[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Wearable chemical sensors for biomarker discovery in the omics era

Abstract

Biomarkers are crucial biological indicators in medical diagnostics and therapy. However, the process of biomarker discovery and validation is hindered by a lack of standardized protocols for analytical studies, storage and sample collection. Wearable chemical sensors provide a real-time, non-invasive alternative to typical laboratory blood analysis, and are an effective tool for exploring novel biomarkers in alternative body fluids, such as sweat, saliva, tears and interstitial fluid. These devices may enable remote at-home personalized health monitoring and substantially reduce the healthcare costs. This Review introduces criteria, strategies and technologies involved in biomarker discovery using wearable chemical sensors. Electrochemical and optical detection techniques are discussed, along with the materials and system-level considerations for wearable chemical sensors. Lastly, this Review describes how the large sets of temporal data collected by wearable sensors, coupled with modern data analysis approaches, would open the door for discovering new biomarkers towards precision medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wearable chemical sensor-enabled biomarker discovery.
Fig. 2: The primary biorecognition and signal transduction strategies in wearable chemical sensors.
Fig. 3: Emerging wearable sensing strategies for biosensing.
Fig. 4: Materials for enhanced wearable chemical sensing.
Fig. 5: System development for in situ wearable chemical sensing.
Fig. 6: Wearable biosensor-enabled data-driven biomarker discovery.

Similar content being viewed by others

References

  1. Frank, R. & Hargreaves, R. Clinical biomarkers in drug discovery and development. Nat. Rev. Drug Discov. 2, 566–580 (2003). This work discusses the definition of biomarkers and the validation process through several examples of biomarkers for drug discovery.

    Article  CAS  PubMed  Google Scholar 

  2. Firestein, G. S. A biomarker by any other name. Nat. Clin. Pract. Rheumatol. 2, 635–635 (2006).

    Article  PubMed  Google Scholar 

  3. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). This work presents the first fully integrated wearable electrochemical sensor for multiplexing detection of metabolites and electrolytes in sweat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). This work summarizes the available device platforms and biofluids used for wearable self-care health monitoring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, J., Guo, H., Li, J., Bandodkar, A. J. & Rogers, J. A. Body-interfaced chemical sensors for noninvasive monitoring and analysis of biofluids. Trends Chem. 1, 559–571 (2019).

    Article  CAS  Google Scholar 

  6. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Broza, Y. Y. et al. Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 119, 11761–11817 (2019). This work discusses the analytes available in several biofluids that can be correlated with disease diagnosis.

    Article  CAS  PubMed  Google Scholar 

  8. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Article  Google Scholar 

  11. Picard, M., Scott-Boyer, M.-P., Bodein, A., Périn, O. & Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 19, 3735–3746 (2021). This work presents strategies of using machine learning for multi-omics data integration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nahkuri, S., Becker, T., Schueller, V., Massberg, S. & Bauer-Mehren, A. Prior fluid and electrolyte imbalance is associated with COVID-19 mortality. Commun. Med. 1, 51 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marcantonio, E. R. et al. Serum biomarkers for delirium. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1281–1286 (2006).

    Article  PubMed  Google Scholar 

  15. Ernst, J. et al. Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Mol. Psychiatry 22, 113–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Torrente-Rodríguez et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020). This publication reports a strong correlation between sweat/saliva and blood cortisol and demonstrates sweat cortisol variation in response to acute stress stimuli.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pearlmutter, P. et al. Sweat and saliva cortisol response to stress and nutrition factors. Sci. Rep. 10, 19050 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kallapur, B. et al. Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: a novel study. J. Nat. Sci. Biol. Med. 4, 341–345 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mohan, A. M. V., Rajendran, V., Mishra, R. K. & Jayaraman, M. Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC. Trends Anal. Chem. 131, 116024 (2020).

    Article  CAS  Google Scholar 

  20. Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9, 031301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katchman, B. A., Zhu, M., Blain Christen, J. & Anderson, K. S. Eccrine sweat as a biofluid for profiling immune biomarkers. Proteom. Clin. Appl. 12, 1800010 (2018).

    Article  Google Scholar 

  22. Harvey, C. J., LeBouf, R. F. & Stefaniak, A. B. Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. Vitr. 24, 1790–1796 (2010).

    Article  CAS  Google Scholar 

  23. Lin, S. et al. Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics. Proc. Natl Acad. Sci. USA 117, 19017–19025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abikshyeet, P., Ramesh, V. & Oza, N. Glucose estimation in the salivary secretion of diabetes mellitus patients. Diabetes, Metab. Syndr. Obes. Targets Ther. 5, 149–154 (2012).

    Google Scholar 

  25. Peng, R. et al. A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μl’s to nL’s and reduction of analyte contamination from skin. Lab Chip 16, 4415–4423 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Baker, L. B. & Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 120, 719–752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

    Article  CAS  Google Scholar 

  29. Sempionatto, J. R., Jeerapan, I., Krishnan, S. & Wang, J. Wearable chemical sensors: emerging systems for on-body. Anal. Chem. 92, 378–396 (2019).

    Article  PubMed  Google Scholar 

  30. Xu, C., Yang, Y. & Gao, W. Skin-interfaced sensors in digital medicine: from materials to applications. Matter 2, 1414–1445 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, H. & Zhao, C. Wearable electrochemical sensors for noninvasive monitoring of health — a perspective. Curr. Opin. Electrochem. 23, 42–46 (2020).

    Article  CAS  Google Scholar 

  33. Min, J., Sempionatto, J. R., Teymourian, H., Wang, J. & Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 172, 112750 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Xiao, J. et al. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal. Chem. 91, 14803–14807 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).

    Article  CAS  Google Scholar 

  36. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016). This work introduces soft epidermal microfluidic sensors for multiplexed colorimetric sweat analysis.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ghaffari, R. et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 30, 1907269 (2019).

    Article  Google Scholar 

  38. Kim, J., Campbell, A. S. & Wang, J. Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, H., Hong, Y. J., Baik, S., Hyeon, T. & Kim, D. H. Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, 1701150 (2018).

    Article  Google Scholar 

  40. Wolkowicz, K. L. et al. A review of biomarkers in the context of type 1 diabetes: biological sensing for enhanced glucose control. Bioeng. Transl. Med. 6, e10201 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Parrilla, M., Cuartero, M. & Crespo, G. A. Wearable potentiometric ion sensors. TrAC. Trends Anal. Chem. 110, 303–320 (2019).

    Article  CAS  Google Scholar 

  43. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020). This work presents a technology for mass production of multimodal sensors and continuous monitoring of sweat uric acid and tyrosine for the first time.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, J. et al. A wearable nutrition tracker. Adv. Mater. 33, 2006444 (2021).

    Article  CAS  Google Scholar 

  45. Ariño, C. et al. Electrochemical stripping analysis. Nat. Rev. Methods Prim. 2, 62 (2022).

    Article  Google Scholar 

  46. Gao, W. et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 1, 866–874 (2016).

    Article  CAS  Google Scholar 

  47. Kim, J. et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 51, 41–45 (2015).

    Article  CAS  Google Scholar 

  48. Takaloo, S. & Moghimi Zand, M. Wearable electrochemical flexible biosensors: with the focus on affinity biosensors. Sens. Bio-Sens. Res. 32, 100403 (2021).

    Article  Google Scholar 

  49. Elsherif, M., Hassan, M. U., Yetisen, A. K. & Butt, H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12, 5452–5462 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng, M. et al. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sens. Actuator B Chem. 352, 131067 (2022).

    Article  CAS  Google Scholar 

  51. Sekine, Y. et al. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip 18, 2178–2186 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Brinkmann, B. H. et al. Seizure diaries and forecasting with wearables: epilepsy monitoring outside the clinic. Front. Neurol. 12, 1128 (2021). This work describes the challenges in applying non-invasive devices for epilepsy monitoring and discusses strategies to detect and forecast seizures.

    Article  Google Scholar 

  53. Jia, X. et al. High-sensitivity troponin I and incident coronary events, stroke, heart failure hospitalization, and mortality in the aric study. Circulation 139, 2642–2653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tu, J., Torrente-Rodríguez, R. M., Wang, M. & Gao, W. The era of digital health: a review of portable and wearable affinity biosensors. Adv. Funct. Mater. 29, 1906713 (2019).

    Google Scholar 

  55. Plaxco, K. W. & Soh, H. T. Switch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends Biotechnol. 29, 1–5 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Quijano-Rubio, A. et al. De novo design of modular and tunable protein biosensors. Nature 591, 482–487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, S. et al. DNA nanotweezers for biosensing applications: recent advances and future prospects. ACS Sens. 7, 3–20 (2022).

    Article  PubMed  Google Scholar 

  59. Ahmad, O. S., Bedwell, T. S., Esen, C., Garcia-Cruz, A. & Piletsky, S. A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 37, 294–309 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Subrahmanyam, S. et al. ‘Bite-and-switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens. Bioelectron. 16, 631–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00916-z (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vallée-Bélisle, A. & Plaxco, K. W. Structure-switching biosensors: inspired by nature. Curr. Opin. Struct. Biol. 20, 518–526 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gotrik, M. R., Feagin, T. A., Csordas, A. T., Nakamoto, M. A. & Soh, H. T. Advancements in aptamer discovery technologies. Acc. Chem. Res. 49, 1903–1910 (2016). This work describes the efforts in aptamer discovery including selection, analysis and characterization.

    Article  CAS  PubMed  Google Scholar 

  64. Ahmad, K. M. et al. Probing the limits of aptamer affinity with a microfluidic selex platform. PLoS ONE 6, e27051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao, Y., Lai, R. Y. & Plaxco, K. W. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat. Protoc. 2, 2875–2880 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Dauphin-ducharme, P., Yang, K. & Plaxco, K. W. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens. 4, 2832–2837 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. White, R. J., Phares, N., Lubin, A. A., Xiao, Y. & Plaxco, K. W. Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 24, 10513–10518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiao, Y. et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. 117, 5592–5595 (2005).

    Article  Google Scholar 

  69. Chamorro-Garcia, A. et al. Switching the aptamer attachment geometry can dramatically alter the signalling and performance of electrochemical aptamer-based sensors. Chem. Commun. 57, 11693–11696 (2021).

    Article  CAS  Google Scholar 

  70. Leung, K. K., Downs, A. M., Ortega, G., Kurnik, M. & Plaxco, K. W. Elucidating the mechanisms underlying the signal drift of electrochemical aptamer-based sensors in whole blood. ACS Sens. 6, 3340–3347 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Röthlisberger, P. & Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 134, 3–21 (2018).

    Article  PubMed  Google Scholar 

  72. Ferguson, B. S. et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5, 213ra165 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Poudineh, M. et al. A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat. Biomed. Eng. 5, 53–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Wilson, B. D., Hariri, A. A., Thompson, I. A. P., Eisenstein, M. & Soh, H. T. Independent control of the thermodynamic and kinetic properties of aptamer switches. Nat. Commun. 10, 5079 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Das, J. et al. Reagentless biomolecular analysis using a molecular pendulum. Nat. Chem. 13, 428–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Morales, M. A. & Halpern, J. M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem. 29, 3231–3239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Satishkumar, B. C. et al. Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat. Nanotechnol. 2, 560–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Aleman, J., Kilic, T., Mille, L. S., Shin, S. R. & Zhang, Y. S. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat. Protoc. 16, 2564–2593 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Ambaye, A. D., Kefeni, K. K., Mishra, S. B., Nxumalo, E. N. & Ntsendwana, B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 225, 121951 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Mamun, M. A. Al & Yuce, M. R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 30, 2005703 (2020).

    Article  CAS  Google Scholar 

  82. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Joshi, P., Mishra, R. & Narayan, R. J. Biosensing applications of carbon-based materials. Curr. Opin. Biomed. Eng. 18, 100274 (2021).

    Article  CAS  Google Scholar 

  84. Wang, M., Yang, Y. & Gao, W. Laser-engraved graphene for flexible and wearable electronics. Trends Chem. 3, 969–981 (2021).

    Article  CAS  Google Scholar 

  85. Basu, J. & RoyChaudhuri, C. Graphene nanoporous FET biosensor: influence of pore dimension on sensing performance in complex analyte. IEEE Sens. J. 18, 5627–5634 (2018).

    Article  CAS  Google Scholar 

  86. He, W. et al. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 5, eaax0649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Downs, A. M. et al. Nanoporous gold for the miniaturization of in vivo electrochemical aptamer-based sensors. ACS Sens. 6, 2299–2306 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bariya, M. et al. Glove-based sensors for multimodal monitoring of natural sweat. Sci. Adv. 6, 8308–8336 (2020).

    Article  Google Scholar 

  91. Sabaté del Río, J., Henry, O. Y. F., Jolly, P. & Ingber, D. E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 14, 1143–1149 (2019).

    Article  PubMed  Google Scholar 

  92. Xu, K., Lu, Y. & Takei, K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4, 1800628 (2019).

    Article  Google Scholar 

  93. Zhang, S., Wright, G. & Yang, Y. Materials and techniques for electrochemical biosensor design and construction. Biosens. Bioelectron. 15, 273–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Feron, K. et al. Organic bioelectronics: materials and biocompatibility. Int. J. Mol. Sci. 19, 2382 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kwon, Y. T. et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human–machine interfaces. Nat. Commun. 11, 3450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cui, C. et al. Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS Appl. Bio Mater. 4, 85–121 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Kim, Y. & Prausnitz, M. R. Sensitive sensing of biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 3–5 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Shi, T. et al. Modeling and measurement of correlation between blood and interstitial glucose changes. J. Diabetes Res. 2016, 4596316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lee, H.-R., Kim, C.-C. & Sun, J.-Y. Stretchable ionics — a promising candidate for upcoming wearable devices. Adv. Mater. 30, 1704403 (2018).

    Article  Google Scholar 

  100. Wang, Z. et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 64–76 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Samant, P. P. & Prausnitz, M. R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl Acad. Sci. USA 115, 4583–4588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018). This work presents an approach to sample glucose from the ISF via electro-osmotic follicular pathway extraction.

    Article  CAS  PubMed  Google Scholar 

  103. Chen, Y. et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3, e1701629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pu, Z. et al. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 7, 199–226 (2021).

    Article  Google Scholar 

  105. Kim, J. et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 5, 1800880 (2018).

    Article  Google Scholar 

  106. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ray, T. R. et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 13, eabd8109 (2021). This work presents a soft, wearable microfluidic device that collects and analyses sweat for disease diagnosis promoted via pilocarpine-based iontophoresis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hauke, A. et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip 18, 3750–3759 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Karpova, E. V. et al. Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Anal. Chem. 91, 3778–3783 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Paul, B., Demuru, S., Lafaye, C., Saubade, M. & Briand, D. Printed iontophoretic-integrated wearable microfluidic sweat-sensing patch for on-demand point-of-care sweat analysis. Adv. Mater. Technol. 6, 2000910 (2021).

    Article  CAS  Google Scholar 

  111. Bolat, G. et al. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Anal. Bioanal. Chem. 414, 5411–5421 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bandodkar, A. J. et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat. Electron. 3, 554–562 (2020).

    Article  CAS  Google Scholar 

  114. Liu, C., Xu, T., Wang, D. & Zhang, X. The role of sampling in wearable sweat sensors. Talanta 212, 120801 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021). This work presents a multimodal wearable sensor to simultaneously monitor metabolites, electrolytes and blood pressure.

    Article  CAS  PubMed  Google Scholar 

  117. Tai, L.-C. et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater. 30, 1707442 (2018).

    Article  Google Scholar 

  118. Salvisberg, C. et al. Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteom. Clin. Appl. 8, 185–194 (2014).

    Article  CAS  Google Scholar 

  119. Bachhuber, F., Huss, A., Senel, M. & Tumani, H. Diagnostic biomarkers in tear fluid: from sampling to preanalytical processing. Sci. Rep. 11, 10064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yoshizawa, J. M. et al. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 26, 781–791 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Iyengar, A. et al. Detection and potential utility of C-reactive protein in saliva of neonates. Front. Pediatr. 2, 131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  PubMed  Google Scholar 

  123. Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00887-1 (2022).

    Article  PubMed  Google Scholar 

  125. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human–machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Song, Y. et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6, eaay9842 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2, 184–197 (2021).

    Article  CAS  Google Scholar 

  128. Yin, L. et al. A passive perspiration biofuel cell: high energy return on investment. Joule 5, 1888–1904 (2021).

    Article  CAS  Google Scholar 

  129. Yin, L. et al. A self-sustainable wearable multi-modular e-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao, J. et al. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens. 4, 1925–1933 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Terse-Thakoor, T. et al. Thread-based multiplexed sensor patch for real-time sweat monitoring. npj Flex. Electron. 4, 18 (2020).

    Article  Google Scholar 

  132. Torrente-Rodríguez, R. M. et al. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 6, 1981–1998 (2020).

    Article  Google Scholar 

  133. Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).

    Article  PubMed  Google Scholar 

  134. Yokus, M. A., Songkakul, T., Pozdin, V. A., Bozkurt, A. & Daniele, M. A. Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosens. Bioelectron. 153, 112038 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Trejo Banos, D. et al. Bayesian reassessment of the epigenetic architecture of complex traits. Nat. Commun. 11, 2865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Conesa, A. & Beck, S. Making multi-omics data accessible to researchers. Sci. Data 6, 251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Heifler, O. et al. Clinic-on-a-needle array toward future minimally invasive wearable artificial pancreas applications. ACS Nano 15, 12019–12033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Teymourian, H., Tehrani, F., Mahato, K. & Wang, J. Lab under the skin: microneedle based wearable devices. Adv. Healthc. Mater. 17, 2002255 (2021).

    Article  Google Scholar 

  140. Teymourian, H. et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Anal. Chem. 92, 2291–2300 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Jeong, H., Rogers, J. A. & Xu, S. Continuous on-body sensing for the COVID-19 pandemic: gaps and opportunities. Sci. Adv. 6, eabd4794 (2020). This work discusses the application and development of wearable technologies for diagnosis and monitoring of COVID-19 infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Reddy, B. et al. Point-of-care sensors for the management of sepsis. Nat. Biomed. Eng. 2, 640–648 (2018).

    Article  PubMed  Google Scholar 

  144. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article  PubMed  Google Scholar 

  145. Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 5, 9 (2021).

    Article  Google Scholar 

  146. Teymourian, H. et al. Closing the loop for patients with Parkinson disease: where are we? Nat. Rev. Neurol. 18, 497–507 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Huang, L. et al. Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma. Nat. Commun. 11, 3556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Krittanawong, C. et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 18, 75–91 (2021).

    Article  PubMed  Google Scholar 

  149. Odish, O. F. F., Johnsen, K., van Someren, P., Roos, R. A. C. & van Dijk, J. G. EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification. Sci. Rep. 8, 16090 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Green, E. M. et al. Machine learning detection of obstructive hypertrophic cardiomyopathy using a wearable biosensor. npj Digit. Med. 2, 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kehoe, E. R. et al. Biomarker selection and a prospective metabolite-based machine learning diagnostic for lyme disease. Sci. Rep. 12, 1478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Islam, M. T. & Xing, L. A data-driven dimensionality-reduction algorithm for the exploration of patterns in biomedical data. Nat. Biomed. Eng. 5, 624–635 (2021).

    Article  PubMed  Google Scholar 

  153. Tyler, N. S. et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat. Metab. 2, 612–619 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Strain, T. et al. Wearable-device-measured physical activity and future health risk. Nat. Med. 26, 1385–1391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Artificial intelligence biosensors: challenges and prospects. Biosens. Bioelectron. 165, 112412 (2020). This work discusses the progress of artificial intelligence biosensors, machine learning and decision-making applied in artificial intelligence biosensors.

    Article  CAS  PubMed  Google Scholar 

  156. Bashir, A. et al. Machine learning guided aptamer refinement and discovery. Nat. Commun. 12, 2366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Boubin, M. & Shrestha, S. Microcontroller implementation of support vector machine for detecting blood glucose levels using breath volatile organic compounds. Sensors 19, 2283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sardesai, A. U. et al. An approach to rapidly assess sepsis through multi-biomarker host response using machine learning algorithm. Sci. Rep. 11, 16905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. van Doorn, W. P. T. M. et al. Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: the Maastricht study. PLoS ONE 16, e0253125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Rodríguez-Rodríguez, I. et al. Utility of big data in predicting short-term blood glucose levels in type 1 diabetes mellitus through machine learning techniques. Sensors 19, 4482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Tomasik, J. et al. A machine learning algorithm to differentiate bipolar disorder from major depressive disorder using an online mental health questionnaire and blood biomarker data. Transl. Psychiatry 11, 41 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kalasin, S., Sangnuang, P. & Surareungchai, W. Lab-on-eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: machine learning in predicting serum creatinine using tear creatinine. Anal. Chem. 93, 10661–10671 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. 5, 3346–3364 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Bruno, E., Viana, P. F., Sperling, M. R. & Richardson, M. P. Seizure detection at home: do devices on the market match the needs of people living with epilepsy and their caregivers? Epilepsia 61, S11–S24 (2020).

    Article  PubMed  Google Scholar 

  165. Waldstein, S. M. et al. Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning. Sci. Rep. 10, 12954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fortino, V. et al. Machine-learning-driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis. Proc. Natl Acad. Sci. USA 117, 33474–33485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Oh, S. H., Lee, S. J., Noh, J. & Mo, J. Optimal treatment recommendations for diabetes patients using the Markov decision process along with the South Korean electronic health records. Sci. Rep. 11, 6920 (2021). This work presents a strategy to provide medical treatment using shared public health data along with the Markov decision process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dunn, J. et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 27, 1105–1112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Quer, G. et al. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27, 73–77 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Tu, J. & Gao, W. Ethical considerations of wearable technologies in human research. Adv. Healthc. Mater. 10, 2100127 (2021).

    Article  CAS  Google Scholar 

  171. Harris, M. I., Hadden, W. C., Knowler, W. C. & Bennett, P. H. International criteria for the diagnosis of diabetes and impaired glucose tolerance. Diabetes Care 8, 562–567 (1985).

    Article  CAS  PubMed  Google Scholar 

  172. Inzucchi, S. E. Clinical practice. Diagnosis of diabetes. N. Engl. J. Med. 367, 542–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Tonelli, M. & Manns, B. Supplementing creatinine-based estimates of risk in chronic kidney disease: is it time? JAMA 305, 1593–1595 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. FDA-NIH Biomarker Working Group. BEST (biomarkers, endpoints, and other tools) Resource (FDA, 2016). This publication aims to harmonize terms, such as biomarkers, used in translational science and medicine.

  175. Miksenas, H., Januzzi, J. L. & Natarajan, P. Lipoprotein(a) and cardiovascular diseases. JAMA 326, 352–353 (2021).

    Article  PubMed  Google Scholar 

  176. Minton, K. Maternal sensitization to neonatal allergy. Nat. Rev. Immunol. 21, 2–3 (2020).

    Article  Google Scholar 

  177. Valenta, R. The future of antigen-specific immunotherapy of allergy. Nat. Rev. Immunol. 2, 446–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Levey, A. S., Inker, L. A. & Coresh, J. Chronic kidney disease in older people. JAMA 314, 557–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Rubin, R. COVID-19 vaccines vs variants-determining how much immunity is enough. JAMA 325, 1241–1243 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Dieterle, F. et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 28, 463–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Chertow, G. M. et al. Guided medication dosing for inpatients with renal insufficiency. JAMA 286, 2839–2844 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by National Institutes of Health (NIH) grant R01HL155815; National Science Foundation (NSF) grant 2145802; Office of Naval Research grants N00014-21-1-2483 and N00014-21-1-2845; the Translational Research Institute for Space Health through NASA NNX16AO69A; American Cancer Society Research Scholar Grant RSG-21-181-01-CTPS; High Impact Pilot Research Award T31IP1666 from the Tobacco-Related Disease Research Program; and the Center of Wearable Sensors at University of California San Diego.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, and writing and review/editing of the manuscript before submission.

Corresponding authors

Correspondence to Joseph Wang or Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks H. Tom Soh, Koji Sode, Atul Sharma and Zong-Hong Lin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sempionatto, J.R., Lasalde-Ramírez, J.A., Mahato, K. et al. Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 6, 899–915 (2022). https://doi.org/10.1038/s41570-022-00439-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00439-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research