Overview of Wearable Healthcare Devices for Clinical Decision Support in the Prehospital Setting
<p>Diagram of Wearable Healthcare Device Placement. For each major body area, relevant WHD signal type is highlighted according to the monitoring capabilities. Article sub-sections for each respective WHD are included in the legend for ease of article navigation.</p> "> Figure 2
<p>Summary of Wearable Healthcare Devices (WHDs) for Electroencephalogram (EEG) Measurement. Potential uses in the prehospital setting, clinical decision support applications for the sensor technology, and current technology limitations are summarized.</p> "> Figure 3
<p>Summary of Wearable Healthcare Devices (WHDs) for Photoplethysmography (PPG) Measurement. Potential uses in the prehospital setting, clinical decision support applications for the sensor technology, and current technology limitations are summarized.</p> "> Figure 4
<p>Summary of Wearable Healthcare Devices (WHDs) for Medical Imaging. Potential uses in the prehospital setting, CDS applications for the sensor technology, and current technology limitations are summarized.</p> "> Figure 5
<p>Summary of Wearable Healthcare Devices (WHDs) for Chemical Sensing. Potential uses in the prehospital setting, clinical decision support applications for the sensor technology, and current technology limitations are summarized.</p> "> Figure 6
<p>Summary of Wearable Healthcare Devices (WHDs) for Electrocardiogram (ECG) Measurement. Potential uses in the prehospital setting, clinical decision support applications for the sensor technology, and current technology limitations are summarized.</p> "> Figure 7
<p>Summary of Wearable Healthcare Devices (WHDs) for Seismocardiogram (SCG) Measurement. Potential uses in the prehospital setting, clinical decision support applications for the sensor technology, and current technology limitations are summarized.</p> "> Figure 8
<p>Summary of Wearable Healthcare Devices (WHDs) for Temperature Measurement. Potential uses in the prehospital setting, clinical decision support applications for the sensor technology, and current technology limitations are summarized.</p> ">
Abstract
:1. Introduction
- An overview of prehospital medical care for both civilian and military situations.
- A detailed overview of clinical decision support tools.
- Method description on how WHDs and CDS applications were identified for this review article.
- Description of the most relevant WHD vital sign monitors including what the sensor(s) measures, a summary of state-of-the-art WHDs for each monitor type, and how the WHD has been used for clinical decision support.
- Discussion section highlighting where the current shortcomings exist for WHDs and CDS tools.
2. Overview of the Prehospital Medical Setting
3. Overview of Machine Learning for Clinical Decision Support
4. Methods
5. Wearable Healthcare Devices for Clinical Decision Support Tools
5.1. Electroencephalogram
5.1.1. Overview of Technology
5.1.2. Medical Decision Support Applications
5.1.3. State of Development
5.1.4. Technology Advantages and Disadvantages
5.2. Photoplethysmography
5.2.1. Overview of Technology
5.2.2. Medical Decision Support Applications
5.2.3. State of Development
5.2.4. Technology Advantages and Disadvantages
5.3. Medical Imaging
5.3.1. Overview of Technology
5.3.2. Medical Decision Support Applications
5.3.3. State of Development
5.3.4. Technology Advantages and Disadvantages
5.4. Chemical Sensors
5.4.1. Overview of Technology
5.4.2. Medical Decision Support Applications
5.4.3. State of Development
5.4.4. Technology Advantages and Disadvantages
5.5. Electrocardiogram
5.5.1. Overview of Technology
5.5.2. Medical Decision Support Applications
5.5.3. State of Development
5.5.4. Technology Advantages and Disadvantages
5.6. Seismocardiogram
5.6.1. Overview of Technology
5.6.2. Medical Decision Support Applications
5.6.3. State of Development
5.6.4. Technology Advantages and Disadvantages
5.7. Temperature
5.7.1. Overview of Technology
5.7.2. Medical Decision Support Applications
5.7.3. State of Development
5.7.4. Technology Advantages and Disadvantages
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
DOD Disclaimer
References
- Advanced Trauma Life Support. Available online: https://www.facs.org/quality-programs/trauma/education/advanced-trauma-life-support/ (accessed on 28 November 2022).
- McGuire, N.M. Monitoring in the Field. BJA Br. J. Anaesth. 2006, 97, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Townsend, S.; Lasher, W. The U.S. Army in Multi-Domain Operations 2028; U.S. Army: Fort Eustis, VA, USA, 2018.
- Convertino, V.A.; Ryan, K.L.; Rickards, C.A.; Salinas, J.; McManus, J.G.; Cooke, W.H.; Holcomb, J.B. Physiological and Medical Monitoring for En Route Care of Combat Casualties. J. Trauma Acute Care Surg. 2008, 64, S342–S353. [Google Scholar] [CrossRef] [PubMed]
- Epstein, A.; Lim, R.; Johannigman, J.; Fox, C.J.; Inaba, K.; Vercruysse, G.A.; Thomas, R.W.; Martin, M.J.; Konstantyn, G.; Schwaitzberg, S.D.; et al. Putting Medical Boots on the Ground: Lessons from the War in Ukraine and Applications for Future Conflict with Near-Peer Adversaries. J. Am. Coll. Surg. 2023, 237, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Convertino, V.A.; Wirt, M.D.; Glenn, J.F.; Lein, B.C. The Compensatory Reserve For Early and Accurate Prediction Of Hemodynamic Compromise: A Review of the Underlying Physiology. Shock 2016, 45, 580–590. [Google Scholar] [CrossRef]
- Convertino, V.A.; Koons, N.J.; Suresh, M.R. Physiology of Human Hemorrhage and Compensation. Compr. Physiol. 2011, 11, 1531–1574. [Google Scholar]
- Rong, G.; Zheng, Y.; Sawan, M. Energy Solutions for Wearable Sensors: A Review. Sensors 2021, 21, 3806. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in Healthcare Wearable Devices. npj Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Randhawa, P.; Shanthagiri, V.; Kumar, A. A Review on Applied Machine Learning in Wearable Technology and Its Applications. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 347–354. [Google Scholar]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Xue, Y. A Review on Intelligent Wearables: Uses and Risks. Hum. Behav. Emerg. Technol. 2019, 1, 287–294. [Google Scholar] [CrossRef]
- Niknejad, N.; Ismail, W.B.; Mardani, A.; Liao, H.; Ghani, I. A Comprehensive Overview of Smart Wearables: The State of the Art Literature, Recent Advances, and Future Challenges. Eng. Appl. Artif. Intell. 2020, 90, 103529. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in Medicine. Adv. Mater. 2018, 30, 1706910. [Google Scholar] [CrossRef]
- Blazek, R.; Hrosova, L.; Collier, J. Internet of Medical Things-Based Clinical Decision Support Systems, Smart Healthcare Wearable Devices, and Machine Learning Algorithms in COVID-19 Prevention, Screening, Detection, Diagnosis, and Treatment. Am. J. Med. Res. 2022, 9, 65–80. [Google Scholar]
- Pringle, K.; Watling, C.; Ireland, M.; Bird, S. An Eye on Operational Readiness in Paramedics: A Review of Wearable Technology. Authorea 2024. [Google Scholar] [CrossRef]
- Sward, D.G.; Bennett, B.L. Wilderness Medicine. World J. Emerg. Med. 2014, 5, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, S.; Cavallaro, G.; Palomeque, K.; Cardi, M.; Sica, G.; Rossi, P.; Sibio, S. Prehospital Hemorrhage Assessment Criteria: A Concise Review. J. Trauma Nurs. 2021, 28, 332–338. [Google Scholar] [CrossRef]
- Bhaumik, S.; Hannun, M.; Dymond, C.; DeSanto, K.; Barrett, W.; Wallis, L.A.; Mould-Millman, N.-K. Prehospital Triage Tools across the World: A Scoping Review of the Published Literature. Scand J. Trauma Resusc. Emerg. Med. 2022, 30, 32. [Google Scholar] [CrossRef]
- Kotwal, R.S.; Howard, J.T.; Orman, J.A.; Tarpey, B.W.; Bailey, J.A.; Champion, H.R.; Mabry, R.L.; Holcomb, J.B.; Gross, K.R. The Effect of a Golden Hour Policy on the Morbidity and Mortality of Combat Casualties. JAMA Surg. 2016, 151, 15. [Google Scholar] [CrossRef] [PubMed]
- Riesberg, J.; Powell, D.; Loos, P. The loss of the golden hour. Special Warfare Mag. 2017, 30, 49–51. [Google Scholar]
- Paullada, A.; Raji, I.D.; Bender, E.M.; Denton, E.; Hanna, A. Data and Its (Dis)Contents: A Survey of Dataset Development and Use in Machine Learning Research. Patterns 2021, 2, 100336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Xing, L.; Zou, J.; Wu, J.C. Shifting Machine Learning for Healthcare from Development to Deployment and from Models to Data. Nat. Biomed. Eng 2022, 6, 1330–1345. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.U.; Malik, A.S.; Ahmad, R.F.; Badruddin, N.; Kamel, N.; Hussain, M.; Chooi, W.-T. Feature Extraction and Classification for EEG Signals Using Wavelet Transform and Machine Learning Techniques. Australas. Phys. Eng. Sci. Med. 2015, 38, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Guyon, I.; Elisseeff, A. An Introduction to Feature Extraction. In Feature Extraction: Foundations and Applications; Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A., Eds.; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–25. ISBN 978-3-540-35488-8. [Google Scholar]
- Yoon, D.; Jang, J.-H.; Choi, B.J.; Kim, T.Y.; Han, C.H. Discovering Hidden Information in Biosignals from Patients Using Artificial Intelligence. Korean J. Anesthesiol. 2020, 73, 275–284. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Yousefpoor, E.; Yousefpoor, M.S.; Mehmood, Z.; Haider, A.; Hosseinzadeh, M.; Ali Naqvi, R. Machine Learning (ML) in Medicine: Review, Applications, and Challenges. Mathematics 2021, 9, 2970. [Google Scholar] [CrossRef]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine Learning in Medical Applications: A Review of State-of-the-Art Methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef]
- Bone, D.; Lee, C.-C.; Chaspari, T.; Gibson, J.; Narayanan, S. Signal Processing and Machine Learning for Mental Health Research and Clinical Applications [Perspectives]. IEEE Signal Process. Mag. 2017, 34, 195–196. [Google Scholar] [CrossRef]
- Hosseini, M.-P.; Hosseini, A.; Ahi, K. A Review on Machine Learning for EEG Signal Processing in Bioengineering. IEEE Rev. Biomed. Eng. 2020, 14, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.-C.; Huang, Y.-S.; Chen, R.-T.; Huang, C.-S.; Chang, R.-F. Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation. IEEE Trans. Med. Imaging 2019, 38, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Gour, M.; Jain, S.; Sunil Kumar, T. Residual Learning Based CNN for Breast Cancer Histopathological Image Classification. Int. J. Imaging Syst. Technol. 2020, 30, 621–635. [Google Scholar] [CrossRef]
- Du, R.; Chen, Y.; Li, T.; Shi, L.; Fei, Z.; Li, Y. Discrimination of Breast Cancer Based on Ultrasound Images and Convolutional Neural Network. J. Oncol. 2022, 2022, 7733583. [Google Scholar] [CrossRef]
- Snider, E.J.; Hernandez-Torres, S.I.; Avital, G.; Boice, E.N. Evaluation of an Object Detection Algorithm for Shrapnel and Development of a Triage Tool to Determine Injury Severity. J. Imaging 2022, 8, 252. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.F.; Sabanci, K.; Durdu, A.; Unlersen, M.F. COVID-19 Diagnosis Using State-of-the-Art CNN Architecture Features and Bayesian Optimization. Comput. Biol. Med. 2022, 142, 105244. [Google Scholar] [CrossRef]
- Diaz-Escobar, J.; Ordóñez-Guillén, N.E.; Villarreal-Reyes, S.; Galaviz-Mosqueda, A.; Kober, V.; Rivera-Rodriguez, R.; Rizk, J.E.L. Deep-Learning Based Detection of COVID-19 Using Lung Ultrasound Imagery. PLoS ONE 2021, 16, e0255886. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial Intelligence in the Diagnosis of COVID-19: Challenges and Perspectives. Int. J. Biol. Sci. 2021, 17, 1581. [Google Scholar] [CrossRef] [PubMed]
- Moulton, S.L.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A. Running on Empty? The Compensatory Reserve Index. J. Trauma Acute Care Surg. 2013, 75, 1053–1059. [Google Scholar] [CrossRef]
- Techentin, R.W.; Felton, C.L.; Schlotman, T.E.; Gilbert, B.K.; Joyner, M.J.; Curry, T.B.; Convertino, V.A.; Holmes, D.R.; Haider, C.R. 1D Convolutional Neural Networks for Estimation of Compensatory Reserve from Blood Pressure Waveforms. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2169–2173. [Google Scholar]
- Gupta, J.F.; Arshad, S.H.; Telfer, B.A.; Snider, E.J.; Convertino, V.A. Noninvasive Monitoring of Simulated Hemorrhage and Whole Blood Resuscitation. Biosensors 2022, 12, 1168. [Google Scholar] [CrossRef] [PubMed]
- Bedolla, C.N.; Gonzalez, J.M.; Vega, S.J.; Convertino, V.A.; Snider, E.J. An Explainable Machine-Learning Model for Compensatory Reserve Measurement: Methods for Feature Selection and the Effects of Subject Variability. Bioengineering 2023, 10, 612. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.J.; Vistisen, S.T.; Jian, Z.; Hatib, F.; Scheeren, T.W. Ability of an Arterial Waveform Analysis–Derived Hypotension Prediction Index to Predict Future Hypotensive Events in Surgical Patients. Anesth. Analg. 2020, 130, 352–359. [Google Scholar] [CrossRef]
- Cylwik, J.; Celińska-Spodar, M.; Dudzic, M. Individualized Perioperative Hemodynamic Management Using Hypotension Prediction Index Software and the Dynamics of Troponin and NTproBNP Concentration Changes in Patients Undergoing Oncological Abdominal Surgery. J. Pers. Med. 2024, 14, 211. [Google Scholar] [CrossRef]
- Acumen Hypotension Prediction Index Software. Available online: https://www.edwards.com/healthcare-professionals/products-services/predictive-monitoring/hpi (accessed on 1 April 2024).
- Salinas, J.; Chung, K.K.; Mann, E.A.; Cancio, L.C.; Kramer, G.C.; Serio-Melvin, M.L.; Renz, E.M.; Wade, C.E.; Wolf, S.E. Computerized Decision Support System Improves Fluid Resuscitation Following Severe Burns: An Original Study. Crit. Care Med. 2011, 39, 2031–2038. [Google Scholar] [CrossRef]
- Salinas, J.; Drew, G.; Gallagher, J.; Cancio, L.C.; Wolf, S.E.; Wade, C.E.; Holcomb, J.B.; Herndon, D.N.; Kramer, G.C. Closed-Loop and Decision-Assist Resuscitation of Burn Patients. J. Trauma Inj. Infect. Crit. Care 2008, 64, S321–S332. [Google Scholar] [CrossRef] [PubMed]
- Joosten, A.; Rinehart, J.; Bardaji, A.; Van der Linden, P.; Jame, V.; Van Obbergh, L.; Alexander, B.; Cannesson, M.; Vacas, S.; Liu, N.; et al. Anesthetic Management Using Multiple Closed-Loop Systems and Delayed Neurocognitive Recovery: A Randomized Controlled Trial. Anesthesiology 2020, 132, 253–266. [Google Scholar] [CrossRef]
- Hemmerling, T.M.; Arbeid, E.; Wehbe, M.; Cyr, S.; Taddei, R.; Zaouter, C. Evaluation of a Novel Closed-Loop Total Intravenous Anaesthesia Drug Delivery System: A Randomized Controlled Trial. Br. J. Anaesth. 2013, 110, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, K.K.; Jahrsdoerfer, M.; Case, J.; Drew, T.; Raber, G. The Role of Clinical Decision Support Tools to Reduce Blood Pressure Variability in Critically Ill Patients Receiving Vasopressor Support. CIN Comput. Inform. Nurs. 2012, 30, 204–209. [Google Scholar] [CrossRef]
- Joosten, A.; Rinehart, J.; Cannesson, M.; Coeckelenbergh, S.; Pochard, J.; Vicaut, E.; Duranteau, J. Control of Mean Arterial Pressure Using a Closed-Loop System for Norepinephrine Infusion in Severe Brain Injury Patients: The COMAT Randomized Controlled Trial. J. Clin. Monit. Comput. 2024, 38, 25–30. [Google Scholar] [CrossRef]
- Pinsky, M.R.; Dubrawski, A.; Clermont, G. Intelligent Clinical Decision Support. Sensors 2022, 22, 1408. [Google Scholar] [CrossRef] [PubMed]
- Gholami, B.; Haddad, W.M.; Bailey, J.M.; Geist, B.; Ueyama, Y.; Muir, W.W. A Pilot Study Evaluating Adaptive Closed-Loop Fluid Resuscitation during States of Absolute and Relative Hypovolemia in Dogs. J. Vet. Emerg. Crit. Care 2018, 28, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Vega, S.J.; Berard, D.; Avital, G.; Ross, E.; Snider, E.J. Adaptive Closed-Loop Resuscitation Controllers for Hemorrhagic Shock Resuscitation. Transfusion 2023, 63, S230–S240. [Google Scholar] [CrossRef]
- Rinehart, J.; Lilot, M.; Lee, C.; Joosten, A.; Huynh, T.; Canales, C.; Imagawa, D.; Demirjian, A.; Cannesson, M. Closed-Loop Assisted versus Manual Goal-Directed Fluid Therapy during High-Risk Abdominal Surgery: A Case–Control Study with Propensity Matching. Crit. Care 2015, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Electroencephalogram (EEG). Available online: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg (accessed on 29 March 2024).
- Stock, S.C.; Armengol-Urpi, A.; Kovács, B.; Maier, H.; Gerdes, M.; Stork, W.; Sarma, S.E. A System Approach for Closed-Loop Assessment of Neuro-Visual Function Based on Convolutional Neural Network Analysis of EEG Signals. In Proceedings of the Neurophotonics; SPIE: Bellingham, WA, USA, 2020; Volume 11360, pp. 25–42. [Google Scholar]
- Shi, T.; Li, X.; Song, J.; Zhao, N.; Sun, C.; Xia, W.; Wu, L.; Tomoda, A. EEG Characteristics and Visual Cognitive Function of Children with Attention Deficit Hyperactivity Disorder (ADHD). Brain Dev. 2012, 34, 806–811. [Google Scholar] [CrossRef]
- Baranello, G.; Randò, T.; Bancale, A.; D’Acunto, M.G.; Epifanio, R.; Frisone, M.F.; Guzzetta, A.; La Torre, G.; Mannocci, A.; Ricci, D. Auditory Attention at the Onset of West Syndrome: Correlation with EEG Patterns and Visual Function. Brain Dev. 2006, 28, 293–299. [Google Scholar] [CrossRef]
- Backer, K.C.; Kessler, A.S.; Lawyer, L.A.; Corina, D.P.; Miller, L.M. A Novel EEG Paradigm to Simultaneously and Rapidly Assess the Functioning of Auditory and Visual Pathways. J. Neurophysiol. 2019, 122, 1312–1329. [Google Scholar] [CrossRef]
- Louis, E.K.S.; Frey, L.C.; Britton, J.W.; Frey, L.C.; Hopp, J.L.; Korb, P.; Koubeissi, M.Z.; Lievens, W.E.; Pestana-Knight, E.M.; Louis, E.K.S. Introduction. In Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants [Internet]; American Epilepsy Society: Chicago, IL, USA, 2016. [Google Scholar]
- Ibrahim, S.; Djemal, R.; Alsuwailem, A. Electroencephalography (EEG) Signal Processing for Epilepsy and Autism Spectrum Disorder Diagnosis. Biocybern. Biomed. Eng. 2018, 38, 16–26. [Google Scholar] [CrossRef]
- Ianof, J.N.; Anghinah, R. Traumatic Brain Injury: An EEG Point of View. Dement. Neuropsychol. 2017, 11, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Casson, A.J. Wearable EEG and Beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef]
- AlSharabi, K.; Salamah, Y.B.; Aljalal, M.; Abdurraqeeb, A.M.; Alturki, F.A. EEG-Based Clinical Decision Support System for Alzheimer’s Disorders Diagnosis Using EMD and Deep Learning Techniques. Front. Hum. Neurosci. 2023, 17, 1190203. [Google Scholar] [CrossRef]
- McInnis, R.P.; Ayub, M.A.; Jing, J.; Halford, J.J.; Mateen, F.J.; Westover, M.B. Epilepsy Diagnosis Using a Clinical Decision Tool and Artificially Intelligent Electroencephalography. Epilepsy Behav. 2023, 141, 109135. [Google Scholar] [CrossRef] [PubMed]
- Haveman, M.E.; Van Putten, M.J.; Hom, H.W.; Eertman-Meyer, C.J.; Beishuizen, A.; Tjepkema-Cloostermans, M.C. Predicting Outcome in Patients with Moderate to Severe Traumatic Brain Injury Using Electroencephalography. Crit. Care 2019, 23, 401. [Google Scholar] [CrossRef]
- Caplan, H.W.; Cox, C.S. Resuscitation Strategies for Traumatic Brain Injury. Curr. Surg. Rep. 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.G.; Cincotta, M.; Clavisi, O.; Bragge, P.; Wasiak, J.; Pattuwage, L.; Gruen, R.L. Prehospital Fluid Management in Traumatic Brain Injury. Emerg. Med. Australas. 2011, 23, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Frankel, M.A.; Lehmkuhle, M.J.; Spitz, M.C.; Newman, B.J.; Richards, S.V.; Arain, A.M. Wearable Reduced-Channel EEG System for Remote Seizure Monitoring. Front. Neurol. 2021, 12, 728484. [Google Scholar] [CrossRef] [PubMed]
- Perez-Valero, E.; Lopez-Gordo, M.Á.; Gutiérrez, C.M.; Carrera-Muñoz, I.; Vílchez-Carrillo, R.M. A Self-Driven Approach for Multi-Class Discrimination in Alzheimer’s Disease Based on Wearable EEG. Comput. Methods Programs Biomed. 2022, 220, 106841. [Google Scholar] [CrossRef] [PubMed]
- Mehreen, A.; Anwar, S.M.; Haseeb, M.; Majid, M.; Ullah, M.O. A Hybrid Scheme for Drowsiness Detection Using Wearable Sensors. IEEE Sens. J. 2019, 19, 5119–5126. [Google Scholar] [CrossRef]
- Arpaia, P.; Moccaldi, N.; Prevete, R.; Sannino, I.; Tedesco, A. A Wearable EEG Instrument for Real-Time Frontal Asymmetry Monitoring in Worker Stress Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8335–8343. [Google Scholar] [CrossRef]
- Park, S.; Han, C.-H.; Im, C.-H. Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications. Sensors 2020, 20, 4572. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, S.; Kim, C. Miniaturization for Wearable EEG Systems: Recording Hardware and Data Processing. Biomed. Eng. Lett. 2022, 12, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Barton, D.J.; Coppler, P.J.; Talia, N.N.; Charalambides, A.; Stancil, B.; Puccio, A.M.; Okonkwo, D.O.; Callaway, C.W.; Guyette, F.X.; Elmer, J. Prehospital Electroencephalography to Detect Traumatic Brain Injury during Helicopter Transport: A Pilot Observational Cohort Study. Prehosp. Emerg. Care 2024, 28, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Hertzman, A.B. The Blood Supply of Various Skin Areas as Estimated by the Photoelectric Plethysmograph. Am. J. Physiol.-Leg. Content 1938, 124, 328–340. [Google Scholar] [CrossRef]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A Review on Wearable Photoplethysmography Sensors and Their Potential Future Applications in Health Care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef]
- Wei, C.; Sheng, L.; Lihua, G.; Yuquan, C.; Min, P. Study on Conditioning and Feature Extraction Algorithm of Photoplethysmography Signal for Physiological Parameters Detection. In Proceedings of the 2011 4th International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011; IEEE: Piscataway, NJ, USA, 2011; Volume 4, pp. 2194–2197. [Google Scholar]
- Salomão, E., Jr.; Otsuki, D.A.; Correa, A.L.; Fantoni, D.T.; dos Santos, F.; Irigoyen, M.C.; Auler, J.O.C., Jr. Heart Rate Variability Analysis in an Experimental Model of Hemorrhagic Shock and Resuscitation in Pigs. PLoS ONE 2015, 10, e0134387. [Google Scholar] [CrossRef]
- Chen, W.-L.; Kuo, C.-D. Characteristics of Heart Rate Variability Can Predict Impending Septic Shock in Emergency Department Patients with Sepsis. Acad. Emerg. Med. 2007, 14, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Min, S.D. Feasibility Study for the Non-Invasive Blood Pressure Estimation Based on Ppg Morphology: Normotensive Subject Study. Biomed. Eng. Online 2017, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, M.; Romem, A.; Koppel, R. Pulse Oximetry: Fundamentals and Technology Update. Med. Devices Evid. Res. 2014, 7, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Loh, H.W.; Xu, S.; Faust, O.; Ooi, C.P.; Barua, P.D.; Chakraborty, S.; Tan, R.-S.; Molinari, F.; Acharya, U.R. Application of Photoplethysmography Signals for Healthcare Systems: An in-Depth Review. Comput. Methods Programs Biomed. 2022, 216, 106677. [Google Scholar] [CrossRef]
- Nie, G.; Zhu, J.; Tang, G.; Zhang, D.; Geng, S.; Zhao, Q.; Hong, S. A Review of Deep Learning Methods for Photoplethysmography Data. arXiv 2024, arXiv:2401.12783. [Google Scholar]
- Euliano, T.Y.; Michalopoulos, K.; Singh, S.; Gregg, A.R.; Del Rio, M.; Vasilopoulos, T.; Johnson, A.M.; Onkala, A.; Darmanjian, S.; Euliano, N.R.; et al. Photoplethysmography and Heart Rate Variability for the Diagnosis of Preeclampsia. Anesth. Analg. 2018, 126, 913. [Google Scholar] [CrossRef]
- Huttunen, R.; Leppänen, T.; Duce, B.; Oksenberg, A.; Myllymaa, S.; Töyräs, J.; Korkalainen, H. Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography. Sleep 2021, 44, zsab142. [Google Scholar] [CrossRef]
- Chiang, P.-Y.; Chao, P.C.-P.; Tu, T.-Y.; Kao, Y.-H.; Yang, C.-Y.; Tarng, D.-C.; Wey, C.-L. Machine Learning Classification for Assessing the Degree of Stenosis and Blood Flow Volume at Arteriovenous Fistulas of Hemodialysis Patients Using a New Photoplethysmography Sensor Device. Sensors 2019, 19, 3422. [Google Scholar] [CrossRef]
- Chen, Z.; Ono, N.; Chen, W.; Tamura, T.; Altaf-Ul-Amin, M.; Kanaya, S.; Huang, M. The Feasibility of Predicting Impending Malignant Ventricular Arrhythmias by Using Nonlinear Features of Short Heartbeat Intervals. Comput. Methods Programs Biomed. 2021, 205, 106102. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, T.I.; Imran, S.A.; Shahnaz, C. Res-SE-ConvNet: A Deep Neural Network for Hypoxemia Severity Prediction for Hospital In-Patients Using Photoplethysmograph Signal. IEEE J. Transl. Eng. Health Med. 2022, 10, 1–9. [Google Scholar] [CrossRef]
- Janak, J.C.; Howard, J.T.; Goei, K.A.; Weber, R.; Muniz, G.W.; Hinojosa-Laborde, C.; Convertino, V.A. Predictors of the Onset of Hemodynamic Decompensation During Progressive Central Hypovolemia: Comparison of the Peripheral Perfusion Index, Pulse Pressure Variability, and Compensatory Reserve Index. Shock 2015, 44, 548. [Google Scholar] [CrossRef] [PubMed]
- Sundrani, S.; Chen, J.; Jin, B.T.; Abad, Z.S.H.; Rajpurkar, P.; Kim, D. Predicting Patient Decompensation from Continuous Physiologic Monitoring in the Emergency Department. NPJ Digit. Med. 2023, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Fortino, G.; Giampà, V. PPG-Based Methods for Non Invasive and Continuous Blood Pressure Measurement: An Overview and Development Issues in Body Sensor Networks. In Proceedings of the 2010 IEEE International Workshop on Medical Measurements and Applications, Ottawa, ON, Canada, 30 April–1 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 10–13. [Google Scholar]
- El-Hajj, C.; Kyriacou, P.A. A Review of Machine Learning Techniques in Photoplethysmography for the Non-Invasive Cuff-Less Measurement of Blood Pressure. Biomed. Signal Process. Control 2020, 58, 101870. [Google Scholar] [CrossRef]
- Gerboni, G.; Comunale, G.; Chen, W.; Lever Taylor, J.; Migliorini, M.; Picard, R.; Cruz, M.; Regalia, G. Prospective Clinical Validation of the Empatica EmbracePlus Wristband as a Reflective Pulse Oximeter. Front. Digit. Health 2023, 5, 1258915. [Google Scholar] [CrossRef]
- Jeong, H.; Wang, L.; Ha, T.; Mitbander, R.; Yang, X.; Dai, Z.; Qiao, S.; Shen, L.; Sun, N.; Lu, N. Modular and Reconfigurable Wireless E-Tattoos for Personalized Sensing. Adv. Mater. Technol. 2019, 4, 1900117. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, H.; Yoo, S.; Yoo, H. Sticker-Type ECG/PPG Concurrent Monitoring System Hybrid Integration of CMOS SoC and Organic Sensor Device. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2014–2017. [Google Scholar] [CrossRef]
- Poh, M.-Z.; Swenson, N.C.; Picard, R.W. Motion-Tolerant Magnetic Earring Sensor and Wireless Earpiece for Wearable Photoplethysmography. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lo, B.P.; Yang, G.-Z. Multichannel Reflective PPG Earpiece Sensor With Passive Motion Cancellation. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 235–241. [Google Scholar] [CrossRef]
- Kokoon Philips Sleep Headphones with Kokoon (Designed for Ultimate Comfort). Available online: https://kokoon.io/en-us (accessed on 16 May 2024).
- Pedrana, A.; Comotti, D.; Re, V.; Traversi, G. Development of a Wearable In-Ear PPG System for Continuous Monitoring. IEEE Sens. J. 2020, 20, 14482–14490. [Google Scholar] [CrossRef]
- Tan, P.; Tamma, S.; Bhattacharya, S.; Tunnell, J.; Lu, N. Wearable Optical E-Tattoo for Deep Neck Hemodynamic Monitoring. In Proceedings of the 2022 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, VA, USA, 17–19 November 2022; pp. 118–122. [Google Scholar]
- Tan, P.; Wang, E.; Tamma, S.; Bhattacharya, S.; Lu, N. Towards Simultaneous Noninvasive Arterial and Venous Oxygenation Monitoring with Wearable E-Tattoo. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; Volume 2023, pp. 1–4. [Google Scholar] [CrossRef]
- Seok, D.; Lee, S.; Kim, M.; Cho, J.; Kim, C. Motion Artifact Removal Techniques for Wearable EEG and PPG Sensor Systems. Front. Electron. 2021, 2, 685513. [Google Scholar] [CrossRef]
- Ismail, S.; Akram, U.; Siddiqi, I. Heart Rate Tracking in Photoplethysmography Signals Affected by Motion Artifacts: A Review. EURASIP J. Adv. Signal Process. 2021, 2021, 5. [Google Scholar] [CrossRef]
- Le, M.-P.T.; Voigt, L.; Nathanson, R.; Maw, A.M.; Johnson, G.; Dancel, R.; Mathews, B.; Moreira, A.; Sauthoff, H.; Gelabert, C.; et al. Comparison of Four Handheld Point-of-Care Ultrasound Devices by Expert Users. Ultrasound J. 2022, 14, 27. [Google Scholar] [CrossRef]
- Ihnatsenka, B.; Boezaart, A.P. Ultrasound: Basic Understanding and Learning the Language. Int. J. Shoulder Surg. 2010, 4, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Behan, M.; Kazam, E. The Echographic Characteristics of Fatty Tissues and Tumors. Radiology 1978, 129, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.M. Ultrasound Imaging. Investig. Radiol. 2020, 55, 573–577. [Google Scholar] [CrossRef]
- Wang, S.; Hossack, J.A.; Klibanov, A.L. From Anatomy to Functional and Molecular Biomarker Imaging, and Therapy: Ultrasound Is Safe, Ultrafast, Portable, and Inexpensive. Investig. Radiol. 2020, 55, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, A.L.; Meijer, R.I.; van Poelgeest, E.; Spoor, P.; Serné, E.H.; Eringa, E.C. Contrast-enhanced Ultrasound for Quantification of Tissue Perfusion in Humans. Microcirculation 2020, 27, e12588. [Google Scholar] [CrossRef] [PubMed]
- Barootchi, S.; Tavelli, L.; Majzoub, J.; Chan, H.L.; Wang, H.L.; Kripfgans, O.D. Ultrasonographic Tissue Perfusion in Peri-Implant Health and Disease. J. Dent. Res. 2022, 101, 278–285. [Google Scholar] [CrossRef]
- Chabat, F.; Hansell, D.M.; Yang, G.-Z. Computerized Decision Support in Medical Imaging. IEEE Eng. Med. Biol. Mag. 2000, 19, 89–96. [Google Scholar] [CrossRef]
- Shaikh, F.; Dehmeshki, J.; Bisdas, S.; Roettger-Dupont, D.; Kubassova, O.; Aziz, M.; Awan, O. Artificial Intelligence-Based Clinical Decision Support Systems Using Advanced Medical Imaging and Radiomics. Curr. Probl. Diagn. Radiol. 2021, 50, 262–267. [Google Scholar] [CrossRef]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Latif, J.; Xiao, C.; Imran, A.; Tu, S. Medical Imaging Using Machine Learning and Deep Learning Algorithms: A Review. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Hernandez Torres, S.I.; Ruiz, A.; Holland, L.; Ortiz, R.; Snider, E.J. Evaluation of Deep Learning Model Architectures for Point-of-Care Ultrasound Diagnostics. Bioengineering 2024, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, Z.; Cao, P.; Lin, Y.; Liang, F.; He, J.; Huang, L. Deep Learning for Emergency Ascites Diagnosis Using Ultrasonography Images. J. Appl. Clin. Med. Phys. 2022, 23, e13695. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.; Li, F.; Funk, C.; Peethumangsin, E.; Morris, M.; Anderson, J.T.; Hersh, A.M.; Aylward, S. Detection of Pneumothorax on Ultrasound Using Artificial Intelligence. J. Trauma Acute Care Surg. 2023, 94, 379–384. [Google Scholar] [CrossRef]
- Boice, E.N.; Hernandez-Torres, S.I.; Knowlton, Z.J.; Berard, D.; Gonzalez, J.M.; Snider, E.J. Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom. J. Imaging 2022, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, X.; Wang, L.; Makihata, M.; Liu, H.-C.; Zhou, T.; Zhao, X. Bioadhesive Ultrasound for Long-Term Continuous Imaging of Diverse Organs. Science 2022, 377, 517–523. [Google Scholar] [CrossRef] [PubMed]
- La, T.-G.; Le, L.H. Flexible and Wearable Ultrasound Device for Medical Applications: A Review on Materials, Structural Designs, and Current Challenges. Adv. Mater. Technol. 2022, 7, 2100798. [Google Scholar] [CrossRef]
- Flopatch-Flosonics Medical. Available online: https://flosonicsmedical.com/flopatch/ (accessed on 27 November 2022).
- Munding, C.; Acconcia, C.; Elfarnawany, M.; Eibl, J.; Verrecchia, P.; Leonard, P.; Boyes, A.; Yang, Z.; Atoui, R.; Demore, C. In Vitro and Clinical Demonstration of Relative Velocity Measurements with the FlopatchTM: A Wearable Doppler Ultrasound Patch. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Lin, M.; Zhang, Z.; Gao, X.; Bian, Y.; Wu, R.S.; Park, G.; Lou, Z.; Zhang, Z.; Xu, X.; Chen, X.; et al. A Fully Integrated Wearable Ultrasound System to Monitor Deep Tissues in Moving Subjects. Nat. Biotechnol. 2024, 42, 448–457. [Google Scholar] [CrossRef]
- Song, I.; Yoon, J.; Kang, J.; Kim, M.; Jang, W.S.; Shin, N.-Y.; Yoo, Y. Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results. Appl. Sci. 2019, 9, 2202. [Google Scholar] [CrossRef]
- Chemical Sensor—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/materials-science/chemical-sensor (accessed on 3 April 2024).
- Sempionatto, J.R.; Jeerapan, I.; Krishnan, S.; Wang, J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal. Chem. 2020, 92, 378–396. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lasalde-Ramírez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable Chemical Sensors for Biomarker Discovery in the Omics Era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, M.; Butz, A.L.; Clausen, J.-D.; Blossey, R.D.; Zeckey, C.; Weber-Spickschen, S.; Mommsen, P. Admission Blood Glucose as a Predictor of Shock and Mortality in Multiply Injured Patients. SICOT J 2019, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Sobhian, B.; Kröpfl, A.; Hölzenbein, T.; Khadem, A.; Redl, H.; Bahrami, S. Increased Circulating D-Lactate Levels Predict Risk of Mortality after Hemorrhage and Surgical Trauma in Baboons. Shock 2012, 37, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, M.; Li, M.; Yang, J.; Yang, L. Paper-Based Chiral Biosensors Using Enzyme Encapsulation in Hydrogel Network for Point-of-Care Detection of Lactate Enantiomers. Anal. Chim. Acta 2023, 1279, 341834. [Google Scholar] [CrossRef]
- Elsherif, M.; Moreddu, R.; Alam, F.; Salih, A.E.; Ahmed, I.; Butt, H. Wearable Smart Contact Lenses for Continual Glucose Monitoring: A Review. Front. Med. 2022, 9, 858784. [Google Scholar] [CrossRef] [PubMed]
- Reeder, J.T.; Choi, J.; Xue, Y.; Gutruf, P.; Hanson, J.; Liu, M.; Ray, T.; Bandodkar, A.J.; Avila, R.; Xia, W.; et al. Waterproof, Electronics-Enabled, Epidermal Microfluidic Devices for Sweat Collection, Biomarker Analysis, and Thermography in Aquatic Settings. Sci. Adv. 2019, 5, eaau6356. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Tomoto, K.; Nitta, H.; Toma, K.; Takeuchi, S.; Sekita, T.; Minakuchi, S.; Mitsubayashi, K. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Anal. Chem. 2020, 92, 12201–12207. [Google Scholar] [CrossRef]
- Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 2016, 1, 1011–1019. [Google Scholar] [CrossRef]
- Sports Wearable for Lactate Measurements|IDRO|Belgium. Available online: https://www.idro.world (accessed on 3 April 2024).
- The4 Biosensors|Hydration Monitor|Revolutionary Sweat. Available online: https://liipoo.com/ (accessed on 3 April 2024).
- The Science → hDrop Hydration Wearable Sensor 2023. Available online: https://hdroptech.com/hydration-sweat-testing-science/ (accessed on 16 December 2024).
- How to Use the Gx Sweat Patch|Gatorade Official Site. Available online: https://www.gatorade.com/gx-sweat-patch-how-to-use (accessed on 3 April 2024).
- Epicore Biosystems. Available online: https://www.epicorebiosystems.com/ (accessed on 3 April 2024).
- Nix Biosensors|Hydration Monitor|Revolutionary Sweat Science. Available online: https://nixbiosensors.com/ (accessed on 3 April 2024).
- Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sens. 2016, 1, 464–482. [Google Scholar] [CrossRef]
- Hammad, M.; Maher, A.; Wang, K.; Jiang, F.; Amrani, M. Detection of Abnormal Heart Conditions Based on Characteristics of ECG Signals. Measurement 2018, 125, 634–644. [Google Scholar] [CrossRef]
- Sattar, Y.; Chhabra, L. Electrocardiogram. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Wimmer, N.J.; Scirica, B.M.; Stone, P.H. The Clinical Significance of Continuous ECG (Ambulatory ECG or Holter) Monitoring of the ST-Segment to Evaluate Ischemia: A Review. Prog. Cardiovasc. Dis. 2013, 56, 195–202. [Google Scholar] [CrossRef]
- Kamga, P.; Mostafa, R.; Zafar, S. The Use of Wearable ECG Devices in the Clinical Setting: A Review. Curr. Emerg. Hosp. Med. Rep. 2022, 10, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, Z.; Al-Zaiti, S.S.; Bond, R.; Sejdić, E. Remote and Wearable ECG Devices with Diagnostic Abilities in Adults: A State-of-the-Science Scoping Review. Heart Rhythm 2022, 19, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Kass, R.E.; Clancy, C.E. Basis and Treatment of Cardiac Arrhythmias; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 171, ISBN 3-540-24967-2. [Google Scholar]
- Srivathsan, K.; Ng, D.W.; Mookadam, F. Ventricular Tachycardia and Ventricular Fibrillation. Expert Rev. Cardiovasc. Ther. 2009, 7, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Alickovic, E.; Subasi, A. Medical Decision Support System for Diagnosis of Heart Arrhythmia Using DWT and Random Forests Classifier. J. Med. Syst. 2016, 40, 108. [Google Scholar] [CrossRef]
- Steinhubl, S.R.; Waalen, J.; Edwards, A.M.; Ariniello, L.M.; Mehta, R.R.; Ebner, G.S.; Carter, C.; Baca-Motes, K.; Felicione, E.; Sarich, T. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA 2018, 320, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Stehlik, J.; Schmalfuss, C.; Bozkurt, B.; Nativi-Nicolau, J.; Wohlfahrt, P.; Wegerich, S.; Rose, K.; Ray, R.; Schofield, R.; Deswal, A. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization: The LINK-HF Multicenter Study. Circ. Heart Fail. 2020, 13, e006513. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Joshi, R. Portable Out-of-hospital Electrocardiography: A Review of Current Technologies. J. Arrhythmia 2018, 34, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Upadhyayula, S.; Kasliwal, R.R. Wellysis S-PAtch Cardio versus Conventional Holter Ambulatory Electrocardiographic Monitoring (The PACER Trial): Preliminary Results. J. Clin. Prev. Cardiol. 2019, 8, 173–182. [Google Scholar] [CrossRef]
- Braojos, R.; Murali, S.; Rincon, F.; Goy, J.J. Level Accuracy of Automatic and Real Time Detection of Atrial Fibrillation with a New Wireless ECG Recorder (The SmartCardia); PriMera Scientific Engineering: New Heaven, CT, USA, 2023. [Google Scholar]
- Fukuma, N.; Hasumi, E.; Fujiu, K.; Waki, K.; Toyooka, T.; Komuro, I.; Ohe, K. Feasibility of a T-Shirt-Type Wearable Electrocardiography Monitor for Detection of Covert Atrial Fibrillation in Young Healthy Adults. Sci. Rep. 2019, 9, 11768. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Hilbel, T.; Frey, N. Review of Current ECG Consumer Electronics (Pros and Cons). J. Electrocardiol. 2023, 77, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.C.; Krahn, A.D.; Andrade, J.G. The Emerging Role of Wearable Technologies in Detection of Arrhythmia. Can. J. Cardiol. 2018, 34, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Manninger, M.; Kosiuk, J.; Zweiker, D.; Njeim, M.; Antolic, B.; Kircanski, B.; Larsen, J.M.; Svennberg, E.; Vanduynhoven, P.; Duncker, D. Role of Wearable Rhythm Recordings in Clinical Decision Making—The wEHRAbles Project. Clin. Cardiol. 2020, 43, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.J.; Grubb, N.R.; Lang, C.C.; Gray, A.J.; Simpson, K.; MacRaild, A.; Weir, C.J. Diagnostic Yield of an Ambulatory Patch Monitor in Patients with Unexplained Syncope after Initial Evaluation in the Emergency Department: The PATCH-ED Study. Emerg. Med. J. 2018, 35, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.; Sandor, E.; Walden, C.; Ahn, I.S.; Lu, Y. A Wearable ECG Monitoring System for Real-Time Arrhythmia Detection. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 787–790. [Google Scholar]
- Smital, L.; Haider, C.R.; Vitek, M.; Leinveber, P.; Jurak, P.; Nemcova, A.; Smisek, R.; Marsanova, L.; Provaznik, I.; Felton, C.L. Real-Time Quality Assessment of Long-Term ECG Signals Recorded by Wearables in Free-Living Conditions. IEEE Trans. Biomed. Eng. 2020, 67, 2721–2734. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiong, W.; Li, Y. Wearable Measurement of ECG Signals Based on Smart Clothing. Int. J. Telemed. Appl. 2020, 2020, e6329360. [Google Scholar] [CrossRef] [PubMed]
- Starr, I.; Rawson, A.J.; Schroeder, H.A.; Joseph, N.R. Studies on the Estimation of Cardiac Ouptut in Man, and of Abnormalities in Cardiac Function, from the Heart’s Recoil and the Blood’s Impacts; the Ballistocardiogram. Am. J. Physiol.-Leg. Content 1939, 127, 1–28. [Google Scholar] [CrossRef]
- Inan, O.T.; Migeotte, P.-F.; Park, K.-S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [Google Scholar] [CrossRef]
- Guess, M.; Soltis, I.; Rigo, B.; Zavanelli, N.; Kapasi, S.; Kim, H.; Yeo, W.-H. Wireless Batteryless Soft Sensors for Ambulatory Cardiovascular Health Monitoring. Soft Sci. 2023, 3, 24. [Google Scholar] [CrossRef]
- Ha, U.; Assana, S.; Adib, F. Contactless Seismocardiography via Deep Learning Radars. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–14. [Google Scholar]
- Mora, N.; Cocconcelli, F.; Matrella, G.; Ciampolini, P. Detection and Analysis of Heartbeats in Seismocardiogram Signals. Sensors 2020, 20, 1670. [Google Scholar] [CrossRef]
- Tadi, M.J.; Lehtonen, E.; Hurnanen, T.; Koskinen, J.; Eriksson, J.; Pänkäälä, M.; Teräs, M.; Koivisto, T. A Real-Time Approach for Heart Rate Monitoring Using a Hilbert Transform in Seismocardiograms. Physiol. Meas. 2016, 37, 1885. [Google Scholar] [CrossRef]
- Pänkäälä, M.; Koivisto, T.; Lahdenoja, O.; Kiviniemi, T.; Saraste, A.; Vasankari, T.; Airaksinen, J. Detection of Atrial Fibrillation with Seismocardiography. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4369–4374. [Google Scholar]
- Sahoo, P.K.; Thakkar, H.K.; Lin, W.-Y.; Chang, P.-C.; Lee, M.-Y. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals. Sensors 2018, 18, 379. [Google Scholar] [CrossRef]
- Tavakolian, K.; Blaber, A.P.; Akhbardeh, A.; Ngai, B.; Kaminska, B. Estimating Cardiac Stroke Volume from the Seismocardiogram Signal. CMBES Proc. 2010, 33. Available online: https://proceedings.cmbes.ca/index.php/proceedings/article/view/544 (accessed on 16 December 2024).
- Di Rienzo, M.; Meriggi, P.; Rizzo, F.; Vaini, E.; Faini, A.; Merati, G.; Parati, G.; Castiglioni, P. A Wearable System for the Seismocardiogram Assessment in Daily Life Conditions. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 4263–4266. [Google Scholar]
- Hsu, P.-Y.; Hsu, P.-H.; Lee, T.-H.; Liu, H.-L. Motion Artifact Resilient SCG-Based Biometric Authentication Using Machine Learning. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; Volume 2021, pp. 144–147. [Google Scholar] [CrossRef]
- Reverter, F. A Tutorial on Thermal Sensors in the 200th Anniversary of the Seebeck Effect. IEEE Sens. J. 2021, 21, 22122–22132. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Khan, A.; Bermak, A. Wearable Printed Temperature Sensors: Short Review on Latest Advances for Biomedical Applications. IEEE Rev. Biomed. Eng. 2023, 16, 152–170. [Google Scholar] [CrossRef] [PubMed]
- Mendt, S.; Maggioni, M.A.; Nordine, M.; Steinach, M.; Opatz, O.; Belavý, D.; Felsenberg, D.; Koch, J.; Shang, P.; Gunga, H.-C.; et al. Circadian Rhythms in Bed Rest: Monitoring Core Body Temperature via Heat-Flux Approach Is Superior to Skin Surface Temperature. Chronobiol. Int. 2017, 34, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Eggenberger, P.; MacRae, B.A.; Kemp, S.; Bürgisser, M.; Rossi, R.M.; Annaheim, S. Prediction of Core Body Temperature Based on Skin Temperature, Heat Flux, and Heart Rate Under Different Exercise and Clothing Conditions in the Heat in Young Adult Males. Front. Physiol. 2018, 9, 1780. [Google Scholar] [CrossRef]
- Ylenia, C.; Giovanni, I.; Lucia, R.; Donatella, V.; Tiziana, S.; Vincenzo, G.; Ciro, V.; Stefania, S. A Clinical Decision Support System Based on Fuzzy Rules and Classification Algorithms for Monitoring the Physiological Parameters of Type-2 Diabetic Patients. Math. Biosci. Eng. MBE 2021, 18, 2653–2674. [Google Scholar] [CrossRef] [PubMed]
- Srivilaithon, W.; Amnuaypattanapon, K.; Limjindaporn, C.; Imsuwan, I.; Daorattanachai, K.; Dasanadeba, I.; Siripakarn, Y. Predictors of In-Hospital Cardiac Arrest within 24 h after Emergency Department Triage: A Case–Control Study in Urban Thailand. Emerg. Med. Australas. 2019, 31, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Velarde, E.S.; Sotelo-de Ávila, A.A.; Rico-Asención, I.O.; Alemán, N.R.; González, R.-S.; Ramírez-Sotelo, M.G.; Cabrera-Llanos, A.I. Fuzzy-State Machine for Triage Priority Classifier in Emergency Room. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Toronto, ON, Canada, 7–12 June 2015; Jaffray, D.A., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1488–1491. [Google Scholar]
- Levin, S.; Toerper, M.; Hamrock, E.; Hinson, J.S.; Barnes, S.; Gardner, H.; Dugas, A.; Linton, B.; Kirsch, T.; Kelen, G. Machine-Learning-Based Electronic Triage More Accurately Differentiates Patients With Respect to Clinical Outcomes Compared With the Emergency Severity Index. Ann. Emerg. Med. 2018, 71, 565–574.e2. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Vieira, S.M.; Leite, F.; Palos, C.; Finkelstein, S.; Sousa, J.M.C. Clinical Decision Support Systems for Triage in the Emergency Department Using Intelligent Systems: A Review. Artif. Intell. Med. 2020, 102, 101762. [Google Scholar] [CrossRef] [PubMed]
- How It Works|Basal Temp During Pregnancy. Available online: https://www.tempdrop.com/pages/how-it-works (accessed on 3 April 2024).
- CORE Body Temperature Sensor. Available online: https://corebodytemp.com/ (accessed on 2 April 2024).
- Liu, G.; Tan, Q.; Kou, H.; Zhang, L.; Wang, J.; Lv, W.; Dong, H.; Xiong, J. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things. Sensors 2018, 18, 1400. [Google Scholar] [CrossRef] [PubMed]
- Wearables: Pros and Cons of Wearable Technology. Available online: https://edu.gcfglobal.org/en/wearables/pros-and-cons-of-wearable-technology/1/ (accessed on 3 April 2024).
- Kim, J.; Khan, S.; Wu, P.; Park, S.; Park, H.; Yu, C.; Kim, W. Self-Charging Wearables for Continuous Health Monitoring. Nano Energy 2021, 79, 105419. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review. Nanomaterials 2022, 12, 334. [Google Scholar] [CrossRef]
- Jokic, P.; Magno, M. Powering Smart Wearable Systems with Flexible Solar Energy Harvesting. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Omre, A.H. Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring. J. Diabetes Sci. Technol. 2010, 4, 457–463. [Google Scholar] [CrossRef]
- Farroha, J.S.; Farroha, B.S. Enabling Intelligent Battlefield Healthcare through Secure Cyber Medicine. In Proceedings of the Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2019, Baltimore, MD, USA, 14–18 April 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11015, pp. 152–170. [Google Scholar]
- Saad, H.S.; Zaki, J.F.; Abdelsalam, M.M. Employing of Machine Learning and Wearable Devices in Healthcare System: Tasks and Challenges. Neural Comput. Appl. 2024, 36, 17829–17849. [Google Scholar] [CrossRef]
- Aston, P.J. Does Skin Tone Affect Machine Learning Classification Accuracy Applied to Photoplethysmography Signals? Computing in Cardiology. Available online: https://openresearch.surrey.ac.uk/esploro/outputs/conferenceProceeding/Does-Skin-Tone-Affect-Machine-Learning/99931066402346 (accessed on 16 December 2024).
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark, R.G. MIMIC-III, a Freely Accessible Critical Care Database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Convertino, V.A. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol. Rev. 2019, 99, 807–851. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Laborde, C.; Shade, R.E.; Muniz, G.W.; Bauer, C.; Goei, K.A.; Pidcoke, H.F.; Chung, K.K.; Cap, A.P.; Convertino, V.A. Validation of Lower Body Negative Pressure as an Experimental Model of Hemorrhage. J. Appl. Physiol. 2014, 116, 406–415. [Google Scholar] [CrossRef]
- Convertino, V.A.; Snider, E.J.; Hernandez-Torres, S.I.; Collier, J.P.; Eaton, S.K.; Holmes, D.R.; Haider, C.R.; Salinas, J. Verification and Validation of Lower Body Negative Pressure as a Non-Invasive Bioengineering Tool for Testing Technologies for Monitoring Human Hemorrhage. Bioengineering 2023, 10, 1226. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gathright, R.; Mejia, I.; Gonzalez, J.M.; Hernandez Torres, S.I.; Berard, D.; Snider, E.J. Overview of Wearable Healthcare Devices for Clinical Decision Support in the Prehospital Setting. Sensors 2024, 24, 8204. https://doi.org/10.3390/s24248204
Gathright R, Mejia I, Gonzalez JM, Hernandez Torres SI, Berard D, Snider EJ. Overview of Wearable Healthcare Devices for Clinical Decision Support in the Prehospital Setting. Sensors. 2024; 24(24):8204. https://doi.org/10.3390/s24248204
Chicago/Turabian StyleGathright, Rachel, Isiah Mejia, Jose M. Gonzalez, Sofia I. Hernandez Torres, David Berard, and Eric J. Snider. 2024. "Overview of Wearable Healthcare Devices for Clinical Decision Support in the Prehospital Setting" Sensors 24, no. 24: 8204. https://doi.org/10.3390/s24248204
APA StyleGathright, R., Mejia, I., Gonzalez, J. M., Hernandez Torres, S. I., Berard, D., & Snider, E. J. (2024). Overview of Wearable Healthcare Devices for Clinical Decision Support in the Prehospital Setting. Sensors, 24(24), 8204. https://doi.org/10.3390/s24248204