Artificial Intelligence in Breast Reconstruction: A Narrative Review
Abstract
:1. Introduction
2. Artificial Intelligence Applications in Breast Reconstruction
2.1. Preoperative Planning
2.1.1. Preoperative Imaging
2.1.2. Risk Stratification and Decision Support
2.1.3. Outcome Prediction
2.2. Intraoperative Guidance
2.3. Postoperative Care and Monitoring
2.4. Personalized Treatment Plans
2.5. Enhancing Educational Training and Scientific Research
3. Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, P.R.; Lu, L.; Zhang, J.Y.; Huo, T.T.; Liu, S.X.; Ye, Z.W. Application of Artificial Intelligence in Medicine: An Overview. Curr. Med. Sci. 2021, 41, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.B.; Kausik, M.A.K. AI Revolutionizing Industries Worldwide: A Comprehensive Overview of Its Diverse Applications. Hybrid. Adv. 2024, 7, 100277. [Google Scholar] [CrossRef]
- Mintz, Y.; Brodie, R. Introduction to Artificial Intelligence in Medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial Intelligence in Healthcare: Transforming the Practice of Medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Hirani, R.; Noruzi, K.; Khuram, H.; Hussaini, A.S.; Aifuwa, E.I.; Ely, K.E.; Lewis, J.M.; Gabr, A.E.; Smiley, A.; Tiwari, R.K.; et al. Artificial Intelligence and Healthcare: A Journey through History, Present Innovations, and Future Possibilities. Life 2024, 14, 557. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic Accuracy of Deep Learning in Medical Imaging: A Systematic Review and Meta-Analysis. npj Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Vasey, B.; Lippert, K.A.N.; Khan, D.Z.; Ibrahim, M.; Koh, C.H.; Layard Horsfall, H.; Lee, K.S.; Williams, S.; Marcus, H.J.; McCulloch, P. Intraoperative Applications of Artificial Intelligence in Robotic Surgery: A Scoping Review of Current Development Stages and Levels of Autonomy. Ann. Surg. 2023, 278, 896–903. [Google Scholar] [CrossRef]
- Aramaki, E.; Wakamiya, S.; Yada, S.; Nakamura, Y. Natural Language Processing: From Bedside to Everywhere. Yearb. Med. Inf. 2022, 31, 243–253. [Google Scholar] [CrossRef]
- Khan, B.; Fatima, H.; Qureshi, A.; Kumar, S.; Hanan, A.; Hussain, J.; Abdullah, S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed. Mater. Devices 2023, 1, 731–738. [Google Scholar] [CrossRef]
- Tomita, K.; Kubo, T. Recent Advances in Surgical Techniques for Breast Reconstruction. Int. J. Clin. Oncol. 2023, 28, 841–846. [Google Scholar] [CrossRef]
- Duong, T.V.; Vy, V.P.T.; Hung, T.N.K. Artificial Intelligence in Plastic Surgery: Advancements, Applications, and Future. Cosmetics 2024, 11, 109. [Google Scholar] [CrossRef]
- Morris, M.X.; Fiocco, D.; Caneva, T.; Yiapanis, P.; Orgill, D.P. Current and Future Applications of Artificial Intelligence in Surgery: Implications for Clinical Practice and Research. Front. Surg. 2024, 11, 1393898. [Google Scholar] [CrossRef] [PubMed]
- Mavioso, C.; Araújo, R.J.; Oliveira, H.P.; Anacleto, J.C.; Vasconcelos, M.A.; Pinto, D.; Gouveia, P.F.; Alves, C.; Cardoso, F.; Cardoso, J.S.; et al. Automatic Detection of Perforators for Microsurgical Reconstruction. Breast 2020, 50, 19–24. [Google Scholar] [CrossRef]
- Cevik, J.; Seth, I.; Rozen, W.M. Transforming Breast Reconstruction: The Pioneering Role of Artificial Intelligence in Preoperative Planning. Gland. Surg. 2023, 12, 1271–1275. [Google Scholar] [CrossRef]
- Colakoglu, S.; Tebockhorst, S.; Freedman, J.; Douglass, S.; Siddikoglu, D.; Chong, T.W.; Mathes, D.W. CT Angiography Prior to DIEP Flap Breast Reconstruction: A Randomized Controlled Trial. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 45–51. [Google Scholar] [CrossRef]
- Cevik, J.; Seth, I.; Hunter-Smith, D.J.; Rozen, W.M. A History of Innovation: Tracing the Evolution of Imaging Modalities for the Preoperative Planning of Microsurgical Breast Reconstruction. J. Clin. Med. 2023, 12, 5246. [Google Scholar] [CrossRef]
- Lim, B.; Cevik, J.; Seth, I.; Sofiadellis, F.; Ross, R.J.; Rozen, W.M.; Cuomo, R. Evaluating Artificial Intelligence’s Role in Teaching the Reporting and Interpretation of Computed Tomographic Angiography for Preoperative Planning of the Deep Inferior Epigastric Artery Perforator Flap. JPRAS Open 2024, 40, 273–285. [Google Scholar] [CrossRef]
- Chen, M.; Xing, J.; Guo, L. MRI-Based Deep Learning Models for Preoperative Breast Volume and Density Assessment Assisting Breast Reconstruction. Aesthetic Plast. Surg. 2024, 48, 4994–5006. [Google Scholar] [CrossRef]
- Balkenende, L.; Teuwen, J.; Mann, R.M. Application of Deep Learning in Breast Cancer Imaging. Semin. Nucl. Med. 2022, 52, 584–596. [Google Scholar] [CrossRef]
- Marinescu, S.; Bejinariu, C.; Şapte, E.; Cristian Marinaş, M.; Giuglea, C. Complications Related to Breast Reconstruction after Mastectomy Using Multiple Surgical Techniques-a National and International Comparative Analysis. Rom. J. Morphol. Embryol. 2019, 60, 87–93. [Google Scholar]
- Malekpour, M.; Malekpour, F.; Wang, H.T.-H. Breast Reconstruction: Review of Current Autologous and Implant-Based Techniques and Long-Term Oncologic Outcome. World J. Clin. Cases 2023, 11, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.C.; Yang, D.; Roy, M.; Sebastiampillai, S.; Hofer, S.O.P.; Xu, W. Development and Evaluation of a Machine Learning Prediction Model for Flap Failure in Microvascular Breast Reconstruction. Ann. Surg. Oncol. 2020, 27, 3466–3475. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.L.; Black, G.G.; Qin, N.; Zhou, G.; Bernstein, J.L.; Chinta, M.; Otterburn, D.M. Machine-Learning Prediction of Capsular Contraction after Two-Stage Breast Reconstruction. JPRAS Open 2023, 38, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Chawla, S.; Mousa-Doust, D.; Nichol, A.; Ng, R.; Isaac, K.V. Machine Learning to Predict the Need for Postmastectomy Radiotherapy after Immediate Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5599. [Google Scholar] [CrossRef]
- Akhoondinasab, M.; Shafaei, Y.; Rahmani, A.; Keshavarz, H. A Machine Learning-Based Model for Breast Volume Prediction Using Preoperative Anthropometric Measurements. Aesthetic Plast. Surg. 2024, 48, 243–249. [Google Scholar] [CrossRef]
- Chartier, C.; Watt, A.; Lin, O.; Chandawarkar, A.; Lee, J.; Hall-Findlay, E. BreastGAN: Artificial Intelligence-Enabled Breast Augmentation Simulation. Aesthet. Surg. J. Open Forum 2022, 4, ojab052. [Google Scholar] [CrossRef]
- Didzbalis, C.J.; Tseng, C.C.; Weisberger, J.; Gama, A.R.; Lee, E.S. A Machine Learning Analysis of Patient Concerns Regarding Mastopexy. J. Plast. Reconstr. Aesthetic Surg. 2023, 76, 71–75. [Google Scholar] [CrossRef]
- Kruppa, J.; Ziegler, A.; König, I.R. Risk Estimation and Risk Prediction Using Machine-Learning Methods. Hum. Genet. 2012, 131, 1639–1654. [Google Scholar] [CrossRef]
- Waljee, J.; McGlinn, E.P.; Sears, E.D.; Chung, K.C. Patient Expectations and Patient-Reported Outcomes in Surgery: A Systematic Review. Surgery 2014, 155, 799–808. [Google Scholar] [CrossRef]
- Rivero-Moreno, Y.; Echevarria, S.; Vidal-Valderrama, C.; Stefano-Pianetti, L.; Cordova-Guilarte, J.; Navarro-Gonzalez, J.; Acevedo-Rodríguez, J.; Dorado-Avila, G.; Osorio-Romero, L.; Chavez-Campos, C.; et al. Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. Cureus 2023, 15, e42370. [Google Scholar] [CrossRef]
- Kumazu, Y.; Kobayashi, N.; Kitamura, N.; Rayan, E.; Neculoiu, P.; Misumi, T.; Hojo, Y.; Nakamura, T.; Kumamoto, T.; Kurahashi, Y.; et al. Automated Segmentation by Deep Learning of Loose Connective Tissue Fibers to Define Safe Dissection Planes in Robot-Assisted Gastrectomy. Sci. Rep. 2021, 11, 21198. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.H.; Mittelstadt, B.D.; Paul, H.A.; Hanson, W.; Kazanzides, P.; Zuhars, J.F.; Williamson, B.; Musits, B.L.; Glassman, E.; Bargar, W.L. An Image-Directed Robotic System for Precise Orthopaedic Surgery. IEEE Trans. Robot. Autom. 1994, 10, 261–275. [Google Scholar] [CrossRef]
- Parcells, A.; Spiro, S. Exploration of Robotic Direct to Implant Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2020, 8, E2619. [Google Scholar] [CrossRef] [PubMed]
- Dayaratna, N.; Ahmadi, N.; Mak, C.; Dusseldorp, J.R. Robotic-assisted Deep Inferior Epigastric Perforator (DIEP) Flap Harvest for Breast Reconstruction. ANZ J. Surg. 2023, 93, 1072–1074. [Google Scholar] [CrossRef]
- Von Reibnitz, D.; Weinzierl, A.; Barbon, C.; Gutschow, C.A.; Giovanoli, P.; Grünherz, L.; Lindenblatt, N. 100 Anastomoses: A Two-Year Single-Center Experience with Robotic-Assisted Micro- and Supermicrosurgery for Lymphatic Reconstruction. J. Robot. Surg. 2024, 18, 164. [Google Scholar] [CrossRef]
- Gorgy, A.; Xu, H.H.; El Hawary, H.; Nepon, H.; Lee, J.; Vorstenbosch, J. Integrating AI into Breast Reconstruction Surgery: Exploring Opportunities, Applications, and Challenges. Plast. Surg. 2024. [Google Scholar] [CrossRef]
- Masterton, G.; Miller, R.; Patel, J.; Pratt, P.; Gosling, N.; Saour, S. HoloLens in Breast Reconstruction: What Is the Future? Plast. Reconstr. Surg. 2023, 151, 915e–917e. [Google Scholar] [CrossRef]
- Myung, Y.; Jeon, S.; Heo, C.; Kim, E.K.; Kang, E.; Shin, H.C.; Yang, E.J.; Jeong, J.H. Validating Machine Learning Approaches for Prediction of Donor Related Complication in Microsurgical Breast Reconstruction: A Retrospective Cohort Study. Sci. Rep. 2021, 11, 5615. [Google Scholar] [CrossRef]
- Hassan, A.M.; Biaggi-Ondina, A.; Asaad, M.; Morris, N.; Liu, J.; Selber, J.C.; Butler, C.E. Artificial Intelligence Modeling to Predict Periprosthetic Infection and Explantation Following Implant-Based Reconstruction. Plast. Reconstr. Surg. 2023, 152, 929–938. [Google Scholar] [CrossRef]
- Gomez-Cabello, C.A.; Borna, S.; Pressman, S.M.; Haider, S.A.; Sehgal, A.; Leibovich, B.C.; Forte, A.J. Artificial Intelligence in Postoperative Care: Assessing Large Language Models for Patient Recommendations in Plastic Surgery. Healthcare 2024, 12, 1083. [Google Scholar] [CrossRef]
- Kohlert, S.; Quimby, A.E.; Saman, M.; Ducic, Y. Postoperative Free-Flap Monitoring Techniques. Semin. Plast. Surg. 2019, 33, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S.M.; Kim, D.E.; Kim, S.; Chung, M.J.; Kim, Z.; Kim, T.; Lee, K.T. Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence. JAMA Netw. Open 2024, 7, e2424299. [Google Scholar] [CrossRef] [PubMed]
- Kenig, N.; Monton Echeverria, J.; Chang Azancot, L.; De la Ossa, L. A Novel Artificial Intelligence Model for Symmetry Evaluation in Breast Cancer Patients. Aesthetic Plast. Surg. 2024, 48, 1500–1507. [Google Scholar] [CrossRef]
- Xu, H.H.; Abi-Rafeh, J.; Davison, P.; Winocour, S.; Reece, E.M.; Vorstenbosch, J. Prompting Rigor in Database Reporting: Working Towards Higher Quality Plastic Surgery Database Research. Plast. Reconstr. Surg. 2023, 153, 1049e. [Google Scholar] [CrossRef]
- Mariscal-Harana, J.; Asher, C.; Vergani, V.; Rizvi, M.; Keehn, L.; Kim, R.J.; Judd, R.M.; Petersen, S.E.; Razavi, R.; King, A.P.; et al. An Artificial Intelligence Tool for Automated Analysis of Large-Scale Unstructured Clinical Cine Cardiac Magnetic Resonance Databases. Eur. Heart J. Digit. Health 2023, 4, 370–383. [Google Scholar] [CrossRef]
- Loftus, T.J.; Tighe, P.J.; Filiberto, A.C.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Rashidi, P.; Upchurch, G.R.; Bihorac, A. Artificial Intelligence and Surgical Decision-Making. JAMA Surg. 2020, 155, 148–158. [Google Scholar] [CrossRef]
- Williams, M.A.; McVeigh, J.; Handa, A.I.; Lee, R. Augmented Reality in Surgical Training: A Systematic Review. Postgrad. Med. J. 2020, 96, 537–542. [Google Scholar] [CrossRef]
- Logishetty, K.; Western, L.; Morgan, R.; Iranpour, F.; Cobb, J.P.; Auvinet, E. Can an Augmented Reality Headset Improve Accuracy of Acetabular Cup Orientation in Simulated THA? A Randomized Trial. Clin. Orthop. Relat. Res. 2019, 477, 1190–1199. [Google Scholar] [CrossRef]
- Hakky, T.; Martinez, D.R.; Lipshultz, L.I.; Spiess, P.E.; Carrion, R.E. MP23-11 Augmented Reality Assisted Urologic Surgery (Araus): A Surgical Training Tool. J. Urol. 2015, 193, e271. [Google Scholar] [CrossRef]
- Standford Medicine News Center. Stanford Medicine Uses Augmented Reality for Real-Time Data Visualization During Surgery. 2024. Available online: https://med.stanford.edu/news/all-news/2024/02/augmented-reality-surgery.html (accessed on 26 February 2025).
- ElHawary, H.; Gorgy, A.; Janis, J.E. Large Language Models in Academic Plastic Surgery: The Way Forward. Plast. Reconstr. Surg. Glob. Open 2023, 11, e4949. [Google Scholar] [CrossRef]
- Jhajj, K.S.; Jindal, P.; Kaur, K. Use of Artificial Intelligence Tools for Research by Medical Students: A Narrative Review. Cureus 2024, 16, e55367. [Google Scholar] [CrossRef]
- Kim, D.K.; Corpuz, G.S.; Ta, C.N.; Weng, C.; Rohde, C.H. Applying Unsupervised Machine Learning Approaches to Characterize Autologous Breast Reconstruction Patient Subgroups: An NSQIP Analysis of 14,274 Patients. J. Plast. Reconstr. Aesthetic Surg. 2024, 88, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Lekadir, K.; Quaglio, G.; Tselioudis Garmendia, A.; Gallin, C. Artificial Intelligence in Healthcare: Applications, Risks, and Ethical and Societal Impacts; European Parliament: Bruxelles, Belgium, 2022; ISBN 9789284694563. [Google Scholar]
- Adegbesan, A.; Akingbola, A.; Aremu, O.; Adewole, O.; Amamdikwa, J.C.; Shagaya, U. From Scalpels to Algorithms: The Risk of Dependence on Artificial Intelligence in Surgery. J. Med. Surg. Public. Health 2024, 3, 100140. [Google Scholar] [CrossRef]
- Rosic, A. Legal Implications of Artificial Intelligence in Health Care. Clin. Dermatol. 2024, 42, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Sarofim, M. Devil’s Advocate: Exploring the Potential Negative Impacts of Artificial Intelligence on the Field of Surgery. J. Med. Artif. Intell. 2024, 7, 7. [Google Scholar] [CrossRef]
- Patil, N.H.; Patel, S.H.; Lawand, S.D. Research Paper on Artificial Intelligence and It’s Applications. J. Adv. Zool. 2023, 44, 229–238. [Google Scholar] [CrossRef]
- Fraser, V.J.; Nickel, K.B.; Fox, I.K.; Margenthaler, J.A.; Olsen, M.A. The Epidemiology and Outcomes of Breast Cancer Surgery. Trans. Am. Clin. Clim. Assoc. 2016, 127, 46–58. [Google Scholar]
- Aitzetmüller, M.M.; Klietz, M.-L.; Dermietzel, A.F.; Hirsch, T.; Kückelhaus, M. Robotic-Assisted Microsurgery and Its Future in Plastic Surgery. J. Clin. Med. 2022, 11, 3378. [Google Scholar] [CrossRef]
- Bhandari, M.; Zeffiro, T.; Reddiboina, M. Artificial Intelligence and Robotic Surgery. Curr. Opin. Urol. 2020, 30, 48–54. [Google Scholar] [CrossRef]
- Cholok, D.J.; Fischer, M.J.; Leuze, C.W.; Januszyk, M.; Daniel, B.L.; Momeni, A. Spatial Fidelity of Microvascular Perforating Vessels as Perceived by Augmented Reality Virtual Projections. Plast. Reconstr. Surg. 2023, 153, 524–534. [Google Scholar] [CrossRef]
- Chae, M.P.; Ganhewa, D.; Hunter-Smith, D.J.; Rozen, W.M. Direct Augmented Reality Computed Tomographic Angiography Technique (ARC): An Innovation in Preoperative Imaging. Eur. J. Plast. Surg. 2018, 41, 415–420. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, D.; Ye, J.; Zhang, Z.; Wang, X.; Hu, C.; Shao, P.; Xu, R.X. Benchtop and Animal Validation of a Projective Imaging System for Potential Use in Intraoperative Surgical Guidance. PLoS ONE 2016, 11, e0157794. [Google Scholar] [CrossRef] [PubMed]
- Young, B.K.; Greenberg, P.B. Is Virtual Reality Training for Resident Cataract Surgeons Cost Effective? Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 251, 2295–2296. [Google Scholar] [CrossRef] [PubMed]
- Mayer, H.F.; Coloccini, A.; Viñas, J.F. Three-Dimensional Printing in Breast Reconstruction: Current and Promising Applications. J. Clin. Med. 2024, 13, 3278. [Google Scholar] [CrossRef]
- Bogdan, R.-G.; Helgiu, A.; Cimpean, A.-M.; Ichim, C.; Todor, S.B.; Iliescu-Glaja, M.; Bodea, I.C.; Crainiceanu, Z.P. Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. J. Clin. Med. 2024, 13, 7209. [Google Scholar] [CrossRef]
- Charow, R.; Jeyakumar, T.; Younus, S.; Dolatabadi, E.; Salhia, M.; Al-Mouaswas, D.; Anderson, M.; Balakumar, S.; Clare, M.; Dhalla, A.; et al. Artificial Intelligence Education Programs for Health Care Professionals: Scoping Review. JMIR Med. Educ. 2021, 7, e31043. [Google Scholar] [CrossRef]
- Shammas, R.L.; Gordee, A.; Lee, H.-J.; Sergesketter, A.R.; Scales, C.D.; Hollenbeck, S.T.; Phillips, B.T. Complications, Costs, and Healthcare Resource Utilization After Staged, Delayed, and Immediate Free-Flap Breast Reconstruction: A Longitudinal, Claims-Based Analysis. Ann. Surg. Oncol. 2023, 30, 2534–2549. [Google Scholar] [CrossRef]
- Earley, H.; Mealy, K. An Analysis of the Cost of Postgraduate Training in Surgery in Ireland Compared to Other Specialties. Ir. J. Med. Sci. 2022, 191, 945–950. [Google Scholar] [CrossRef]
Study | Technology Used | Application | Findings |
---|---|---|---|
Weber et al. | Whole-body PET scans and convolutional neural network (CNN) | Lesion detection and segmentation | 39% sensitivity for lesion detection |
Papandrianos et al. | Whole-body scintigraphy and CNN | Malignancy classification | 92% accuracy |
Li et al. | PET/CT and 3D CNN | Metastatic lymphadenopathy diagnosis | Improved clinician sensitivity by 7.8% without affecting specificity |
Parameter | Traditional Breast Reconstruction | AI-Assisted Breast Reconstruction |
---|---|---|
Accuracy | Higher variability in outcomes due to human factors (surgeon skill) | AI tools can potentially assist in precise planning, improving aesthetic outcomes and symmetry |
Time Efficiency | Longer operative times due to complex planning and execution | Potentially shorter procedure times, AI can optimize surgical planning and predict complications |
Patient Outcomes | Variable satisfaction, with some patients experiencing dissatisfaction due to aesthetic results | Has the potential to provide higher patient satisfaction due to more predictable results |
Costs | Higher costs due to longer operative times and potential need for multiple procedures | Initially, the cost could exceed traditional methods but potentially reduce overall costs that stem from complications and secondary surgeries. |
Study | Methodology | Key Findings |
---|---|---|
O’Neill et al. (2020) [22] | Machine learning model for predicting flap failure | Identified obesity, smoking, and timing as major risk factors |
Kim et al. (2024) [42] | AI-based free flap monitoring system | Efficient perfusion monitoring |
Chartier et al. (2022) [26] | Neural network for preoperative breast simulations | Accurately predicted postoperative appearance |
Myung et al. (2021) [38] | Machine learning for donor site related complications | 81% accuracy in prediction |
Mavioso et al. (2020) [13] | AI-assisted identification of perforators for microsurgical reconstruction | Reduced preoperative analysis by two hours per patient |
Y-F Chen et al. (2024) [24] | Machine learning model for postmastectomy radiation therapy prediction | Provided personalized radiation therapy recommendations |
Hassan et al. (2023) [39] | AI modeling for periprosthetic infection prediction | Improved prediction accuracy for implant complications |
Chen et al. (2023) [23] | Neural network predicting capsular contracture | Provided percentage-based risk assessment |
Kenig et al. (2024) [43] | AI-based breast symmetry evaluation | Automated symmetry analysis for postoperative assessment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rugină, A.I.; Ungureanu, A.; Giuglea, C.; Marinescu, S.A. Artificial Intelligence in Breast Reconstruction: A Narrative Review. Medicina 2025, 61, 440. https://doi.org/10.3390/medicina61030440
Rugină AI, Ungureanu A, Giuglea C, Marinescu SA. Artificial Intelligence in Breast Reconstruction: A Narrative Review. Medicina. 2025; 61(3):440. https://doi.org/10.3390/medicina61030440
Chicago/Turabian StyleRugină, Andrei Iulian, Andreea Ungureanu, Carmen Giuglea, and Silviu Adrian Marinescu. 2025. "Artificial Intelligence in Breast Reconstruction: A Narrative Review" Medicina 61, no. 3: 440. https://doi.org/10.3390/medicina61030440
APA StyleRugină, A. I., Ungureanu, A., Giuglea, C., & Marinescu, S. A. (2025). Artificial Intelligence in Breast Reconstruction: A Narrative Review. Medicina, 61(3), 440. https://doi.org/10.3390/medicina61030440