2001, 27, 132–145. [Google Scholar]
- Carey, I.M.; Critchley, J.A.; Dewilde, S.; Harris, T.; Hosking, F.J.; Cook, D.G. Risk of Infection in Type 1 and Type 2 Diabetes Compared with the General Population: A Matched Cohort Study. Diabetes Care 2018, 41, 513–521. [Google Scholar] [CrossRef]
- Jacquet, R.; LaBauve, A.E.; Akoolo, L.; Patel, S.; Alqarzaee, A.A.; Lung, T.W.F.; Poorey, K.; Stinear, T.P.; Thomas, V.C.; Meagher, R.J.; et al. Dual gene expression analysis identifies factors associated with Staphylococcus aureus virulence in diabetic mice. Infect. Immun. 2019, 87, e00163-19. [Google Scholar] [CrossRef]
- Afonso, A.R.; Oliveira, D.; Saavedra, M.J.; Borges, A.; Simões, M. Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. Int. J. Mol. Sci. 2021, 22, 8278. [Google Scholar] [CrossRef] [PubMed]
- Pachón, A.L.G.; Petriz, J.; Hernández, C.; Simó, R. Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PLoS ONE 2011, 6, e23366. [Google Scholar]
- Pouget, C.; Dunyach-Remy, C.; Pantel, A.; Schuldiner, S.; Sotto, A.A.; Lavigne, J.P. Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms 2020, 8, 1580. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Rich, J.; Hanses, F.; Lee, J.C. Defects in innate immunity predispose C57BL/6J-Leprdb/Leprdb mice to infection by Staphylococcus aureus. Infect. Immun. 2009, 77, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Filipović, U.; Dahmane, R.G.; Ghannouchi, S.; Zore, A.; Bohinc, K. Bacterial adhesion on orthopedic implants. Adv. Colloid. Interface Sci. 2020, 283, 102228. [Google Scholar] [CrossRef] [PubMed]
- Veerachamy, S.; Yarlagadda, T.; Manivasagam, G.; Yarlagadda, P.K. Bacterial adherence and biofilm formation on medical implants: A review. Proc. Inst. Mech. Eng. H. 2014, 228, 1083–1099. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Hao, Y.; Liu, Y.; Dong, Z.L.; Li, K. Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface. Int. J. Biol. Sci. 2021, 17, 1769–1781. [Google Scholar] [CrossRef]
- Jian, H.-J.; Yu, J.; Li, Y.-J.; Unnikrishnan, B.; Huang, Y.-F.; Luo, L.-J.; Ma, D.H.-K.; Harroun, S.G.; Chang, H.-T.; Lin, H.-J.; et al. Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chem. Eng. J. 2020, 386, 123913. [Google Scholar] [CrossRef]
- Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef]
- Gupta, A.P.; Kumar, V. New emerging trends in synthetic biodegradable polymers–Polylactide: A critique. Eur. Polym. J. 2007, 43, 4053–4074. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Sin, L.T.; Tueen, B.S. Polylactic Acid. In Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–405. [Google Scholar]
- Tan, L.; Yu, X.; Wan, P.; Yang, K. Biodegradable Materials for Bone Repairs: A Review. J. Mater. Sci. Technol. 2013, 29, 503–513. [Google Scholar] [CrossRef]
- Li, X.; Chu, C.; Zhou, L.; Bai, J.; Guo, C.; Xue, F.; Lin, P.; Chu, P.K. Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Compos. Sci. Technol. 2017, 142, 180–188. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, X.; Du, Z.; Jiang, W.; Han, X.; Zhao, D.; Han, D.; Li, Q. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci. Technol. Adv. Mater. 2016, 17, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Karacan, I.; Macha, I.; Choi, G.; Cazalbou, S.; Ben-Nissan, B. Antibiotic Containing Poly Lactic Acid/Hydroxyapatite Biocomposite Coatings for Dental Implant Applications. Key Eng. Mater. 2017, 758, 120–125. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Zhai, Z.; Liu, L.; Li, H.; Yang, K.; Tan, L.; Wan, P.; Liu, X.; Ouyang, Z.; et al. Antibacterial Properties of Magnesium In Vitro and in an In Vivo Model of Implant-Associated Methicillin-Resistant Staphylococcus aureus Infection. Antimicrob. Agents Chemother. 2014, 58, 7586–7591. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A.; Griffith, R.W.; Shechtman, D.; Evans, R.B.; Conzemius, M.G. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 2010, 6, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.I.; Eifler, R.; Rais, B.; Mueller, P.P. Alkalization is responsible for antibacterial effects of corroding magnesium. J. Biomed. Mater. Res. A 2015, 103, 3526–3532. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, J.; Pacha-Olivenza, M.Á.; González-Martín, M.L. Bactericidal effect of magnesium ions over planktonic and sessile Staphylococcus epidermidis and Escherichia coli. Mater. Chem. Phys. 2019, 221, 342–348. [Google Scholar] [CrossRef]
- DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in modern medicine. Eng. Regen. 2020, 1, 76–87. [Google Scholar] [CrossRef]
- Zheng, Y.; He, L.; Asiamah, T.K.; Otto, M. Colonization of medical devices by staphylococci. Env. Microb. 2018, 20, 3141–3153. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.J.; Bartler, A.V.; Ho, K.C.; Zhang, K.; Fuentes, R.J.C.; Melnick, B.A.; Huffman, K.N.; Hong, S.J.; Galiano, R.D. Understanding Staphylococcus aureus in hyperglycaemia: A review of virulence factor and metabolic adaptations. Wound Rep. Reg. 2024, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Potezny, N.; Atkinson, E.R.; Rofe, A.M.; Conyers, R.A. The inhibition of bacterial cell growth by ketone bodies. Aust. J. Exp. Biol. Med. Sci. 1981, 59, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Grajera, M.; Pacha-Olivenza, M.A.; Gallardo-Moreno, A.M.; González-Martín, M.L.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. Modification of physico-chemical surface properties and growth of Staphylococcus aureus under hyperglycemia and ketoacidosis conditions. Colloids Surf. B Biointerfaces 2022, 209, 112137. [Google Scholar] [CrossRef] [PubMed]
- Pietrocola, G.; Campoccia, D.; Motta, C.; Montanaro, L.; Arciola, C.R.; Speziale, P. Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int. J. Mol. Sci. 2022, 23, 5958. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, L.; Laing, R.B.S.; Tonna, I.; Douglas, J.G.; Mackenzie, A.R. Invasive Staphylococcus aureus infections in diabetes mellitus. Br. J. Diabetes Vasc. Dis. 2013, 13, 164–177. [Google Scholar] [CrossRef]
- Boyko, E.J.; Lipsky, B.A.; Sandoval, R.; Keane, E.M.; Monahan, J.S.; Pecoraro, R.E.; Hamman, R.F. NIDDM and Prevalence of Nasal Staphylococcus aureus Colonization: San Luis Valley Diabetes Study. Diabetes Care 1989, 12, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Koirala, J.; Khardori, R.; Khardori, N. Infections in diabetes mellitus and hyperglycemia. Infect. Dis. Clin. N. Am. 2007, 21, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.G.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef]
- Luque-Agudo, V.; Gallardo-Moreno, A.M.; González-Martín, M.L. Influence of Solvent and Substrate on Hydrophobicity of PLA Films. Polymers 2021, 13, 4289. [Google Scholar] [CrossRef]
- Casares-López, J.M.; Hierro-Oliva, M.; Luque-Agudo, V.; González-Martín, M.L.; Gallardo-Moreno, A.M. Design of an UV-C shielded biopolymer based on a poly(lactic acid)/quercetin/magnesium composite. Appl. Surf. Sci. 2024, 651, 159230. [Google Scholar] [CrossRef]
- Luque-Agudo, V.; Romero-Guzmán, D.; Fernández-Grajera, M.; González-Martín, M.L.; Gallardo-Moreno, A.M. Aging of Solvent-Casting PLA-Mg Hydrophobic Films: Impact on Bacterial Adhesion and Viability. Coatings 2019, 9, 814. [Google Scholar] [CrossRef]
- Esplandiu, M.J.; Reguera, D.; Romero-Guzmán, D.; Gallardo-Moreno, A.M.; Fraxedas, J. From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures. Nat. Commun. 2022, 13, 2812. [Google Scholar] [CrossRef] [PubMed]
- Association, A.D. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2016, 39, S13–S22. [Google Scholar] [CrossRef]
- Dashora, U.; Gallagher, A.; Dhatariya, K.; Winocour, P.; Gregory, R. Association of British Clinical Diabetologists (ABCD) and Diabetes UK joint position statement and recommendations for non-diabetes specialists on the use of sodium glucose co-transporter 2 inhibitors in people with type 2 diabetes. Br. J. Diabetes Vasc. Dis. 2016, 16, 206–209. [Google Scholar] [CrossRef]
- Brooke, J.; Stiell, M.; Ojo, O. Evaluation of the Accuracy of Capillary Hydroxybutyrate Measurement Compared with Other Measurements in the Diagnosis of Diabetic Ketoacidosis: A Systematic Review. Int. J. Environ. Res. Public. Health. 2016, 13, 837. [Google Scholar] [CrossRef]
- Ekoé, J.M.; Zimmet, P. Diagnosis and Classification. In The Epidemiology of Diabetes Mellitus; Ekoé, J.M., Rewers, M., Williams, R., Zimmet, P., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 11–30. [Google Scholar]
- Ezkurra-Loiola, P. Guía de actualización en diabetes mellitus tipo 2. 2016, Fundación. Available online: https://redgdps.org/gestor/upload/GUIA2016/Guia_Actualizacion_2016.pdf (accessed on 17 June 2024).
- Ferri, F.F. Ferri’s Clinical Advisor 2021; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–23. [Google Scholar]
- Sjollema, J.; Busscher, H.J.; Weerkamp, A.H. Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis. J. Microbiol. Methods 1989, 9, 73–78. [Google Scholar] [CrossRef]
- Busscher, H.J.; Van Der Mei, H.C. Microbial Adhesion in Flow Displacement Systems. Clin. Microbiol. Rev. 2006, 19, 127–141. [Google Scholar] [CrossRef]
- Fernández-Calderón, M.; Romero-Guzmán, D.; Ferrández-Montero, A.; Pérez-Giraldo, C.; González-Carrasco, J.L.; Lieblich, M.; Benavente, R.; Ferrari, B.; González-Martín, M.L.; Gallardo-Moreno, A.M. Impact of PLA/Mg films degradation on surface physical properties and biofilm survival. Colloids Surf. B Biointerfaces 2020, 185, 110617. [Google Scholar] [CrossRef]
- Fernández-Calderón, M.; Cifuentes, S.C.; Pacha-Olivenza, M.A.; Gallardo-Moreno, A.M.; Saldaña, L.; González-Carrasco, J.L.; Blanco, M.T.; Vilaboa, N.; González-Martín, M.L.; Pérez-Giraldo, C. Antibacterial effect of novel biodegradable and bioresorbable PLDA/Mg composites. Biomed. Mater. 2017, 12, 015025. [Google Scholar] [CrossRef]
- Cerca, N.; Pier, G.B.; Oliveira, R.; Azeredo, J. Comparative evaluation of coagulase-negative staphylococci (CoNS) adherence to acrylic by a static method and a parallel-plate flow dynamic method. Res. Microbiol. 2004, 155, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Santore, M.M. Interplay of physico-chemical and mechanical bacteria-surface interactions with transport processes controls early biofilm growth: A review. Adv. Colloid. Interface Sci. 2022, 304, 102665. [Google Scholar] [CrossRef] [PubMed]
- Boks, N.P.; Busscher, H.J.; Van Der Mei, H.C.; Norde, W. Bond-strengthening in staphylococcal adhesion to hydrophilic and hydrophobic surfaces using atomic-force microscopy. Langmuir 2008, 24, 12990–12994. [Google Scholar] [CrossRef] [PubMed]
- Kimkes, T.E.P.; Heinemann, M. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 2020, 44, 106–122. [Google Scholar] [CrossRef]
- Hogt, A.H.; Dankert, J.; Feijen, J. Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial. J. Gen. Microbiol. 1985, 131, 2485–2491. [Google Scholar] [CrossRef]
- Begić, G.; Didović, M.P.; Blagojević, S.L.; Badovinac, I.J.; Žigon, J.; Perčić, M.; Peloza, O.C.; Gobin, L. Adhesion of Oral Bacteria to Commercial d-PTFE Membranes: Polymer Microstructure Makes a Difference. Int. J. Mol. Sci. 2022, 23, 2983. [Google Scholar] [CrossRef]
- Katsikogianni, M.G.; Missirlis, Y.F. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions. Acta Biomater. 2010, 6, 1107–1118. [Google Scholar] [CrossRef]
- Pan, M.; Li, H.; Han, X.; Ma, W.; Li, X.; Guo, Q.; Yang, B.; Ding, C.; Ma, Y. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms. Chemosphere 2022, 307, 135965. [Google Scholar] [CrossRef]
- Boles, B.R.; Horswill, A.R. Staphylococcal biofilm disassembly. Trends Microbiol. 2011, 19, 449–455. [Google Scholar] [CrossRef]
- Dengler, V.; Foulston, L.; DeFrancesco, A.S.; Losick, R. An Electrostatic Net Model for the Role of Extracellular DNA in Biofilm Formation by Staphylococcus aureus. J. Bacteriol. 2015, 197, 3779–3787. [Google Scholar] [CrossRef]
- Foulston, L.; Elsholz, A.K.W.; DeFrancesco, A.S.; Losick, R. The Extracellular Matrix of Staphylococcus aureus Biofilms Comprises Cytoplasmic Proteins That Associate with the Cell Surface in Response to Decreasing pH. mBio 2014, 5, e01667-14. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Pereira, J.E.; Maltez, L.; Poeta, P.; Igrejas, G. Influence of Environmental Factors on Biofilm Formation of Staphylococci Isolated from Wastewater and Surface Water. Pathogens 2022, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Ji, J.Y. Environmental factors modulate biofilm formation by Staphylococcus aureus. Sci. Prog. 2020, 103, 0036850419898659. [Google Scholar] [CrossRef] [PubMed]
- Lade, H.; Park, J.H.; Chung, S.H.; Kim, I.H.; Kim, J.M.; Joo, H.S.; Kim, J.S. Biofilm Formation by Staphylococcus aureus Clinical Isolates is Differentially Affected by Glucose and Sodium Chloride Supplemented Culture Media. J. Clin. Med. 2019, 8, 1853. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Bae, Y.M.; Lee, S.Y.; Lee, S.Y. Biofilm Formation of Staphylococcus aureus on Various Surfaces and Their Resistance to Chlorine Sanitizer. J. Food Sci. 2015, 80, M2279–M2286. [Google Scholar] [CrossRef]
- Djeribi, R.; Bouchloukh, Z.; Zouaoui, W.; Latrache, H.; Hamadi, F.; Menaa, B. A study of pH effects on the bacterial surface physicochemical properties of Acinetobacter baumannii. Colloids Surf. B Biointerfaces 2013, 102, 540–545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Grajera, M.; Pacha-Olivenza, M.A.; Fernández-Calderón, M.C.; González-Martín, M.L.; Gallardo-Moreno, A.M. Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments. Materials 2024, 17, 3349. https://doi.org/10.3390/ma17133349
Fernández-Grajera M, Pacha-Olivenza MA, Fernández-Calderón MC, González-Martín ML, Gallardo-Moreno AM. Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments. Materials. 2024; 17(13):3349. https://doi.org/10.3390/ma17133349
Chicago/Turabian StyleFernández-Grajera, María, Miguel A. Pacha-Olivenza, María Coronada Fernández-Calderón, María Luisa González-Martín, and Amparo M. Gallardo-Moreno. 2024. "Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments" Materials 17, no. 13: 3349. https://doi.org/10.3390/ma17133349
APA StyleFernández-Grajera, M., Pacha-Olivenza, M. A., Fernández-Calderón, M. C., González-Martín, M. L., & Gallardo-Moreno, A. M. (2024). Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments. Materials, 17(13), 3349. https://doi.org/10.3390/ma17133349