Noninvasive Monitoring of Simulated Hemorrhage and Whole Blood Resuscitation
<p>Representative negative pressure application protocol and reference CRM (RCRM) values during the baseline, depressurization, repressurization, and recovery phases of the LBNP studies. The duration of each phase varied based on the ramp speed selected for that trial.</p> "> Figure 2
<p>Landmark points on Finapres ABP pulse corresponding to (A) start of pulse, (B) systolic half-rise, (C) systolic peak, (D) dicrotic notch, (E) end of pulse, and (F) systolic peak of successive pulse.</p> "> Figure 3
<p>Box plots showing statistical characteristics of the RMSEs binned per ramp speed. The median (red line), 25th and 75th percentiles (top and bottom edges of the blue box), outliers (red crosses), and valid maximum and minimum values that were not classified as outliers (whiskers). The top plot shows the RMSEs for the all-features GB tree model binned without baseline normalization per ramp speed, while the bottom plot shows the same data for the model that only uses HRDN.</p> "> Figure 4
<p>Gini importance plots for full procedure model, simulated hemorrhage model, simulated resuscitation model, and step hemorrhage LBNP protocol model [<a href="#B26-biosensors-12-01168" class="html-bibr">26</a>]. These plots are for the GB tree model trained using all features without any baseline normalization.</p> "> Figure 5
<p>(<b>a</b>) A BA plot is shown for the GB tree model trained using all features without baseline normalization for all subjects, and (<b>b</b>) Sample reference CRM and estimated CRM using a GB tree model trained with only the HRDN feature from subject 4 without baseline normalization. This example has a lower than average RMSE of 9.9%.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hemorrhage Model
2.2. ABP Signal Processing
2.2.1. Pre-Processing
2.2.2. Feature Extraction
2.2.3. Outlier Rejection
2.2.4. Local Averaging
2.2.5. Baseline Normalization
2.3. CRM Estimation
- Full procedure: Baseline, depressurization, repressurization, and recovery phases of data collection are included for training and testing.
- Simulated hemorrhage: Only depressurization data (the phase shaded yellow in Figure 1) are used for training and testing.
- Simulated resuscitation: Only repressurization data (the phase shaded purple in Figure 1) are used for training and testing.
2.4. Analysis and Performance Metrics
3. Results
3.1. Performance of CRM Estimation Models
3.2. ROC Analysis for Classification at Key Clinical Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eastridge, B.J.; Mabry, R.L.; Seguin, P.; Cantrell, J.; Tops, T.; Uribe, P.; Mallett, O.; Zubko, T.; Oetjen-Gerdes, L.; Rasmussen, T.E.; et al. Death on the Battlefield (2001–2011). J. Trauma Acute Care Surg. 2012, 73, S431–S437. [Google Scholar] [CrossRef]
- Coppola, S.; Froio, S.; Chiumello, D. Fluid Resuscitation in Trauma Patients. Curr. Opin. Crit. Care 2014, 20, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Koons, N.J.; Nguyen, B.; Suresh, M.R.; Hinojosa-Laborde, C.; Convertino, V.A. Tracking DO2 with Compensatory Reserve During Whole Blood Resuscitation in Baboons. Shock 2020, 53, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.S.; Dunham, C.M. Mortality Outcomes in Trauma Patients Undergoing Prehospital Red Blood Cell Transfusion: A Systematic Literature Review. Int. J. Burn. Trauma 2017, 7, 17–26. [Google Scholar]
- Ravi, P.R.; Puri, B. Fluid Resuscitation in Haemorrhagic Shock in Combat Casualties. Disaster Mil. Med. 2017, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee on Tactical Combat Casualty Care. Tactical Combat Casualty Care (TCCC) Guidelines for Medical Personnel; Committee on Tactical Combat Casualty Care: San Antonio, TX, USA, 2021; Available online: https://www.deployedmedicine.com/content/40 (accessed on 18 October 2022).
- Mutschler, M.; Nienaber, U.; Münzberg, M.; Wölfl, C.; Schoechl, H.; Paffrath, T.; Bouillon, B.; Maegele, M.; Trauma Register, D.G.U. The Shock Index Revisited—A Fast Guide to Transfusion Requirement? A Retrospective Analysis on 21,853 Patients Derived from the TraumaRegister DGU®. Crit. Care 2013, 17, R172. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Khitrov, M.Y.; Gates, J.D.; Odom, S.R.; Havens, J.M.; de Moya, M.A.; Wilkins, K.; Wedel, S.K.; Kittell, E.O.; Reifman, J.; et al. Automated Analysis of Vital Signs to Identify Patients With Substantial Bleeding Before Hospital Arrival. Shock 2015, 43, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Hanna, K.; Harris, C.; Trust, M.D.; Bernard, A.; Brown, C.; Hamidi, M.; Joseph, B. Multicenter Validation of the Revised Assessment of Bleeding and Transfusion (RABT) Score for Predicting Massive Transfusion. World J. Surg. 2020, 44, 1807–1816. [Google Scholar] [CrossRef]
- Stewart, C.L.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A.; Moulton, S.L. Detection of Low-Volume Blood Loss. J. Trauma Acute Care 2014, 77, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, A.; Brandis, D. Shock Resuscitation. In StatPearls; StatPearls: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534830/?report=classic (accessed on 18 October 2022).
- Convertino, V.A.; Howard, J.T.; Hinojosa-Laborde, C.; Cardin, S.; Batchelder, P.; Mulligan, J.; Grudic, G.Z.; Moulton, S.L.; MacLeod, D.B. Individual-Specific, Beat-to-Beat Trending of Significant Human Blood Loss. Shock 2015, 44, 27–32. [Google Scholar] [CrossRef]
- Convertino, V.A.; Koons, N.J. The Compensatory Reserve: Potential for Accurate Individualized Goal-directed Whole Blood Resuscitation. Transfusion 2020, 60, S150–S157. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pinsky, M.R.; Dubrawski, A. Automated Assessment of Cardiovascular Sufficiency Using Non-Invasive Physiological Data. Sensors 2022, 22, 1024. [Google Scholar] [CrossRef] [PubMed]
- Convertino, V.A.; Wirt, M.D.; Glenn, J.F.; Lein, B.C. The Compensatory Reserve For Early and Accurate Prediction Of Hemodynamic Compromise. Shock 2016, 45, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Laborde, C.; Howard, J.T.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A. Comparison of Compensatory Reserve during Lower-Body Negative Pressure and Hemorrhage in Nonhuman Primates. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 310, R1154–R1159. [Google Scholar] [CrossRef] [Green Version]
- Reljin, N.; Zimmer, G.; Malyuta, Y.; Mendelson, Y.; Darling, C.E.; Chon, K.H. Detection of Blood Loss in Trauma Patients Using Time-Frequency Analysis of Photoplethysmographic Signal. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; pp. 118–121. [Google Scholar] [CrossRef]
- Techentin, R.W.; Felton, C.L.; Schlotman, T.E.; Gilbert, B.K.; Joyner, M.J.; Curry, T.B.; Convertino, V.A.; Holmes, D.R.; Haider, C.R. 1D Convolutional Neural Networks for Estimation of Compensatory Reserve from Blood Pressure Waveforms. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2169–2173. [Google Scholar] [CrossRef]
- Kerpel, A.; Ben-Menachem, E.; Mandelbaum, T.; Hofstetter, E.; Preisman, S.; Berkenstadt, H. Evaluation of Miniature Dynamic Light Scattering Technology for the Assessment of Hemodynamic Status During Graded Hemorrhage and Retransfusion in Pigs. Mil. Med. 2017, 182, e2056–e2060. [Google Scholar] [CrossRef] [Green Version]
- Moulton, S.L.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A. Running on Empty; The Compensatory Reserve Index. J. Trauma Acute Care 2013, 75, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Convertino, V.A.; Grudic, G.; Mulligan, J.; Moulton, S. Estimation of Individual-Specific Progression to Impending Cardiovascular Instability Using Arterial Waveforms. J. Appl. Physiol. 2013, 115, 1196–1202. [Google Scholar] [CrossRef]
- Convertino, V.A.; Techentin, R.W.; Poole, R.J.; Dacy, A.C.; Carlson, A.N.; Cardin, S.; Haider, C.R.; III, D.R.H.; Wiggins, C.C.; Joyner, M.J.; et al. AI-Enabled Advanced Development for Assessing Low Circulating Blood Volume for Emergency Medical Care: Comparison of Compensatory Reserve Machine-Learning Algorithms. Sensors 2022, 22, 2642. [Google Scholar] [CrossRef]
- Koons, N.J.; Moses, C.D.; Thompson, P.; Strandenes, G.; Convertino, V.A. Identifying Critical DO2 with Compensatory Reserve during Simulated Hemorrhage in Humans. Transfusion 2022, 62, S122–S129. [Google Scholar] [CrossRef]
- Schiller, A.M.; Howard, J.T.; Convertino, V.A. The Physiology of Blood Loss and Shock: New Insights from a Human Laboratory Model of Hemorrhage. Exp. Biol. Med. 2017, 242, 874–883. [Google Scholar] [CrossRef] [Green Version]
- Vellido, A. The Importance of Interpretability and Visualization in Machine Learning for Applications in Medicine and Health Care. Neural Comput. Applic. 2020, 32, 18069–18083. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.F.; Telfer, B.A.; Convertino, V.A. Feature Importance Analysis for Compensatory Reserve Measurement to Predict Hemorrhagic Shock. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, UK, 11–15 July 2022; pp. 1747–1752. [Google Scholar] [CrossRef]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Benov, A.; Yaslowitz, O.; Hakim, T.; Amir-Keret, R.; Nadler, R.; Brand, A.; Glassberg, E.; Yitzhak, A.; Convertino, V.A.; Paran, H. The Effect of Blood Transfusion on Compensatory Reserve. J. Trauma Acute Care 2017, 83, S71–S76. [Google Scholar] [CrossRef] [PubMed]
- Nadler, R.; Convertino, V.A.; Gendler, S.; Lending, G.; Lipsky, A.M.; Cardin, S.; Lowenthal, A.; Glassberg, E. The Value of Noninvasive Measurement of the Compensatory Reserve Index in Monitoring and Triage of Patients Experiencing Minimal Blood Loss. Shock 2014, 42, 93–98. [Google Scholar] [CrossRef]
- Imholz, B.P.M.; Wieling, W.; Montfrans, G.A.; van Wesseling, K.H. Fifteen Years Experience with Finger Arterial Pressure Monitoring: Assessment of the Technology. Cardiovasc. Res. 1998, 38, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.K. Outliers in Process Modeling and Identification. IEEE Trans. Control. Syst. Technol. 2002, 10, 55–63. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.C.; Kording, K.P. The Need to Approximate the Use-Case in Clinical Machine Learning. Gigascience 2017, 6, gix019. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Krouwer, J.S. Why Bland–Altman Plots Should Use X, Not (Y + X)/2 When X Is a Reference Method. Stat. Med. 2008, 27, 778–780. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.J.; Kay, V.L.; Anderson, G.K.; Sprick, J.D.; Rickards, C.A. A Comparison of Protocols for Simulating Hemorrhage in Humans: Step versus Ramp Lower Body Negative Pressure. J. Appl. Physiol. 2021, 130, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Laborde, C.; Shade, R.E.; Muniz, G.W.; Bauer, C.; Goei, K.A.; Pidcoke, H.F.; Chung, K.K.; Cap, A.P.; Convertino, V.A. Validation of Lower Body Negative Pressure as an Experimental Model of Hemorrhage. J. Appl. Physiol. 2014, 116, 406–415. [Google Scholar] [CrossRef]
- Schauer, S.G.; April, M.D.; Arana, A.A.; Maddry, J.K.; Escandon, M.A.; Linscomb, C.; Rodriguez, D.; Convertino, V.A. Efficacy of the Compensatory Reserve Measurement in an Emergency Department Trauma Population. Transfusion 2021, 61, S174–S182. [Google Scholar] [CrossRef]
Factor | Subject Group a |
---|---|
All Subjects | |
Gender | 6 male, 7 female |
Age | 23 ± 4 years |
Weight | 68.5 ± 11.6 kg |
Height | 173 ± 9 cm |
Body Mass Index | 23.1 ± 3.9 |
Feature | Description | |
---|---|---|
Name | Formula a | |
PPI | Peak to Peak Interval | |
HRV | Heart Rate Variability | of PPI for 10 beats |
HRDN | Half-Rise to Dicrotic Notch | |
SBP | Systolic Blood Pressure | |
DBP | Diastolic Blood Pressure | |
PP | Pulse Pressure | |
PA | Pulse Area | |
IPA | Inflection Point Area | |
SI | Shock Index |
Full Procedure (Baseline + Depressurization + Repressurization + Recovery) | |||
---|---|---|---|
Feature Set | Normalization | Performance Metrics a | |
RMSE (%) | R2 | ||
All Features | None | 13 ± 2 | 0.85 ± 0.04 |
Baseline | 12 ± 3 | 0.85 ± 0.08 | |
Vital Signs | None | 23 ± 3 | 0.50 ± 0.14 |
Baseline | 17 ± 2 | 0.71 ± 0.08 | |
ABP Waveform | None | 13 ± 2 | 0.85 ± 0.04 |
Baseline | 13 ± 3 | 0.84 ± 0.08 | |
HRDN only | None | 14 ± 3 | 0.82 ± 0.07 |
Baseline | 15 ± 5 | 0.77 ± 0.04 | |
Simulated Hemorrhage (Depressurization) | |||
Feature Set | Normalization | Performance Metrics a | |
RMSE (%) | R2 | ||
All Features | None | 14 ± 2 | 0.74 ± 0.11 |
Baseline | 13 ± 4 | 0.77 ± 0.09 | |
Vital Signs | None | 18 ± 3 | 0.56 ± 0.13 |
Baseline | 17 ± 2 | 0.65 ± 0.07 | |
ABP Waveform | None | 14 ± 2 | 0.76 ± 0.10 |
Baseline | 13 ± 3 | 0.78 ± 0.09 | |
HRDN only | None | 16 ± 3 | 0.67 ± 0.12 |
Baseline | 16 ± 3 | 0.68 ± 0.13 | |
Simulated Resuscitation (Repressurization) | |||
Feature Set | Normalization | Performance Metrics a | |
RMSE (%) | R2 | ||
All Features | None | 14 ± 3 | 0.74 ± 0.11 |
Baseline | 16 ± 4 | 0.67 ± 0.19 | |
Vital Signs | None | 21 ± 3 | 0.44 ± 0.16 |
Baseline | 15 ± 2 | 0.71 ± 0.08 | |
ABP Waveform | None | 14 ± 3 | 0.75 ± 0.08 |
Baseline | 17 ± 6 | 0.71 ± 0.08 | |
HRDN only | None | 13 ± 3 | 0.80 ± 0.09 |
Baseline | 18 ± 8 | 0.56 ± 0.37 |
Full Procedure (Baseline + Depressurization + Repressurization + Recovery) | ||||
---|---|---|---|---|
Feature Set | Normalization | ROC AUC | ||
CRM ≥ 70% | CRM ≥ 40% | CRM ≥ 5% | ||
All Features | None | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.94 ± 0.01 |
Baseline | 0.97 ± 0.02 | 0.96 ± 0.02 | 0.92 ± 0.03 | |
Vital Signs | None | 0.85 ± 0.03 | 0.93 ± 0.02 | 0.91 ± 0.02 |
Baseline | 0.92 ± 0.02 | 0.96 ± 0.01 | 0.93 ± 0.02 | |
ABP Waveform | None | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.95 ± 0.01 |
Baseline | 0.96 ± 0.04 | 0.95 ± 0.03 | 0.91 ± 0.04 | |
HRDN only | None | 0.98 ± 0.01 | 0.97 ± 0.01 | 0.93 ± 0.02 |
Baseline | 0.96 ± 0.02 | 0.94 ± 0.03 | 0.90 ± 0.04 | |
Simulated Hemorrhage (Depressurization) | ||||
Feature Set | Normalization | ROC AUC | ||
CRM ≥ 70% | CRM ≥ 40% | CRM ≥ 5% | ||
All Features | None | 0.95 ± 0.03 | 0.95 ± 0.01 | 0.90 ± 0.04 |
Baseline | 0.96 ± 0.02 | 0.94 ± 0.02 | 0.90 ± 0.03 | |
Vital Signs | None | 0.87 ± 0.04 | 0.92 ± 0.03 | 0.90 ± 0.04 |
Baseline | 0.90 ± 0.02 | 0.93 ± 0.02 | 0.91 ± 0.03 | |
ABP Waveform | None | 0.95 ± 0.03 | 0.95 ± 0.01 | 0.93 ± 0.02 |
Baseline | 0.96 ± 0.02 | 0.94 ± 0.02 | 0.89 ± 0.02 | |
HRDN only | None | 0.92 ± 0.04 | 0.92 ± 0.01 | 0.82 ± 0.08 |
Baseline | 0.94 ± 0.03 | 0.91 ± 0.04 | 0.85 ± 0.08 | |
Simulated Resuscitation (Repressurization) | ||||
Feature Set | Training Scheme | ROC AUC | ||
Normalization | CRM ≥ 70% | CRM ≥ 40% | CRM ≥ 5% | |
All Features | None | 0.96 ± 0.01 | 0.96 ± 0.02 | 0.85 ± 0.04 |
Baseline | 0.95 ± 0.04 | 0.95 ± 0.03 | 0.86 ± 0.03 | |
Vital Signs | None | 0.87 ± 0.04 | 0.88 ± 0.05 | 0.78 ± 0.06 |
Baseline | 0.95 ± 0.02 | 0.95 ± 0.01 | 0.86 ± 0.02 | |
ABP Waveform | None | 0.96 ± 0.02 | 0.97 ± 0.01 | 0.86 ± 0.02 |
Baseline | 0.94 ± 0.05 | 0.95 ± 0.04 | 0.85 ± 0.04 | |
HRDN only | None | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.88 ± 0.03 |
Baseline | 0.91 ± 0.07 | 0.90 ± 0.08 | 0.81 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, J.F.; Arshad, S.H.; Telfer, B.A.; Snider, E.J.; Convertino, V.A. Noninvasive Monitoring of Simulated Hemorrhage and Whole Blood Resuscitation. Biosensors 2022, 12, 1168. https://doi.org/10.3390/bios12121168
Gupta JF, Arshad SH, Telfer BA, Snider EJ, Convertino VA. Noninvasive Monitoring of Simulated Hemorrhage and Whole Blood Resuscitation. Biosensors. 2022; 12(12):1168. https://doi.org/10.3390/bios12121168
Chicago/Turabian StyleGupta, Jay F., Saaid H. Arshad, Brian A. Telfer, Eric J. Snider, and Victor A. Convertino. 2022. "Noninvasive Monitoring of Simulated Hemorrhage and Whole Blood Resuscitation" Biosensors 12, no. 12: 1168. https://doi.org/10.3390/bios12121168
APA StyleGupta, J. F., Arshad, S. H., Telfer, B. A., Snider, E. J., & Convertino, V. A. (2022). Noninvasive Monitoring of Simulated Hemorrhage and Whole Blood Resuscitation. Biosensors, 12(12), 1168. https://doi.org/10.3390/bios12121168