Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine
"> Figure 1
<p>Copolymers prepared according to Alfei et al. [<a href="#B8-ijms-25-05009" class="html-bibr">8</a>,<a href="#B63-ijms-25-05009" class="html-bibr">63</a>], which were successful in crosslinking Gel B. CP = copolymer; <b>5</b> = aminobutyl styrene hydrochloride; <b>11b</b> = <span class="html-italic">N</span>-acryloyl-1,4-diaminobutane hydrochloride; <b>11c</b> = <span class="html-italic">N</span>-acryloyl-1,6-diaminohexane hydrochloride.</p> "> Figure 2
<p>ATR-FTIR spectra of Gel B (black plot) and of crosslinked gelatines (colored plots).</p> "> Figure 3
<p>Optical images captured with a 10× objective of M1 (<b>a</b>,<b>b</b>) and M2 (<b>c</b>,<b>d</b>).</p> "> Figure 4
<p>Optical images captured of M3 (<b>a</b>), M4 (<b>b</b>), and M6 (<b>c</b>) with a 40× objective and of M9 (<b>d</b>) with a 10× objective.</p> "> Figure 5
<p>Plots of the cumulative swelling rate values of the crosslinked gelatines vs. time.</p> "> Figure 6
<p>Cumulative mass loss percentage curves of developed crosslinked gelatines and Gel B.</p> "> Figure 7
<p>Korsmeyer–peppas kinetic model.</p> "> Figure 8
<p>Pseudo-second-order (PSO) kinetic model.</p> "> Figure 9
<p>Cumulative water loss (%) over time. Error bars not detectable.</p> "> Figure 10
<p>Curve of shear stress vs. shear rate (<b>a</b>) and viscosity vs. shear rate (<b>b</b>) of M1–M6 and M9 from rheological experiments performed in triplicate. Error bars not detectable.</p> "> Figure 11
<p>Score plot of PC2 vs. PC1 from PCA of samples M1–M6 and M9.</p> "> Scheme 1
<p>Reactions that can occur during the LO-assisted crosslinking of gelatine [<a href="#B8-ijms-25-05009" class="html-bibr">8</a>].</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gelatine Crosslinking
2.1.1. Commercially Available Gelatine
2.1.2. Gelatine Crosslinking
2.1.3. Titration of Crosslinked Gelatines
2.1.4. ATR-FTIR
2.1.5. Morphology of Crosslinked Gelatines
2.1.6. Equilibrium Swelling Rate
Kinetic Studies
2.1.7. Water Absorption Capacity (WAC%), Apparent Density, and Porosity (%)
2.1.8. In Vitro Evaluation of the Biodegradability of Crosslinked Gelatines over Time by Mass Loss Experiments
2.1.9. Equilibrium Water Loss Rate (%)
2.1.10. Rheological Studies
PCA of Rheological Data
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Gelatine B (Gel B) Crosslinking
3.3. UV Titrations of Crosslinked Gelatines
3.4. NaOH Titration of Crosslinked Gelatines
3.5. ATR-FTIR Spectra
3.6. Optical Microscopy Analyses
3.7. Equilibrium Swelling Rate
3.8. Water Absorbing Capacity (WAC %)
3.9. Porosity
3.10. Biodegradability of Crosslinked Gelatins over Time by In Vitro Mass Loss Experiments
3.11. Equilibrium Water Loss Rate
3.12. Rheological Properties of Crosslinked Gelatines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Y.; Liu, W.; Zhao, S.; Zhao, Y.; Dai, J. Advances in Microgravity Directed Tissue Engineering. Adv. Healthc. Mater. 2023, 12, e2202768. [Google Scholar] [CrossRef]
- Skalak, R.; Fox, C.F. Tissue Engineering. In Proceedings of the Tissue Engeneering, , Ed. Liss, N.Y., Ed.; Granlibakken: Lake Tahoe, CA, USA, 1988. [Google Scholar]
- Langer, R.; Vacanti, J.P. Tissue Engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Vacanti, J.P.; Langer, R. Tissue Engineering: The Design and Fabrication of Living Replacement Devices for Surgical Reconstruction and Transplantation. Lancet 1999, 354, S32–S34. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, P.; Sharma, R.; Dhar Bhatt, V.; Dhot, P. Tissue Engineering; Current Status & Futuristic Scope. J. Med. Life 2019, 12, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.L.; Atala, A.; Yoo, J.J. Tissue Engineering: Current Strategies and Future Directions. Chonnam Med. J. 2011, 47, 1. [Google Scholar] [CrossRef]
- Pina, S.; Ribeiro, V.P.; Marques, C.F.; Maia, F.R.; Silva, T.H.; Reis, R.L.; Oliveira, J.M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials 2019, 12, 1824. [Google Scholar] [CrossRef]
- Alfei, S.; Pintaudi, F.; Zuccari, G. Synthesis and Characterization of Amine and Aldehyde-Containing Copolymers for Enzymatic Crosslinking of Gelatine. Int. J. Mol. Sci. 2024, 25, 2897. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.; Currie, L.; Martin, R. A Guide to Biological Skin Substitutes. Br. J. Plast. Surg. 2002, 55, 185–193. [Google Scholar] [CrossRef]
- Atala, A.; Bauer, S.B.; Soker, S.; Yoo, J.J.; Retik, A.B. Tissue-Engineered Autologous Bladders for Patients Needing Cystoplasty. Lancet 2006, 367, 1241–1246. [Google Scholar] [CrossRef]
- Tenreiro, M.F.; Louro, A.F.; Alves, P.M.; Serra, M. Next Generation of Heart Regenerative Therapies: Progress and Promise of Cardiac Tissue Engineering. NPJ Regen. Med. 2021, 6, 30. [Google Scholar] [CrossRef]
- Mayo Clinic. Neuroregenerative Medicine. Available online: Https://www.Mayo.Edu/Research/Documents/Neuroregenerative-Medicine-Booklet/Doc-20092381 (accessed on 26 February 2024).
- Khan, M.U.A.; Aslam, M.A.; Bin Abdullah, M.F.; Hasan, A.; Shah, S.A.; Stojanović, G.M. Recent Perspective of Polymeric Biomaterial in Tissue Engineering– a Review. Mater. Today Chem. 2023, 34, 101818. [Google Scholar] [CrossRef]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P. V Bone Regeneration: Current Concepts and Future Directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, J.; Liu, S.; Jin, Y. Stem Cell-Based Bone and Dental Regeneration: A View of Microenvironmental Modulation. Int. J. Oral. Sci. 2019, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Lavik, E.; Langer, R. Tissue Engineering: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2004, 65, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Puleo, D. Understanding and Controlling the Bone–Implant Interface. Biomaterials 1999, 20, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
- Ducheyne, P.; Qiu, Q. Bioactive Ceramics: The Effect of Surface Reactivity on Bone Formation and Bone Cell Function. Biomaterials 1999, 20, 2287–2303. [Google Scholar] [CrossRef] [PubMed]
- Benezra Rosen, V.; Hobbs, L.W.; Spector, M. The Ultrastructure of Anorganic Bovine Bone and Selected Synthetic Hyroxyapatites Used as Bone Graft Substitute Materials. Biomaterials 2002, 23, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Hajebi, S.; Mohammadi Nasr, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Bioresorbable Composite Polymeric Materials for Tissue Engineering Applications. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 926–940. [Google Scholar] [CrossRef]
- Ilia, G. Phosphorus Containing Hydrogels. Polym. Adv. Technol. 2009, 20, 707–722. [Google Scholar] [CrossRef]
- Fournier, E.; Passirani, C.; Montero-Menei, C.N.; Benoit, J.P. Biocompatibility of Implantable Synthetic Polymeric Drug Carriers: Focus on Brain Biocompatibility. Biomaterials 2003, 24, 3311–3331. [Google Scholar] [CrossRef]
- Meyvis, T.K.L.; De Smedt, S.C.; Demeester, J.; Hennink, W.E. Influence of the Degradation Mechanism of Hydrogels on Their Elastic and Swelling Properties during Degradation. Macromolecules 2000, 33, 4717–4725. [Google Scholar] [CrossRef]
- Lee, C.H.; Singla, A.; Lee, Y. Biomedical Applications of Collagen. Int. J. Pharm. 2001, 221, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Place, E.S.; George, J.H.; Williams, C.K.; Stevens, M.M. Synthetic Polymer Scaffolds for Tissue Engineering. Chem. Soc. Rev. 2009, 38, 1139. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Hydrogels for Tissue Engineering. Chem. Rev. 2001, 101, 1869–1880. [Google Scholar] [CrossRef]
- Taylor, D.A.; Sampaio, L.C.; Ferdous, Z.; Gobin, A.S.; Taite, L.J. Decellularized Matrices in Regenerative Medicine. Acta Biomater. 2018, 74, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Abedin, E.; Lari, R.; Mahdavi Shahri, N.; Fereidoni, M. Development of a Demineralized and Decellularized Human Epiphyseal Bone Scaffold for Tissue Engineering: A Histological Study. Tissue Cell 2018, 55, 46–52. [Google Scholar] [CrossRef]
- Yu, Z.; Lili, J.; Tiezheng, Z.; Li, S.; Jianzhuang, W.; Haichao, D.; Kedong, S.; Tianqing, L. Development of Decellularized Meniscus Extracellular Matrix and Gelatin/Chitosan Scaffolds for Meniscus Tissue Engineering. Biomed. Mater. Eng. 2019, 30, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfari, S.; Alberti, K.A.; Xu, Q.; Khademhosseini, A. Evaluation of an Elastic Decellularized Tendon-derived Scaffold for the Vascular Tissue Engineering Application. J. Biomed. Mater. Res. A 2019, 107, 1225–1234. [Google Scholar] [CrossRef]
- Parmaksiz, M.; Elçin, A.E.; Elçin, Y.M. Decellularized Bovine Small Intestinal Submucosa-PCL/Hydroxyapatite-Based Multilayer Composite Scaffold for Hard Tissue Repair. Mater. Sci. Eng. C 2019, 94, 788–797. [Google Scholar] [CrossRef]
- Grant, R.; Hallett, J.; Forbes, S.; Hay, D.; Callanan, A. Blended Electrospinning with Human Liver Extracellular Matrix for Engineering New Hepatic Microenvironments. Sci. Rep. 2019, 9, 6293. [Google Scholar] [CrossRef]
- Cho, A.-N.; Jin, Y.; Kim, S.; Kumar, S.; Shin, H.; Kang, H.-C.; Cho, S.-W. Aligned Brain Extracellular Matrix Promotes Differentiation and Myelination of Human-Induced Pluripotent Stem Cell-Derived Oligodendrocytes. ACS Appl. Mater. Interfaces 2019, 11, 15344–15353. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a Delivery Vehicle for the Controlled Release of Bioactive Molecules. J. Control. Release 2005, 109, 256–274. [Google Scholar] [CrossRef] [PubMed]
- Pomahač, B.; Svensjö, T.; Yao, F.; Brown, H.; Eriksson, E. Tissue Engineering of Skin. Crit. Rev. Oral Biol. Med. 1998, 9, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Said, G.; Tadie, M. Regrowth of the Rostral Spinal Axons into the Caudal Ventral Roots through a Collagen Tube Implanted into Hemisected Adult Rat Spinal Cord. Neurosurgery 2001, 49, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Voytik-Harbin, S.L.; Brightman, A.O.; Waisner, B.Z.; Robinson, J.P.; Lamar, C.H. Small Intestinal Submucosa: A Tissue-Derived Extracellular Matrix That Promotes Tissue-Specific Growth and Differentiation of Cells in Vitro. Tissue Eng. 1998, 4, 157–174. [Google Scholar] [CrossRef]
- Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2001; ISBN 9780471484943.
- Gurumurthy, B.; Janorkar, A.V. Improvements in Mechanical Properties of Collagen-Based Scaffolds for Tissue Engineering. Curr. Opin. Biomed. Eng. 2021, 17, 100253. [Google Scholar] [CrossRef]
- Madaghiele, M.; Piccinno, A.; Saponaro, M.; Maffezzoli, A.; Sannino, A. Collagen- and Gelatine-Based Films Sealing Vascular Prostheses: Evaluation of the Degree of Crosslinking for Optimal Blood Impermeability. J. Mater. Sci. Mater. Med. 2009, 20, 1979–1989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, M.; Liu, T.; Hou, M.; Yang, H. Effect of Different Additives on the Mechanical Properties of Gelatin Methacryloyl Hydrogel: A Meta-Analysis. ACS Omega 2021, 6, 9112–9128. [Google Scholar] [CrossRef] [PubMed]
- Alipal, J.; Mohd Pu’ad, N.A.S.; Lee, T.C.; Nayan, N.H.M.; Sahari, N.; Basri, H.; Idris, M.I.; Abdullah, H.Z. A Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation. Mater. Today Proc. 2021, 42, 240–250. [Google Scholar] [CrossRef]
- Ahmady, A.; Abu Samah, N.H. A Review: Gelatine as a Bioadhesive Material for Medical and Pharmaceutical Applications. Int. J. Pharm. 2021, 608, 121037. [Google Scholar] [CrossRef]
- Azmir, M.S.N.A.; Moni, M.N.; Gobetti, A.; Ramorino, G.; Dey, K. Advances in Modulating Mechanical Properties of Gelatin-Based Hydrogel in Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2024, 1–36. [Google Scholar] [CrossRef]
- Barbani, N.; Giusti, P.; Lazzeri, L.; Polacco, G.; Pizzirani, G. Bioartificial Materials Based on Collagen: 1. Collagen Cross-Linking with Gaseous Glutaraldehyde. J. Biomater. Sci. Polym. Ed. 1996, 7, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Dalev, P.; Vassileva, E.; Mark, J.E.; Fakirov, S. Enzymatic Degradation of Formaldehyde-Crosslinked Gelatin. Biotechnol. Tech. 1998, 12, 889–892. [Google Scholar] [CrossRef]
- Lien, S.-M.; Li, W.-T.; Huang, T.-J. Genipin-Crosslinked Gelatin Scaffolds for Articular Cartilage Tissue Engineering with a Novel Crosslinking Method. Mater. Sci. Eng. C 2008, 28, 36–43. [Google Scholar] [CrossRef]
- Sung, H.W.; Huang, D.M.; Chang, W.H.; Huang, R.N.; Hsu, J.C. Evaluation of Gelatin Hydrogel Crosslinked with Various Crosslinking Agents as Bioadhesives: In Vitro Study. J. Biomed. Mater. Res. 1999, 46, 520–530. [Google Scholar] [CrossRef]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N. Mechanical and Thermal Properties of Gelatin Films at Different Degrees of Glutaraldehyde Crosslinking. Biomaterials 2001, 22, 763–768. [Google Scholar] [CrossRef]
- Liang, H.; Chang, W.; Liang, H.; Lee, M.; Sung, H. Crosslinking Structures of Gelatin Hydrogels Crosslinked with Genipin or a Water-soluble Carbodiimide. J. Appl. Polym. Sci. 2004, 91, 4017–4026. [Google Scholar] [CrossRef]
- Zeugolis, D.I.; Paul, G.R.; Attenburrow, G. Cross-linking of Extruded Collagen Fibers—A Biomimetic Three-dimensional Scaffold for Tissue Engineering Applications. J. Biomed. Mater. Res. A 2009, 89A, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Beckman, E.J.; Piesco, N.P.; Agarwal, S. A New Peptide-Based Urethane Polymer: Synthesis, Biodegradation, and Potential to Support Cell Growth in Vitro. Biomaterials 2000, 21, 1247–1258. [Google Scholar] [CrossRef]
- Bonzani, I.C.; Adhikari, R.; Houshyar, S.; Mayadunne, R.; Gunatillake, P.; Stevens, M.M. Synthesis of Two-Component Injectable Polyurethanes for Bone Tissue Engineering. Biomaterials 2007, 28, 423–433. [Google Scholar] [CrossRef]
- Schacht, E.; Bogdanov, B.; Bulcke, A.V.D.; De Rooze, N. Hydrogels Prepared by Crosslinking of Gelatin with Dextran Dialdehyde. React. Funct. Polym. 1997, 33, 109–116. [Google Scholar] [CrossRef]
- Draye, J.-P.; Delaey, B.; Van de Voorde, A.; Van Den Bulcke, A.; Bogdanov, B.; Schacht, E. In Vitro Release Characteristics of Bioactive Molecules from Dextran Dialdehyde Cross-Linked Gelatin Hydrogel Films. Biomaterials 1998, 19, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xiao, C. Synthesis and Properties of Novel Hydrogels from Oxidized Konjac Glucomannan Crosslinked Gelatin for in Vitro Drug Delivery. Carbohydr. Polym. 2008, 72, 479–489. [Google Scholar] [CrossRef]
- Chen, T.; Embree, H.D.; Brown, E.M.; Taylor, M.M.; Payne, G.F. Enzyme-Catalyzed Gel Formation of Gelatin and Chitosan: Potential for in Situ Applications. Biomaterials 2003, 24, 2831–2841. [Google Scholar] [CrossRef]
- Chaibi, S.; Benachour, D.; Merbah, M.; Esperanza Cagiao, M.; Baltá Calleja, F.J. The Role of Crosslinking on the Physical Properties of Gelatin Based Films. Colloid. Polym. Sci. 2015, 293, 2741–2752. [Google Scholar] [CrossRef]
- Van Vlierberghe, S. Crosslinking Strategies for Porous Gelatin Scaffolds. J. Mater. Sci. 2016, 51, 4349–4357. [Google Scholar] [CrossRef]
- Contessi Negrini, N.; Angelova Volponi, A.; Sharpe, P.T.; Celiz, A.D. Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomater. Sci. Eng. 2021, 7, 4330–4346. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Dai, R.; Shan, Z.; Chen, H.; Woo, M.W.; Yi, J. High Efficient Crosslinking of Gelatin and Preparation of Its Excellent Flexible Composite Film Using Deep Eutectic Solvent. Process Biochem. 2022, 118, 32–40. [Google Scholar] [CrossRef]
- Bertini, V.; Alfei, S.; Pocci, M.; Lucchesini, F.; Picci, N.; Iemma, F. Monomers Containing Substrate or Inhibitor Residues for Copper Amine Oxidases and Their Hydrophilic Beaded Resins Designed for Enzyme Interaction Studies. Tetrahedron 2004, 60, 11407–11414. [Google Scholar] [CrossRef]
- Alfei, S.; Piatti, G.; Caviglia, D.; Schito, A. Synthesis, Characterization, and Bactericidal Activity of a 4-Ammoniumbuthylstyrene-Based Random Copolymer. Polymers 2021, 13, 1140. [Google Scholar] [CrossRef]
- Al-Oweini, R.; El-Rassy, H. Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R′′Si(OR′)3 Precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Chen, S.; Shen, K.; Chen, Z.; Wu, Q.; Yang, L.; Zheng, Q.; Zhang, Z.; Yin, L.; Hou, B.; Zhu, H. Ultrathin SiO2 Aerogel Papers with Hierarchical Scale Enable High-Temperature Thermal Insulation. Ceram. Int. 2024, 50, 17836–17847. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Deng, X.; Liu, Q.; Shulga, Y.M.; Chen, Z.; Wu, X. Preparation and Characterization of Silica Aerogel Foam Concrete: Effects of Particle Size and Content. J. Build. Eng. 2024, 82, 108243. [Google Scholar] [CrossRef]
- Kong, M.; Wei, K.; Tan, N.; Ma, W. Study on the Regulation Mechanism of Tunable Characteristics of Porous Silica Microspheres Synthesized via Micelle Templating Method. J. Non Cryst. Solids 2024, 628, 122859. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D.; Shen, J.; Wei, Y.; Wang, C. Preparation of Bottlebrush Polymer–Modified Magnetic Graphene as Immobilized Metal Ion Affinity Adsorbent for Purification of Hemoglobin from Blood Samples. Microchim. Acta 2020, 187, 472. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, S.-H.; Jiang, H.-Y.; Zeng, H.; Wu, R.-M.; Chen, H.; Gao, Y.-F.; Huang, Y.-Y.; Bai, H.-L. Properties of Carbon Black-PEDOT Composite Prepared via in-Situ Chemical Oxidative Polymerization. e-Polym. 2019, 19, 61–69. [Google Scholar] [CrossRef]
- Fei, Z.; Yang, Z.; Chen, G.; Li, K.; Zhao, S.; Su, G. Preparation and Characterization of Glass Fiber/Polyimide/SiO2 Composite Aerogels with High Specific Surface Area. J. Mater. Sci. 2018, 53, 12885–12893. [Google Scholar] [CrossRef]
- Alattar, A.M. Spectral and Structural Investigation of Silica Aerogels Properties Synthesized through Several Techniques. J. Non Cryst. Solids 2021, 571, 121048. [Google Scholar] [CrossRef]
- Bulgarevich, D.S.; Tsukamoto, S.; Kasuya, T.; Demura, M.; Watanabe, M. Pattern Recognition with Machine Learning on Optical Microscopy Images of Typical Metallurgical Microstructures. Sci. Rep. 2018, 8, 2078. [Google Scholar] [CrossRef]
- Jorge, J.C.F.; de Souza, L.F.G.; Mendes, M.C.; Bott, I.S.; Araújo, L.S.; dos Santos, V.R.; Rebello, J.M.A.; Evans, G.M. Microstructure Characterization and Its Relationship with Impact Toughness of C–Mn and High Strength Low Alloy Steel Weld Metals—A Review. J. Mater. Res. Technol. 2021, 10, 471–501. [Google Scholar] [CrossRef]
- Zuccari, G.; Russo, E.; Villa, C.; Zorzoli, A.; Marimpietri, D.; Marchitto, L.; Alfei, S. Preparation and Characterization of Amorphous Solid Dispersions for the Solubilization of Fenretinide. Pharmaceuticals 2023, 16, 388. [Google Scholar] [CrossRef] [PubMed]
- Kenchington, A.W.; Ward, A.G. The Titration Curve of Gelatin. Biochem. J. 1954, 58, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Sharma, G.; Wangpimool, K.; Kim, J.-C. Synthesis of Hydrophobically Modified Alginate and Hydrophobically Modified Gelatin Containing Cubic Phase for PH- and Salt-Responsive Release of Fructose Diphosphate. Colloid. Polym. Sci. 2022, 300, 233–249. [Google Scholar] [CrossRef]
- Flores-Jiménez, M.S.; Garcia-Gonzalez, A.; Fuentes-Aguilar, R.Q. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS Appl. Bio Mater. 2023, 6, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Lutzweiler, G.; Ndreu Halili, A.; Engin Vrana, N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020, 12, 602. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Y.; Wang, L.; Liu, D.; Qin, C.; Shi, Y. A Review of Preparation Methods of Porous Skin Tissue Engineering Scaffolds. Mater. Today Commun. 2022, 32, 104109. [Google Scholar] [CrossRef]
- Saif Ur Rahman, M.; Wu, J.; Chen, H.; Sun, C.; Liu, Y.; Xu, S. Matrix Mechanophysical Factor: Pore Size Governs the Cell Behavior in Cancer. Adv. Phys. X 2023, 8, 2153624. [Google Scholar] [CrossRef]
- Alfei, S.; Zorzoli, A.; Marimpietri, D.; Zuccari, G.; Russo, E.; Caviglia, D.; Schito, A.M. A Self-Forming Hydrogel from a Bactericidal Copolymer: Synthesis, Characterization, Biological Evaluations and Perspective Applications. Int. J. Mol. Sci. 2022, 23, 15092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Feng, W.; Jin, C. Protocol Efficiently Measuring the Swelling Rate of Hydrogels. MethodsX 2020, 7, 100779. [Google Scholar] [CrossRef]
- Wu, N.; Yu, H.; Sun, M.; Li, Z.; Zhao, F.; Ao, Y.; Chen, H. Investigation on the Structure and Mechanical Properties of Highly Tunable Elastomeric Silk Fibroin Hydrogels Cross-Linked by γ-Ray Radiation. ACS Appl. Bio Mater. 2020, 3, 721–734. [Google Scholar] [CrossRef]
- Bergmann, C.P.; Machado, F.M. (Eds.) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-18874-4. [Google Scholar]
- Alfei, S.; Orlandi, V.; Grasso, F.; Boggia, R.; Zuccari, G. Cationic Polystyrene-Based Hydrogels: Low-Cost and Regenerable Adsorbents to Electrostatically Remove Nitrites from Water. Toxics 2023, 11, 312. [Google Scholar] [CrossRef] [PubMed]
- Alfei, S.; Grasso, F.; Orlandi, V.; Russo, E.; Boggia, R.; Zuccari, G. Cationic Polystyrene-Based Hydrogels as Efficient Adsorbents to Remove Methyl Orange and Fluorescein Dye Pollutants from Industrial Wastewater. Int. J. Mol. Sci. 2023, 24, 2948. [Google Scholar] [CrossRef] [PubMed]
- Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Levingstone, T.J.; Matsiko, A.; Dickson, G.R.; O’Brien, F.J.; Gleeson, J.P. A Biomimetic Multi-Layered Collagen-Based Scaffold for Osteochondral Repair. Acta Biomater. 2014, 10, 1996–2004. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-W.; Zhu, Y.-J.; Chen, F. Hydroxyapatite Nanowire/Collagen Elastic Porous Nanocomposite and Its Enhanced Performance in Bone Defect Repair. RSC Adv. 2018, 8, 26218–26229. [Google Scholar] [CrossRef]
- Lu, T.; Li, Q.; Chen, W.; Yu, H. Composite Aerogels Based on Dialdehyde Nanocellulose and Collagen for Potential Applications as Wound Dressing and Tissue Engineering Scaffold. Compos. Sci. Technol. 2014, 94, 132–138. [Google Scholar] [CrossRef]
- Greco, I.; Varon, C.; Iorio, C.S. Synthesis and Characterization of a New Alginate-Gelatine Aerogel for Tissue Engineering. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, UK, 11–15 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3915–3918. [Google Scholar]
- Noman, M.T.; Amor, N.; Ali, A.; Petrik, S.; Coufal, R.; Adach, K.; Fijalkowski, M. Aerogels for Biomedical, Energy and Sensing Applications. Gels 2021, 7, 264. [Google Scholar] [CrossRef] [PubMed]
- No, Y.J.; Tarafder, S.; Reischl, B.; Ramaswamy, Y.; Dunstan, C.; Friedrich, O.; Lee, C.H.; Zreiqat, H. High-Strength Fiber-Reinforced Composite Hydrogel Scaffolds as Biosynthetic Tendon Graft Material. ACS Biomater. Sci. Eng. 2020, 6, 1887–1898. [Google Scholar] [CrossRef] [PubMed]
- Freyman, T.M.; Yannas, I.V.; Gibson, L.J. Cellular Materials as Porous Scaffolds for Tissue Engineering. Prog. Mater. Sci. 2001, 46, 273–282. [Google Scholar] [CrossRef]
- Alfei, S.; Milanese, M.; Brullo, C.; Valenti, G.E.; Domenicotti, C.; Russo, E.; Marengo, B. Antiproliferative Imidazo-Pyrazole-Based Hydrogel: A Promising Approach for the Development of New Treatments for PLX-Resistant Melanoma. Pharmaceutics 2023, 15, 2425. [Google Scholar] [CrossRef]
- Bitar, K.N.; Zakhem, E. Design Strategies of Biodegradable Scaffolds for Tissue Regeneration. Biomed. Eng. Comput. Biol. 2014, 6, BECB.S10961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hao, R.; Ren, X.; Yu, L.; Yang, H.; Yu, H. PEG/Lecithin–Liquid-Crystalline Composite Hydrogels for Quasi-Zero-Order Combined Release of Hydrophilic and Lipophilic Drugs. RSC Adv. 2013, 3, 22927. [Google Scholar] [CrossRef]
- Li, S.; Mao, W.; Xia, L.; Wu, X.; Guo, Y.; Wang, J.; Huang, J.; Xiang, H.; Jin, L.; Fu, H.; et al. An Injectable, Self-Healing and Degradable Hydrogel Scaffold as a Functional Biocompatible Material for Tissue Engineering Applications. J. Mater. Sci. 2023, 58, 6710–6726. [Google Scholar] [CrossRef]
- Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–86.
- Talevi, A.; Ruiz, M.E. Korsmeyer-Peppas, Peppas-Sahlin, and Brazel-Peppas: Models of Drug Release. In The ADME Encyclopedia; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–9. [Google Scholar]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Khatooni, H.; Peighambardoust, S.J.; Foroutan, R.; Mohammadi, R.; Ramavandi, B. Adsorption of Methylene Blue Using Sodium Carboxymethyl Cellulose-g-Poly (Acrylamide-Co-Methacrylic Acid)/Cloisite 30B Nanocomposite Hydrogel. J. Polym. Environ. 2023, 31, 297–311. [Google Scholar] [CrossRef]
- Alfei, S.; Zorzoli, A.; Marimpietri, D.; Schito, A.M.; Russo, E. Mutual Jellification of Two Bactericidal Cationic Polymers: Synthesis and Physicochemical Characterization of a New Two-Component Hydrogel. Pharmaceutics 2022, 14, 2444. [Google Scholar] [CrossRef] [PubMed]
- Alfei, S.; Caviglia, D.; Piatti, G.; Zuccari, G.; Schito, A.M. Synthesis, Characterization and Broad-Spectrum Bactericidal Effects of Ammonium Methyl and Ammonium Ethyl Styrene-Based Nanoparticles. Nanomaterials 2022, 12, 2743. [Google Scholar] [CrossRef]
- Schito, A.M.; Caviglia, D.; Piatti, G.; Alfei, S. A Highly Efficient Polystyrene-Based Cationic Resin to Reduce Bacterial Contaminations in Water. Polymers 2022, 14, 4690. [Google Scholar] [CrossRef]
- Redmond, J.; McCarthy, H.O.; Buchanan, P.; Levingstone, T.J.; Dunne, N.J. Development and Characterisation of 3D Collagen-Gelatin Based Scaffolds for Breast Cancer Research. Biomater. Adv. 2022, 142, 213157. [Google Scholar] [CrossRef]
- Guarino, V.; Causa, F.; Ambrosio, L. Porosity and Mechanical Properties Relationship in PCL Porous Scaffolds. J. Appl. Biomater. Biomech. 2007, 5, 149–157. [Google Scholar]
Exp | Gel B (mg) | Solvent (mL) | Copolymer (mg) | Wt (%) | Solvent (mL) | CAO mL | Aerogel-like Composites (mg, %) |
---|---|---|---|---|---|---|---|
1 | 499.8 | BU6M 5.0 | CP5/DMAA-43 * 17.1 | 3.4 | BU6M 1.5 + 1.5 | LO †† 1.0 | M1 465.6, 90.1 |
2 | 500.8 | PB 4.0 | CPMA/DMAA-20 * 51.0 | 10.2 | PB 1.0 + 1.0 | - | M2 476.0, 86.3 |
3 | 504.6 | BU6M 4.0 | CP5/DMAA-11 * 50.9 | 10.1 | BU6M 1.0 | LO † 2.0 + 2.0 | M3 532.7, 95.9 |
4 | 503.8 | BU6M 4.0 | CP5/DMAA-11 * 26.0 | 5.2 | BU6M 1.0 + 1.0 | LO § 2.0 + 2.0 | M4 500.5, 94.5 |
5 | 509.6 | BU6M 4.0 | CP5/DMAA-5 * 50.9 | 9.98 | BU6M 1.0 | LO ‡ 2.0 + 2.0 | M5 525.2, 93.7 |
6 | 503.6 | BU6M 4.0 | CP5/DMAA-5 * 25.6 | 5.1 | BU6M 1.0 | LO ‡ 2.0 + 2.0 | M6 484.9, 91.6 |
7 | 504.8 | BU6M 4.0 | CP11c/DMAA-10 * 50.7 | 10.0 | BU6M 1.0 | LO ‡ 2.0 + 2.0 | M7 552.2, 99.5 |
8 | 503.1 | BU6M 4.0 | CP11b/DMAA-10 * 51.5 | 10.2 | BU6M 1.0 | LO ° 5.0 | M8 1.9, 0.38 |
9 | 650.1 | BU6M 5.2 | CPMA/DMAA-20 * 65.0 | 10.0 | BU6M 1.5 | LO ♯ 5.2 | M9 399.8, 57.2 |
Sample | CL Agent (% *) | NH2/g (UV) (mmol) | NH2/g (NaOH) (mmol) | Crosslinking ** (%) |
---|---|---|---|---|
Gel B | N.A. | 0.219 ± 0.02 | 0.391 ± 0.04 | - |
M1 | CP5/DMAA-43 *** 3.4 | N.A. | 0.2770 ± 0.02 | N.A./29.2 |
M2 | CPMA/DMAA-20 *** 10.2 | 0.2070 ± 0.03 | 0.1572 ± 0.01 | 5.5/59.8 |
M3 | CP5/DMAA-11 *** 10.1 | 0.1150 ± 0.02 | 0.2573 ± 0.02 | 47.5/34.2 |
M4 | CP5/DMAA-11 *** 5.2 | 0.1610 ± 0.01 | 0.2433 ± 0.03 | 26.5/37.9 |
M5 | CP5/DMAA-5 *** 9.98 | 0.1697 ± 0.01 | 0.2097 ± 0.02 | 22.8/46.4 |
M6 | CP5/DMAA-5 *** 5.1 | 0.1327 ± 0.001 | 0.1720 ± 0.02 | 39.4/56.0 |
M7 | CP11c/DMAA-10 *** 10.0 | 0.1940 ± 0.02 | 0.473 ± 0.04 | 11.4/<0 |
M9 | CPMA/DMAA-20 *** 10.0 | 0.1180 ± 0.001 | N.A. | 46.1/N.A. |
Sample | K1 | R0 | K2 | Q e EXP | Q e MODEL | Error (%) |
---|---|---|---|---|---|---|
M1 | 18.44 | 0.054 | 9.78 | 225 ± 22 | 225 | 0 |
M2 | 19.39 | 0.052 | 12.75 | 243 ± 22 | 243 | 0 |
M3 | 23.15 | 0.043 | 7.09 | 355 ± 92 | 356 | 0.28 |
M4 | 25.44 | 0.039 | 3.65 | 1250 ± 112 | 1258 | 0.64 |
M5 | 15.63 | 0.064 | 1.71 | 1225 ± 83 | 1213 | 0.98 |
M6 | 26.66 | 0.038 | 1.58 | 2730 ± 100 | 2767 | 1.34 |
M9 | 70.96 | 0.014 | 12.83 | 752 ± 103 | 757 | 0.67 |
Sample | Vi | ρ* = m/V | Porosity (%) | Vf | WAC (%) | Porosity (EWC) (%) | Q e (%) ** |
---|---|---|---|---|---|---|---|
M1 | 0.10 | 0.45 | 67.1 ± 2.4 | 0.3 | 200 ± 28 | 66.7 ± 3.8 | 225 ± 22 |
M2 | 0.10 | 0.32 | 76.6 ± 2.8 | 0.2 | 240 ± 15 | 70.6 ± 2.8 | 243 ± 22 |
M3 | 0.10 | 0.39 | 71.5 ± 1.8 | 0.5 | 350 ± 10 | 77.8 ± 2.4 | 355 ± 92 |
M4 | 0.10 | 0.21 | 84.7 ± 3.2 | 1.3 | 1200 ± 58 | 92.3 ± 1.2 | 1250 ± 112 |
M5 | 0.15 | 0.31 | 77.6 ± 2.7 | 3.0 | 1100 ± 110 | 91.7 ± 2.0 | 1225 ± 83 |
M6 | 0.10 | 0.21 | 84.7 ± 2.5 | 4.0 | 2700 ± 93 | 96.4 ± 2.7 | 2730 ± 100 |
M9 | 0.10 | 0.10 | 92.7 ± 2.1 | 0.8 | 700 ± 57 | 87.5 ± 4.0 | 752 ± 103 |
Sample | We PSO * | We EXP | Residual | K | n |
---|---|---|---|---|---|
Gel B | 0.019 | 0.02 | −0.001 | 118.8550 ** | - |
M1 | 0.085 | 0.09 | −0.005 | 29.0047 ** | - |
M2 | 0.066 | 0.07 | −0.004 | 27.9740 ** | - |
M3 | - | - | 6.1900 *** | 1.26 | |
M4 | 0.085 | 0.09 | −0.005 | 25.2306 ** | - |
M5 | 0.071 | 0.07 | +0.001 | 49.5083 ** | - |
M6 | 0.215 | 0.22 | −0.005 | 30.5854 ** | - |
M9 | 0.202 | 0.21 | −0.008 | 49.2032 ** | - |
Sample | Ko | K1 | KKP | KHC | n |
---|---|---|---|---|---|
M1 | 3.7140 | - | - | - | - |
M2 | 2.7442 | - | - | - | - |
M3 | - | - | 0.1052 | ||
M4 | 0.1753 | - | - | - | |
M5 | - | - | 42.01 | - | 0.4843 |
M6 | - | - | 44.64 | - | 0.4625 |
M9 | 3.4940 | - | - | - | - |
Sample | Equation | R2 | τoH (mPa) * | Slope (n) | Intercept (Log K) | K |
---|---|---|---|---|---|---|
M1 | y = 0.8100x + 4.3490 | 0.9640 | 80,746 | 0.8100 | 4.3490 | 22.34 |
M2 | y = 0.7931x + 4.3725 | 0.9548 | 58,500 | 0.7931 | 4.3725 | 23.58 |
M3 | y = 0.7839x + 4.0943 | 0.9610 | 38,600 | 0.7839 | 4.0943 | 12.43 |
M4 | y = 0.7506x + 4.1930 | 0.9402 | 54,000 | 0.7506 | 4.1930 | 15.60 |
M5 | y = 0.6883x + 4.3553 | 0.9361 | 63,000 | 0.6883 | 4.3553 | 22.66 |
M6 | y = 0.8479x + 3.9275 | 0.9640 | 21,200 | 0.8479 | 3.9275 | 8.46 |
M9 | y = 0.8100x + 4.2737 | 0.9640 | 67,897 | 0.8100 | 4.2737 | 18.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfei, S.; Giordani, P.; Zuccari, G. Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine. Int. J. Mol. Sci. 2024, 25, 5009. https://doi.org/10.3390/ijms25095009
Alfei S, Giordani P, Zuccari G. Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine. International Journal of Molecular Sciences. 2024; 25(9):5009. https://doi.org/10.3390/ijms25095009
Chicago/Turabian StyleAlfei, Silvana, Paolo Giordani, and Guendalina Zuccari. 2024. "Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine" International Journal of Molecular Sciences 25, no. 9: 5009. https://doi.org/10.3390/ijms25095009
APA StyleAlfei, S., Giordani, P., & Zuccari, G. (2024). Synthesis and Physicochemical Characterization of Gelatine-Based Biodegradable Aerogel-like Composites as Possible Scaffolds for Regenerative Medicine. International Journal of Molecular Sciences, 25(9), 5009. https://doi.org/10.3390/ijms25095009