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Abstract: Breast reconstruction following mastectomy or sectorectomy significantly impacts
the quality of life and psychological well-being of breast cancer patients. Since its inception
in the 1950s, artificial intelligence (AI) has gradually entered the medical field, promising
to transform surgical planning, intraoperative guidance, postoperative care, and medical
research. This article examines AI applications in breast reconstruction, supported by recent
studies. AI shows promise in enhancing imaging for tumor detection and surgical planning,
improving microsurgical precision, predicting complications such as flap failure, and
optimizing postoperative monitoring. However, challenges remain, including data quality,
safety, algorithm transparency, and clinical integration. Despite these shortcomings, AI has
the potential to revolutionize breast reconstruction by improving preoperative planning,
surgical precision, operative efficiency, and patient outcomes. This review provides a
foundation for further research as AI continues to evolve and clinical trials expand its
applications, offering greater benefits to patients and healthcare providers.

Keywords: artificial intelligence; robotic surgery; machine learning; virtual reality;
augmented reality; microsurgery/artificial intelligence; deep learning; breast reconstruction

1. Introduction
Artificial intelligence (AI) is an emerging field that harnesses computer technology

to investigate and advance theories, methodologies, techniques, and application systems
aimed at simulating, extending, and enhancing human intelligence [1]. AI is transforming a
vast majority of industries, ranging from finance and manufacturing to transportation and
customer service. AI chatbots, self-driving cars, industrial automation, and recommenda-
tion systems on streaming platforms are some examples of how machine learning and deep
learning models can analyze large sets of data, recognize potential patterns, and optimize
decision-making in real time. In healthcare, AI is rapidly developing, becoming a valuable
tool and improving diagnostics, treatment planning, and patient outcomes across multiple
medical or surgical fields [2,3]. Due to its versatility, AI has found numerous applications in
medicine, particularly in areas such as image processing, computer vision, artificial neural
networks, machine learning, convolutional neural networks, and deep learning [3].

Healthcare systems worldwide face substantial challenges in delivering efficient and
high-quality care to diverse populations. Aging populations, the growing burden of chronic
diseases, and permanently rising healthcare costs are factors that should motivate govern-
ments and insurance providers to optimize the healthcare sector [4]. AI is revolutionizing
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healthcare by optimizing workflows and enabling medical professionals to provide su-
perior care, resulting in better patient outcomes. For individuals, AI has the potential to
expand access to healthcare services, providing greater satisfaction and compliance with
treatments [5]. In recent years, integration of AI in the healthcare sector has seen impressive
advancements. Machine learning algorithms are now capable of detecting disease in early
stages, with AI-assisted tools capable of achieving diagnostic accuracy comparable to clini-
cians [6]. In surgery, robotic platforms like the Da Vinci surgical system enhances precision
and outcomes and reduce postoperative morbidity [7]. AI also reduces the bureaucratic
burden on health care providers through natural language processing, which improves
medical documentation and administrative efficiency [8]. While it has the potential to
improve the healthcare system, the integration of AI into healthcare encounters several
challenges: data security and privacy, a lack of standard ethical guidelines, algorithm bias,
and educational gaps. To ensure an effective and ethical integration of AI in the healthcare
system, these downfalls must be meticulously examined and addressed [9].

Surgeons in the field of plastic surgery, using various techniques (alloplastic materials
or autologous tissues) restore breast appearance postmastectomy [10]. In general, the rate
of success after surgery and the overall outcome is strongly dependent on the surgeon’s
training and experience in planning and performing the reconstruction. Although AI has
been explored in plastic surgery and other fields [11,12], its data processing capabilities and
complementary technologies have the potential to enhance various aspects of the surgical
craft, making it equally applicable to breast reconstruction [13]. This review examines the
current literature to offer a thorough overview of the applications of AI and complementary
technologies in reconstructive breast surgery.

2. Artificial Intelligence Applications in Breast Reconstruction
2.1. Preoperative Planning

Extensive and thorough preoperative planning is key for any successful breast recon-
struction. AI-assisted imaging tools offer in-depth 3D reconstructions of patient anatomy
that can be helpful in any type of reconstruction—primary, when the breast is reconstructed
in the same surgery as the mastectomy and lymphadenectomy, or secondary, which occurs
at a later time. Studies indicate that AI algorithms significantly improve the accuracy of
Magnetic Resonance Imaging (MRI) and Computer Tomography (CT) scan interpretations,
assisting in the detection and classification of tumors or identifying and localizing key
anatomical structures for surgical planning. AI systems can be trained to identify and
classify relevant anatomical landmarks, potential lesions, vessels, and other important
features on machine-generated scans [14].

2.1.1. Preoperative Imaging

In planning a breast reconstruction using the deep inferior epigastric perforator (DIEP)
flap, CT-angiography (CTA) is employed to identify and select the appropriate perfora-
tor [15]. However, this process can be challenging, requiring specialized knowledge, which
may be difficult for young physicians. AI can enhance to some degree the diagnostic
accuracy and reporting speed. Indeed, Civik J. et al. highlighted the role of AI in predicting
vascular anatomy in the abdominal region and highlighted the importance of optimal
perforator selection, aiding better planning for DIEP flap procedures, shortening time-
consuming human analysis, and potentially expediting surgical procedure time [14,16,17].
Likewise, Mavioso C. et al. compared the results of manual and semi-automatic identifi-
cation with the intraoperative dissection of the perforator vessels in 40 CT-angiographies
from 40 patients that were proposed for immediate or delayed breast reconstruction. The
algorithm used matched manual methods in accuracy for larger vessels and also reduced
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preoperative analysis time by two hours per patient, with clinically insignificant vessel
location discrepancies [13].

Beyond preoperative planning, deep learning algorithms, such as those using U-net
architecture, can help reduce clinician labor and variability in image analyses by advancing
automatic segmentation. AI technologies can enhance detection capabilities and support
clinical decision-making, offering efficient tumor size and volume measurement [18]. The
data from 48 cohort studies on breast imaging revealed impressive detection accuracy
across various modalities. Mammography demonstrated high diagnostic performance,
with a measure of accuracy (AUC) close to 0.87, proving its ability to distinguish between
healthy and abnormal tissues. Ultrasound showed better results, with an AUC around
0.91, reflecting even greater precision. Similarly, MRI and digital breast tomosynthesis
(DBT) achieved comparable accuracy levels, 0.87 and 0.91, respectively. These findings
highlight the effectiveness of these imaging methods in detecting breast abnormalities,
providing confidence in their diagnostic capabilities [6]. While nuclear medicine imaging
modalities like PET (Positron Emission Tomography) or scintigraphy are less efficient for
early-stage diagnostic evaluation of breast cancer compared to mammography, MRI, DBT,
or ultrasound, they play an important role in the detection and classification of axillary
lymph nodes and distant staging. A review by Balkenende et al. [19] highlights the use
of convolutional neural networks by various authors to improve and determine detection
rates using nuclear imaging (Table 1).

Table 1. Studies exploring the use of AI in nuclear imaging diagnosis [19].

Study Technology Used Application Findings

Weber et al.
Whole-body PET scans and

convolutional neural network
(CNN)

Lesion detection and
segmentation

39% sensitivity for lesion
detection

Papandrianos et al. Whole-body scintigraphy and CNN Malignancy classification 92% accuracy

Li et al. PET/CT and 3D CNN
Metastatic

lymphadenopathy
diagnosis

Improved clinician
sensitivity by 7.8% without

affecting specificity

2.1.2. Risk Stratification and Decision Support

Breast reconstruction, utilizing either autologous tissues or alloplastic materials, can
be a significant source of morbidity for patients. This morbidity stems from complications
that may arise either immediately postoperatively or at a later stage. A wide range of com-
plications can manifest following breast reconstruction, with some being more prevalent
depending on the selected reconstructive technique. The most common complications in-
clude flap venous congestion, capsular contracture, seroma, local wound infection, and skin
necrosis [20,21]. In response to these challenges, O’Neill et al. have developed a machine
learning model to predict the risk of flap failure in patients undergoing DIEP breast recon-
struction. By analyzing patient characteristics and surgical technique factors, the model
identified risk factors such as obesity, smoking, and timing of reconstruction, helping pre-
dict whether postoperative flap failure might occur [22]. Similarly, Yunchan Chen et al. used
a neural network model to predict capsular contracture after two-stage expander/implant-
based reconstruction. The model analyzed specific risk factors and provided surgeons with
a percentage-based risk assessment of developing capsular contracture, potentially guiding
the surgeon to opt for a flap-based reconstruction [23]. Furthermore, Yi-Fu Chen used a
machine learning model to predict the need for postmastectomy radiation therapy after im-
mediate breast reconstruction. By analyzing preoperative patient characteristics, the model
provided personalized predictions about the need for post-reconstruction radiation therapy,
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which can negatively impact alloplastic reconstructions, therefore assisting surgeons in
choosing the time and type of reconstruction [24].

2.1.3. Outcome Prediction

Artificial intelligence offers the capability to predict cosmetic outcomes during the
preoperative planning of breast surgery, giving both clinicians and patients a clearer un-
derstanding of potential results. For instance, machine learning proved useful in creating
formulas for predicting breast volume using anthropometric measurements [25]. Addi-
tionally, deep learning models have been used to assess breast volume and density on
MRI scans, which can guide the selection of appropriate implants for reconstruction [18].
Building on this, Chartier et al. explored a neural network trained on real clinical imagery,
which proved highly effective in generating preoperative simulations that closely aligned
with actual postoperative appearances. This approach can be particularly valuable in con-
tralateral breast surgery, as it helps achieve optimal symmetry with the newly reconstructed
breast [26]. Also, Didzbalis et al. studied patient concerns about mastopexy using data from
a social media site and machine learning techniques to help surgeons address common
concerns during consultations and improve overall patient satisfaction [27]. In addition to
these applications, machine learning models can improve the informed consent process
by giving patients more accurate, personalized predictions about recovery and risks. This
helps manage expectations and provides better preoperative guidance, which is directly
linked to higher satisfaction after surgery [28,29].

2.2. Intraoperative Guidance

When speaking of the operating room, AI systems can overlay crucial information,
like the location of blood vessels and tissues, directly onto the surgeon’s view. AI can
extend its usefulness in the operating setting, using advanced computer vision systems,
augmented reality technologies and surgical robots (Da Vinci), in some cases offering
important guidance and enhancing surgical precision [30]. For now, AI has not reportedly
been used in the operating room for breast reconstruction, but some authors reported
the usage of AI to define and project safe dissection planes in real time while performing
gastrectomies [31]. For breast reconstruction, this could involve recognizing connective
tissue layers and avascular zones to guide precise and safe surgical movements during
lymph node dissection or tissue dissection during flap harvest. Although not related to
breast surgery, Russell et al. demonstrated enhanced surgical precision, reducing morbidity
and improving postoperative outcome using a five-axis robot (IBM 7576) equipped with an
added pitch axis, force sensor, and surgical cutting tools [32].

Advanced robotic systems, such as the Da Vinci robot, have been utilized to anchor
acellular dermal matrices, flap harvest, and perform microsurgical anastomoses with un-
precedented accuracy [33–35]. Complementary to AI, augmented reality has emerged as a
valuable tool for intraoperative visualization, enabling surgeons to overlay 3D anatomical
data onto the surgical field for precise navigation. These advancements not only opti-
mize technical performance but also ensure better postoperative results through enhanced
surgical precision and reduced fatigue-related errors [36]. Technologies like Microsoft’s
HoloLens allow surgeons to overlay CTA images directly onto the surgical field, enhancing
their understanding of the anatomy before making incisions or performing tissue dissec-
tions [37]. Looking ahead, the field of intraoperative use of AI in robotic surgery has seen
rapid growth in the last years but mainly remains in preclinical stages, with no clinical
studies demonstrating the application of the technology to all the tasks humans perform.
Current technologies focus on isolated tasks such as robot control and instrument tracking,
operating at low autonomy levels [7].
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2.3. Postoperative Care and Monitoring

Postoperative complications are a major concern in breast reconstruction. AI is trans-
forming postoperative care by enabling continuous monitoring and early detection of
possible complications. Myung et al. validated the use of machine learning models to
predict donor-related complications in 568 patients undergoing muscle-sparing TRAM flap
breast reconstruction. They demonstrated that AI technologies can effectively assess the
risk of donor site related complications in reconstructive breast surgeries. Among the ma-
chine learning methods evaluated, they found that neuralnet achieved the highest accuracy
(81%) [38]. AI can also be used to predict postoperative complications such as periprosthetic
infection and the need for explantation with greater accuracy compared to traditional meth-
ods. By analyzing specific factors and surgical variables, these models provide clinicians
with actionable insights to tailor interventions and optimize recovery [39].

Artificial intelligence, especially large language models (LLMs) like ChatGPT-3.5, -4
and Gemini, were evaluated in providing postoperative care advice in plastic surgery.
LLMs have shown promise in offering personalized advice to patients on wound care,
activity restrictions, symptom monitoring, and the early recognition of complications [40].

The effective postoperative monitoring of flaps is crucial for preventing flap failure
and ensuring successful reconstruction, with physician involvement with direct clinical ob-
servation being the gold standard [41]. Kim et al. developed an AI-based automated system
for free flap monitoring capable of appreciating flap perfusion based on photographs. The
system demonstrated potential for efficient monitoring with minimal human involvement,
reducing the burden on medical staff [42].

Symmetry analysis after breast reconstruction is time-consuming for clinicians,
and AI has the ability to quickly process and analyze symmetry, helping to monitor
changes in time and allowing clinicians to assess how well the reconstruction matches
preoperative goals [43].

2.4. Personalized Treatment Plans

AI’s ability to analyze large datasets allows for personalized treatment plans, tailoring
reconstruction strategies to individual patient needs [44,45]. In the future, AI could play
a strong role in recommending the optimal reconstructive approach depending on the
patient’s characteristics and preferences. Also, it could refine choices such as the donor site
for flaps, the recipient vessel, expander or implant selection, and surgical techniques [46].

Giving AI’s ability to enhance various aspects of breast reconstruction, potentially
improving aspects like preoperative planning, preoperative imaging, risk stratification and
decision support, outcome prediction, intraoperative guidance and postoperative care and
monitoring, a theoretical comparison of traditional versus AI-assisted breast reconstruction
in terms of accuracy, time efficiency, overall outcomes and costs is presented in Table 2.

2.5. Enhancing Educational Training and Scientific Research

AR technologies have surfaced in surgical training bringing important benefits to
medical trainees [47]. Although primarily explored in urology for penile implant placement
and orthopedics for acetabular cup orientation, the approach demonstrates the potential
of integration in breast reconstruction, providing enhanced visualization and improved
training for residents [48,49]. Academic institutions like Stanford Medicine have already
integrated AR technologies into practical surgical training [50]. In terms of research, when
used with proper caution and adherence to specific guidelines, LLMs can have a significant
impact the field, providing volume to ideas, guiding new researchers, analyzing extensive
patient data to identify patterns, and potentially creating new insights or hypotheses
for future researchers [51,52]. Machine learning can also be employed to analyze large
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datasets, identifying relationships between patient subgroups, ultimately improving clinical
decision-making [53].

Table 2. Theoretical advantages of AI-assisted breast reconstruction over Traditional Techniques.

Parameter Traditional Breast Reconstruction AI-Assisted Breast Reconstruction

Accuracy Higher variability in outcomes due to
human factors (surgeon skill)

AI tools can potentially assist in precise planning,
improving aesthetic outcomes and symmetry

Time Efficiency Longer operative times due to complex
planning and execution

Potentially shorter procedure times, AI can
optimize surgical planning and predict

complications

Patient Outcomes
Variable satisfaction, with some patients

experiencing dissatisfaction due to
aesthetic results

Has the potential to provide higher patient
satisfaction due to more predictable results

Costs
Higher costs due to longer operative times

and potential need for multiple
procedures

Initially, the cost could exceed traditional methods
but potentially reduce overall costs that stem from

complications and secondary surgeries.

3. Discussions
AI integration into breast reconstruction is a rapidly expanding domain, and the

present review aims to provide a strong foundation about the current state of the matter for
surgeons and researchers, examining potential benefits, challenges and future directions.
Like with any expanding scientific field, accumulating and refining evidence will take time
as the overall knowledge on the subject continues to grow. Although promising, challenges
such as inaccuracies, algorithm transparency, vulnerability to hacking or breaches, and inte-
gration into clinical practice remain significant drawbacks to permanent integration. Also,
the use of AI in healthcare can pose significant risk, and adherence to specific recommenda-
tions is mandatory [54]. One of the most critical areas where AI could pose significant risk
is inside the operating theater. A major concern is the potential for system errors, which
tragically could lead to incorrect surgical decisions or even delays in response. For example,
AI-assisted robotic systems use real-time data processing and machine learning algorithms,
which, if trained on unbalanced or unrepresentative datasets, could result in poor identifi-
cation of key anatomical landmarks and structures resulting in inaccurate robotic gestures
during surgery. Additionally, latency in remote or telerobotic surgery has the potential to
generate timing errors, compromising patient safety. The prevention of these risks involves
the robust validation of AI systems through extensive clinical trials and permanent human
oversight [55,56]. Concerns about AI in surgery extend beyond intraoperative risks to
potential job displacement for surgeons and even across the entire healthcare industry.
Being a rather rapidly expanding field, complete automation could be possible in the near
future, reducing the demand for human intervention and potentially impacting the job
market, limiting training opportunities [57]. AI misuse in the health care sector, especially
in surgical domains like breast reconstruction, could lead to serious complications and
ultimately to significant legal concerns. Determining responsibility in such cases can be
challenging and should be one of the main topics of debate for governments and regulatory
agencies [56]. Future studies should focus on creating transparent, understandable AI
systems and address ethical concerns, such as patient data privacy and consent.

In recent years, AI has been widely adopted across fields like computer science,
finance, data security, social media, travel and transportation, the automotive industry, and
education [58], highlighting the need for its integration into healthcare in the near future.
This means that AI has the potential to improve various areas of breast reconstruction



Medicina 2025, 61, 440 7 of 11

(Table 3) and the entire health care system, with breast reconstruction being a core subject
worldwide [59].

Table 3. Manuscript’s key studies, methodology used, and findings.

Study Methodology Key Findings

O’Neill et al. (2020) [22] Machine learning model for predicting flap
failure

Identified obesity, smoking, and
timing as major risk factors

Kim et al. (2024) [42] AI-based free flap monitoring system Efficient perfusion monitoring

Chartier et al. (2022) [26] Neural network for preoperative breast
simulations

Accurately predicted postoperative
appearance

Myung et al. (2021) [38] Machine learning for donor site related
complications 81% accuracy in prediction

Mavioso et al. (2020) [13] AI-assisted identification of perforators for
microsurgical reconstruction

Reduced preoperative analysis by
two hours per patient

Y-F Chen et al. (2024) [24] Machine learning model for postmastectomy
radiation therapy prediction

Provided personalized radiation
therapy recommendations

Hassan et al. (2023) [39] AI modeling for periprosthetic infection
prediction

Improved prediction accuracy for
implant complications

Chen et al. (2023) [23] Neural network predicting capsular
contracture

Provided percentage-based risk
assessment

Kenig et al. (2024) [43] AI-based breast symmetry evaluation Automated symmetry analysis for
postoperative assessment

Advances in other surgical specialties hold significant potential for integration into
breast reconstruction, a field that remains relatively underexplored in current medical
research. For now, robotic-assisted microsurgery has been mentioned to enhance precision
and dexterity in complex procedures like DIEP flap reconstructions, and the integration
of AI and complementary technologies may expand the potential for surgical planning
and execution, providing optimized outcomes [33,47,60]. Additionally, the integration of
computer vision could offer further benefits, paving the way for autonomous robots in the
future [61]. Further applications in the field include AR technologies, which potentially offer
benefits for surgical planning, execution and overall outcomes. HoloLens has demonstrated
its ability to overlay CTA image information onto patients, helping in the identification
and planning of perforator dissection [37,62]. Likewise, MRI and CT angiography images
have also been utilized with AR headsets to assess breast morphology and abdominal
perforator visualization, offering valuable insights for planning reconstructive surgery with
microsurgical transfers [63,64]. However, as the technologies seem to become more precise
in improving surgical precision, integration into clinical practices faces challenges that stem
from the need for extensive training and costs associated with advanced equipment [65].
Other potential applications of AI include integration in 3D printing technology, which
could potentially enable detailed simulations of breast models, optimizing surgical planning
of flaps and aesthetic outcomes [66]. Also, as stated in the preoperative planning section,
deep learning models have been used to assess breast volume and density on MRI scans,
providing surgeons valuable insights for implant selection. Given this ability to evaluate
different tissue types across different imaging studies, AI can potentially be used in the
future for optimizing fat grafting strategies. By analyzing volume retention and tissue
viability across different imaging techniques for assessing fat grafts, it can play a crucial
role in developing personalized treatment plans for hybrid breast reconstructions [18,67].

For the present time, it is clear that AI cannot fully replace the surgical team and is not
capable of complete autonomy like humans, but it is clear that the integration into various
aspects of the surgical practice has the potential to contribute to its overall improvement.
The future of breast reconstruction will involve closer collaboration between surgeons,
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researchers, and computer technologists, creating innovations that are both clinically
relevant and technically advanced. Similarly, the implementation of AI technologies
requires dedicated training for both surgeons and auxiliary medical staff, as well as the
conduction of clinical trials to ensure patient safety [68].

The present review manuscript provides a comprehensive analysis of the current avail-
able literature on AI applications in breast reconstruction, providing a valuable resource
for surgeons and researchers in this field. Mainly, the review tries to connect knowledge
from various specialties, including surgery, radiology, computer science, complementary
technologies, and robotics, and highlights the benefits AI can provide in surgical planning
and overall patient outcomes. Mentioning the latest advancements in AI and complemen-
tary technologies, the manuscript offers insights into how these innovations can benefit the
practice of breast reconstruction. Clearly, several limitations must be acknowledged. Firstly,
as a narrative review, this article lacks quantitative analysis included in systematic reviews
or meta-analyses. Secondly, while the review includes many studies, certain aspects or
applications were not fully addressed to not derail from the scope of this review. Thirdly,
the exponential growth of technological advancements in AI means that some of the cited
manuscripts and technologies could become outdated quickly. Additionally, there is an
immense lack of clinical trials, greatly reducing the amount of high-quality data that could
have been mentioned in multiple areas of the review.

Finally, AI and complementary technologies hold significant potential for advance-
ments in breast reconstruction, enhancing both clinical practices and learning processes,
potentially lowering healthcare expenses [69,70].

4. Conclusions
AI in the field of breast reconstruction could see rapid growth and has the potential

to metamorphose current techniques by assisting in preoperative planning, increasing
surgical precision, shortening operative times, providing predictive models for postopera-
tive complications, and overall improving outcomes and patient satisfaction. The present
review has the purpose of providing a framework for further research in the applications of
artificial intelligence in breast reconstruction. As AI evolves and more prospective clinical
trials are conducted, its applications in breast reconstruction will likely expand, providing
even greater benefits to patients and healthcare providers.
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