Inhibition of the Sodium–Calcium Exchanger Reverse Mode Activity Reduces Alcohol Consumption in Rats
"> Figure 1
<p>SN-6 and ethanol intake. SN-6 (3 or 10 mg/kg) was orally administered 30 min before exposure to water and 7.5% ethanol. At a dose of 3 mg/kg (p.o.), SN-6 significantly reduced ethanol intake in male (panel (<b>B</b>)) but not female (panel (<b>A</b>)) rats 2 h after exposure to water and 7.5% ethanol. Additionally, at a dose of 10 mg/kg (p.o.), SN-6 significantly reduced ethanol intake in both male and female rats; notably, the effect was more prominent in females and lasted longer (panels (<b>C</b>,<b>D</b>)). The filled dots represent individual data points. The data are presented as mean ± S.E.M for alcohol intake, and the analysis was performed using one-way repeated measures ANOVA followed by Bonferroni post hoc correction (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001, n = 12).</p> "> Figure 2
<p>SN-6 and ethanol preference. SN-6 (3 or 10 mg/kg) was orally administered 30 min before exposure to water and 7.5% ethanol. When administered at 3 mg/kg (p.o.), SN-6 did not affect ethanol preference in either male or female rats (panels (<b>A</b>,<b>B</b>)). However, SN-6 at 10 mg/kg (p.o.) significantly decreased ethanol preference in female rats but not in male rats 24 h after exposure to water and 7.5% ethanol (panels (<b>C</b>,<b>D</b>)). The filled dots represent individual data points. The data are presented as percentages (%) and were analyzed using one-way repeated measures ANOVA followed by Bonferroni post hoc correction (* <span class="html-italic">p</span> <0.05, n = 12).</p> "> Figure 3
<p>KB-R7943 and ethanol intake. KB-R7943 (3 or 10 mg/kg) was orally administered 30 min before exposure to water and 7.5% ethanol. KB-R7943 at the dose of 3 mg/kg (p.o.) treatment significantly decreased ethanol intake in female but not in male rats (<b>A</b>,<b>B</b>). Similarly, KB-R7943 at the dose of 10 mg/kg (p.o.) significantly decreased ethanol intake in female rats but not males (<b>C</b>,<b>D</b>). The filled dots represent individual data points. The data are presented as mean ± S.E.M and were analyzed using one-way repeated measures ANOVA followed by Bonferroni post hoc correction (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, n = 12).</p> "> Figure 4
<p>KB-R7943 and ethanol preference. KB-R7943 (3 or 10 mg/kg) was orally administered 30 min before exposure to water and 7.5% ethanol. When administered at a dose of 3 mg/kg (p.o.), KB-R7943 significantly decreased ethanol intake in males (panel (<b>B</b>)) but not in female rats (panel (<b>A</b>)). KB-R7943 at a dosage of 10 mg/kg (p.o.) did alter ethanol preference in female and male rats (panels (<b>C</b>,<b>D</b>)). The filled dots represent individual data points. The data are presented as percentages (%) and were analyzed using one-way repeated measures ANOVA followed by Bonferroni post hoc correction.</p> "> Figure 5
<p>NCX inhibitors and water intake. SN-6 or KB-R7843 (3 or 10 mg/kg, p.o.) was orally administered 30 min before exposure to water and 7.5% ethanol. There were no considerable effects on water intake in female and male rats after SN-6 treatment (panels (<b>A</b>–<b>D</b>)). Similarly, the KB-R7943 treatment did not alter water intake in female and male rats (panels (<b>E</b>–<b>H</b>)). The filled dots represent individual data points. The data are presented as mean ± S.E.M for water intake and analyzed using one-way repeated measures ANOVA followed by Bonferroni post hoc correction (n = 12).</p> "> Figure 6
<p>Summary and putative mechanisms. NCX activity results in Ca<sup>2+</sup> influx in reverse mode and Ca<sup>2+</sup> efflux during forward mode (<b>A</b>). Administration of NCX reverse mode activity inhibitors (<b>B</b>,<b>C</b>) decreases intracellular [Ca<sup>2+</sup>] levels, reducing Ca<sup>2+</sup>-dependent mechanisms (and activating Na<sup>+</sup>-dependent mechanisms), potentially leading to decreased ethanol consumption and preference.</p> "> Figure 7
<p>Experimental design. During the experiments, adult male and female rats were given a choice between water and 7.5% ethanol thrice a week (Mondays, Wednesdays, and Fridays) using a two-bottle choice paradigm. After four weeks of training, rats were given the vehicle (control solution) on Mondays, SN-6 or KB-R7943 on Wednesdays, and the vehicle (washout solution) on Fridays.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Overall Effects of SN-6 on Ethanol and Water Consumption
2.1.1. Ethanol Intake
2.1.2. Preference
2.1.3. Water
2.2. Overall Effects of KB-R7934 on Ethanol and Water Consumption
2.2.1. Ethanol Intake
2.2.2. Preference
2.2.3. Water
2.3. Effects of SN-6 Administration on Ethanol Intake and Preference
2.4. Effects of Administration KB-R7943 on Ethanol Intake and Preference
2.5. Effects of SN-6 or KB-R7943 on Water Intake
2.6. Evaluation of Proestrus and Estrus Stages
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Animals
5.2. Ethanol Consumption Paradigm: Intermittent Alcohol Access Two-Bottle Choice Paradigm
5.3. Drugs and Solutions
5.4. Vaginal Impedance
5.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Alcohol and Health; Poznyak, V., Rekve, D., Eds.; World Health Organization: Geneva, Switzerland, 2018; pp. 1–450. [Google Scholar]
- Akbar, M.; Egli, M.; Cho, Y.E.; Noronha, A. Medications for alcohol use disorders: An overview. Pharmacol. Ther. 2018, 185, 64–85. [Google Scholar] [CrossRef] [PubMed]
- Babor, T.F.; Casswell, S.; Graham, K.; Huckle, T.; Livingston, M.; Rehm, J.; Room, R.; Rossow, I.; Sornpaisarn, B. Alcohol: No ordinary commodity-a summary of the third edition. Addiction 2022, 117, 3024–3036. [Google Scholar] [CrossRef] [PubMed]
- Koob, G. Alcohol use disorder treatment: Problems and solutions. Ann. Rev. Pharmacol. Toxicol. 2024, 64, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Schuckit, M.A. Recognition and management of withdrawal delirium (delirium tremens). New Engl. J. Med. 2014, 371, 2109–2113. [Google Scholar] [CrossRef] [PubMed]
- Jesse, S.; Brathen, G.; Ferrara, M.; Keindl, M.; Ben-Menachem, E.; Tanasescu, R.; Brodtkorb, E.; Hillbom, M.; Leone, M.A.; Ludolph, A.C. Alcohol withdrawal syndrome: Mechanisms, manifestations, and management. Acta Neurol. Scand. 2017, 135, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Singla, R.; Maheshwari, O.; Fontaine, C.J.; Gil-Mohapel, J. Alcohol use disorder: Neurobiology and therapeutics. Biomedicines 2022, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.J.; Heyser, C.J. Alcohol use disorder: The role of medication in recovery. Alcohol Res. 2021, 41, 7. [Google Scholar] [CrossRef]
- Gupta, A.; Khan, H.; Kaur, A.; Singh, T.G. Novel targets explored in the treatment of alcohol withdrawal syndrome. CNS Neurol. Disord. Drug Targets 2021, 20, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Raghay, J.G.; Kumar, H.; Ji, L.; Vemuri, K.; Makriyannis, A.; Suh, J.; Leonard, M.Z.; Dang, V.; Ty, C.; Marandola, S.; et al. The neutral CB1 antagonist AM6527 reduces ethanol seeking, binge-like consumption, reinforcing, and withdrawal effects in male and female mice. Psychopharmacology 2024, 241, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Aranas, C.; Edvardsson, C.E.; Shevchouk, O.T.; Zhang, Q.; Witley, S.; Skoldheden, S.B.; Zentveld, L.; Vallof, D.; Tufvesson-Alm, M.; Jerlhag, E. Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats. eBioMedicine 2023, 93, 104642. [Google Scholar] [CrossRef] [PubMed]
- Decker, S.; Davis, G.; Vahora, I.; Vukovic, A.; Patel, P.; Suryanarayanan, A. Desformylflustrabromine (dFBr), a positive allosteric modulator of a4b2 nicotinic acetylcholine receptors decreases voluntary ethanol consumption and preference in male and female Sprague-Dawley rats. PLoS ONE 2022, 17, e0273715. [Google Scholar] [CrossRef] [PubMed]
- Domi, E.; Domi, A.; Adermark, L.; Heilig, M.; Augier, E. Neurobiology of alcohol seeking behavior. J. Neurochem. 2021, 157, 1585–1614. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, V.A.; Walter, N.A.R.; Shnitko, T.A.; Newman, N.; Diem, K.; Vanderhooft, L.; Hunt, H.; Grant, K.A. Mifepristone decreases chronic voluntary ethanol consumption in rhesus macaques. J. Pharmacol. Exp. Ther. 2020, 375, 258–267. [Google Scholar] [CrossRef]
- Borruto, A.M.; Fotio, Y.; Stopponi, S.; Brunori, G.; Petrella, M.; Caputi, F.F.; Romualdi, P.; Candeletti, S.; Narendran, R.; Rorick-Kehn, L.M.; et al. NOP receptor antagonism reduced alcohol drinking in male and female rats through mechanisms involving the central amygdala and ventral tegmental area. Br. J. Pharmacol. 2020, 177, 1525–1537. [Google Scholar] [CrossRef] [PubMed]
- Nieto, S.J.; Quave, C.B.; Kosten, T.A. Naltrexone alters alcohol self-administration behaviors and hypothalamic-pituitary-adrenal axis activity in a sex-dependent manner in rats. Pharmacol. Biochem. Behav. 2018, 167, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Touchette, J.C.; Maertens, J.J.; Mason, M.M.; O’Rouke, K.Y.; Lee, A.M. The nicotinic receptor drug sazetidine-A reduces alcohol consumption in mice without affecting concurrent nicotine consumption. Neuropharmacology 2018, 133, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, E.R.; Dilley, J.E.; Froehlicj, J.C. Co-administration of low-dose naltrexone and bupropion reduces alcohol drinking in alcohol-preferring (P) rats. Alcohol. Clin. Exp. Res. 2018, 42, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Blednov, Y.A.; Costa, A.J.D.; Tarbox, T.; Ponomareva, O.; Messing, R.O.; Harris, R.A. Apremilast alters behavioral responses to ethanol in mice: I. reduced consumption and preference. Alcohol. Clin. Exp. Res. 2018, 42, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Blednov, Y.A.; Black, M.; Benavidez, J.M.; Stamatakis, E.E.; Harris, R.A. PPAR agonist: I. role of receptor subunits in alcohol consumption in male and female mice. Alcohol. Clin. Exp. Res. 2018, 40, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef] [PubMed]
- N’Gouemo, P. Voltage-sensitive calcium channels in the brain: Relevance to alcohol intoxication and withdrawal. Handb. Exp. Pharmacol. 2018, 248, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Fadda, F.; Garau, B.; Colombo, G.; Gessa, G.L. Isradipine and Other Calcium Channel Antagonists Attenuate Ethanol Consumption in Ethanol-Preferring Rats. Alcohol. Clin. Exp. Res. 1992, 16, 449–452. [Google Scholar] [CrossRef] [PubMed]
- De Beun, R.; Schneider, R.; Klein, A.; Lohmann, A.; De Vry, J. Effects of Nimodipine and Other Calcium Channel Antagonists in Alcohol-Preferring AA Rats. Alcohol 1996, 13, 263–271. [Google Scholar] [CrossRef] [PubMed]
- De Beun, R.; Schneider, R.; Klein, A.; Lohmann, A.; Schreiber, R.; De Vry, J. The calcium channel agonist BAY k 8644 reduces ethanol intake and preference in alcohol-preferring AA rats. Psychopharmacology 1996, 127, 302–310. [Google Scholar] [CrossRef]
- Su, J.-J.; Qi, G.-Y.; Yang, N.; Zhang, J. Progress in the physiology and pathophysiological functions of sodium-calcium exchangers. Acta Physiol. Sin. 2014, 66, 241–251. [Google Scholar]
- Khananshvili, D. Structure-based function and regulation of NCX variants: Update and challenges. Int. J. Mol. Sci. 2022, 24, 61. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, T. Forefront of Na+/Ca2+ exchanger studies: Molecular pharmacology of Na+/Ca2+ exchange inhibitors. J. Pharmacol. Sci. 2004, 96, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Quansah, H.; N’Gouemo, P. Amiloride and SN-6 Suppress Audiogenic Seizure Susceptibility in Genetically Epilepsy-Prone Rats. CNS Neurosci. Ther. 2014, 20, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.; Akinfiresoye, L.R.; N’Gouemo, P. Inhibition of the Sodium Calcium Exchanger Suppresses Alcohol Withdrawal-Induced Seizure Susceptibility. Brain Sci. 2021, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Akinfiresoye, L.R.; Newton, J.; Suman, S.; Datta, K.; N’Gouemo, P. Targeted Inhibition of Upregulated Sodium-Calcium Exchanger in Rat Inferior Colliculus Suppresses Alcohol Withdrawal Seizures. Mol. Neurobiol. 2023, 60, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Arakawa, N.; Takuma, K.; Kishida, Y.; Kawasaki, Y.; Sakaue, M.; Takahashi, K.; Takahashi, T.; Suzuki, T.; Ota, T.; et al. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 2001, 298, 249–256. [Google Scholar] [PubMed]
- Miyata, A.; Zipes, D.P.; Hall, S.; Rubart, M. KB-R7943 prevents acute, atrial fibrillation-induced shortening of atrial refractoriness in anesthetized dogs. Circulation 2002, 106, 1410–1419. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Irizarry, J.K.; Zallar, L.J.; Levine, O.B.; Skelly, M.J.; Boyce, J.E.; Barney, T.; Kopyto, R.; Pleil, K.E. Sex differences in binge alcohol drinking and the behavioral consequences of protracted abstinence in C57BL/6J mice. Biol. Sex. Differ. 2023, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Radke, A.K.; Sneddon, A.E.; Frasier, R.M.; Hopf, F.W. Recent perspective on sex differences in compulsion-like and binge alcohol drinking. Int. J. Mol. Sci. 2021, 22, 3788. [Google Scholar] [CrossRef]
- Priddy, B.M.; Carmack, S.A.; Thomas, L.C.; Vendruscolo, J.C.M.; Koob, G.F.; Vendruscolo, L.F. Sex, strain, and estrous cycle influences on alcohol drinking in rats. Pharmacol. Biochem. Behav. 2017, 152, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Flores-Bonilla, A.; Richardson, H.N. Sex differences in the neurobiology of alcohol disorder. Alcohol Res. 2020, 40, 04. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S.; Thompson, W.; Calderara, G. Molecular mechanisms of sex differences in epilepsy and seizure susceptibility in chemical, genetic and acquired epilepsy. Neurosci. Lett. 2021, 750, 135753. [Google Scholar] [CrossRef]
- Savic, I.; Engel, J., Jr. Structural and functional correlates of epileptogenesis—Does gender matter? Neurobiol. Dis. 2014, 70, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Jaurez, B.; Morel, C.; Ku, S.M.; Liu, Y.; Zhang, H.; Montgomery, S.; Gregoire, H.; Ribeiro, E.; Crumiller, M.; Roman-Ortiz, C.; et al. Midbrain circuit regulation of individual alcohol drinking behaviors in mice. Nat. Commun. 2017, 8, 2220. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Noronha, A.; Morikawa, H.; Alvarez, V.A.; Stuber, G.D.; Szumlinski, K.K.; Kash, T.L.; Roberto, M.; Wilcox, M.V. New insights on neurobiological mechanisms underlying alcohol addiction. Neuropharmacology 2013, 67, 223–232. [Google Scholar] [CrossRef]
- Vandergrift, B.J.; You, C.; Satta, R.; Brodie, M.S.; Lasek, A.W. Estradiol increases the sensitivity of ventral tegmental area dopaminergic neurons to dopamine and ethanol. PLoS ONE 2017, 12, e0187698. [Google Scholar] [CrossRef]
- Vandergrift, B.J.; Hildebrand, E.R.; Satta, R.; Tai, R.; He, D.; You, C.; Chen, H.; Xu, P.; Coles, C.; Brodie, M.S.; et al. Estrogen receptor α regulates ethanol excitation of ventral tegmental area neurons and binge drinking in female mice. J. Neurosci. 2020, 40, 5196–5207. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Michaelis, M.L.; Michaelis, E.K. Effects of chronic ethanol treatment on the expression of calcium transport carriers and NMDA/glutamate receptor proteins in brain synaptic membranes. J. Neurochem. 1997, 69, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, M.L.; Michaelis, E.K.; Numley, E.W.; Galton, N. Effects of chronic alcohol administration on synaptic membrane Na+-Ca2+ exchange activity. Brain Res. 1987, 414, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Bures, Z.; Bartosova, J.; Lindovsky, J.; Chumak, T.; Popelar, J.; Syka, J. Acoustically enrichment during early postnatal development changes response properties of inferior colliculus neurons in rats. Eur. J. Neurosci. 2014, 40, 3674–3683. [Google Scholar] [CrossRef]
- De Oliveira, R.A.; Colombo, A.C.; Muthuraju, S.; Almada, R.C.; Brandao, M.L. Dopamine D2-like receptors modulate unconditioned fear: Role of inferior colliculus. PLoS ONE 2014, 9, e104228. [Google Scholar] [CrossRef] [PubMed]
- Vander Weele, C.M.; Siciliano, C.A.; Matthews, G.A.; Namburi, P.; Izadmehr, E.M.; Espinel, I.C.; Nieh, E.H.; Schut, E.H.S.; Padilla-Coreano, N.; Burgos-Robles, A.; et al. Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 2018, 563, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Papa, M.; Canitano, A.; Boscia, F.; Castaldo, P.; Sellitti, S.; Porzig, H.; Taglialatela, M.; Annunziato, L. Differential expression of Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J. Comp. Neurol. 2003, 46, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Calvin, R.A. Regional differences in expression of transcripts for Na+/Ca2+ exchanger isoforms in rat brain. Brain Res. Mol. Brain Res. 1997, 50, 285–292. [Google Scholar] [CrossRef]
- Montgomery, S.E.; Li, L.; Russo, S.J.; Calipari, E.S.; Nestler, E.J.; Morel, C.; Han, M.-H. Mesolimbic neural response dynamics predict future individual alcohol drinking in mice. Biol. Psychiatry 2023, in press. [CrossRef] [PubMed]
- Kuiper, L.B.; Roberts, J.B.; Estave, P.M.; Leo, D.; Gainetdinov, R.R.; Jones, S.R. Patterns of ethanol intake in male rats with partial dopamine transporter deficiency. Genes Brain Behav. 2023, 22, e12847. [Google Scholar] [CrossRef] [PubMed]
- Dahchour, A.; Ward, R.J. Changes in brain dopamine extracellular concentration after ethanol administration; rat microdialysis studies. Alcohol 2022, 57, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Hopf, F.W.; Bowers, M.S.; Chang, S.-J.; Chen, B.T.; Martin, M.; Seif, T.; Cho, S.L.; Tye, K.; Bonci, A. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 2010, 65, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.E.; Griffin, W.C., 3rd; Lopez, M.F.; Nimitvilai, S.; Cannady, R.; McGuier, N.S.; Chesler, E.J.; Miles, M.F.; Williams, R.W.; Randall, P.K.; et al. KCNN genes that encode small-conductance Ca2+-activated K+ channels influence alcohol and drug addiction. Neuropsychopharmacology 2015, 40, 1928–1939. [Google Scholar] [CrossRef] [PubMed]
- Garber, J.C.; Barbee, R.W.; Bielitzki, J.T.; Clayton, L.A.; Donovan, J.C.; Kohn, D.F.; Lipman, N.S.; Locke, P.; Melcher, J.; Quimby, F.W.; et al. Guide for the Care and Use of Laboratory Animals, Eighth Edition. In National Research Council of The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- Silva-Cardoso, G.K.; N’Gouemo, P. Influence of Inherited Seizure Susceptibility on Intermittent Voluntary Alcohol Consumption and Alcohol Withdrawal Seizures in Genetically Epilepsy-Prone Rats (GEPR-3s). Brain Sci. 2024, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Carnicella, S.; Ron, D.; Barak, S. Intermittent ethanol access schedule in rats as a preclinical model for alcohol abuse. Alcohol 2014, 48, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.C. Animal models of excessive alcohol consumption in rodent. Curr. Top. Behav. Neurosci. 2013, 13, 355–377. [Google Scholar] [PubMed]
- Chesney, K.L.; Chang, C.; Bryda, E.C. Using Vaginal Impedance Measurement to Identify Proestrus in Rats Given Luteinizing Hormone Releasing Hormone (LHRH) Agonist. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 282–287. [Google Scholar] [CrossRef]
- Ajayi, A.F.; Akhigbe, R.E. Staging of the estrous cycle and induction of estrus in experimental rodents: An update. Fertil. Res. Pract. 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed]
SN-6 | ||||
---|---|---|---|---|
Ethanol intake | 2 h | 24 h | ||
Factor sex | F1,132 = 46.50 | p < 0.0001 | F1,132 = 59.4 | p < 0.0001 |
Factor treatment | F2,132 = 4.34 | p = 0.01 | F1,132 = 3.009 | p = 0.05 |
Factor SN-6 doses | F1,132 = 1.63 | p = 0.20 | F1,132 = 1.09 | p = 0.29 |
Interaction sex and SN-6 | F1,132 = 3.80 | p = 0.053 | F 1,132 = 6.88 | p = 0.009 |
Interaction SN-6 and treatment | F2,132 = 0.030 | p = 0.73 | F2,132 = 0.297 | p = 0.74 |
Interaction sex and treatment | F2,132 = 1.82 | p = 0.16 | F2,132 = 0.18 | p = 0.83 |
Interaction sex, SN-6 doses, and treatment | F2,132 = 1.32 | p = 0.26 | F2,132 = 1.24 | p = 0.29 |
Preference | 2 h | 24 h | ||
Factor sex | F1,132 = 9.54 | p = 0.002 | F1,132 = 3.29 | p = 0.07 |
Factor treatment | F2,132 = 0.04 | p = 0.95 | F2,132 = 1.71 | p = 0.184 |
Factor SN-6 doses | F1,132= 65.08 | p < 0.001 | F 1,132 = 218.6 | p < 0.001 |
Interaction sex and SN-6 | F1,132 = 0.13 | p = 0.71 | F1,132 = 0.73 | p = 0.39 |
Interaction SN-6 and treatment | F2,132 = 6.29 | p = 0.002 | F2,132 = 1.47 | p = 0.23 |
Interaction sex and treatment | F2,132 = 0.90 | p = 0.40 | F2,132 = 0.24 | p = 0.78 |
Interaction sex, SN-6, and treatment | F2,132 = 3.03 | p = 0.05 | F2,132 = 0.31 | p = 0.72 |
Water | 2 h | 24 h | ||
Factor sex | F1,132 = 4.55 | p = 0.034 | F1,132 = 3.48 | p = 0.06 |
Factor treatment | F2,132 = 0.31 | p = 0.73 | F2,132 = 0.66 | p = 0.51 |
Factor SN-6 doses | F1,132= 0.50 | p = 0.47 | F1,132= 1.74 | p = 0.18 |
Interaction sex and SN-6 | F1,132 = 0.54 | p = 0.45 | F1,132 = 0.84 | p = 0.30 |
Interaction SN-6 and treatment | F2,132 = 0.41 | p = 0.66 | F2,132 = 0.94 | p = 0.39 |
Interaction sex and treatment | F2,132 = 0.33 | p = 0.71 | F 2,132 = 0.11 | p = 0.88 |
Interaction sex, SN-6, and treatment | F2,132 = 0.33 | p = 0.71 | F2,132 = 0.64 | p = 0.52 |
KB-R7943 | ||||
---|---|---|---|---|
Ethanol intake | 2 h | 24 h | ||
Factor sex | F1,132 = 32.77 | p < 0.0001 | F1,132 = 52.11 | p < 0.0001 |
Factor treatment | F2,132 = 2.642 | p = 0.07 | F2,132 = 4.43 | p = 0.01 |
Factor KB-R7943 doses | F1,132= 0.429 | p = 0.513 | F1,132= 1.50 | p = 0.22 |
Interaction sex and KB-R7943 | F1,132 = 1.085 | p = 0.299 | F1,132 = 0.002 | p = 0.87 |
Interaction KB-R7943 and treatment | F2,132 = 0.008 | p = 0.99 | F2,132 = 0.007 | p = 0.99 |
Interaction sex and treatment | F2,132 = 0.33 | p = 0.71 | F2,132 = 2.08 | p = 0.12 |
Interaction sex, KB-R7943, and treatment | F2,132 = 0.59 | p = 0.553 | F2,132 = 0.25 | p = 0.77 |
Preference | 2 h | 24 h | ||
Factor sex | F1,132 = 6.74 | p = 0.01 | F1,132 = 4.74 | p = 0.031 |
Factor treatment | F2,132 = 0.04 | p = 0.96 | F2,132 = 0.29 | p = 0.74 |
Factor KB-R7943 doses | F1,132 = 13.80 | p = 0.0002 | F1,132 = 3.66 | p = 0.057 |
Interaction sex and KB-R7943 | F1,132 = 6.74 | p = 0.01 | F1,132 = 4.74 | p = 0.03 |
Interaction KB-R7943 and treatment | F2,132 = 0.007 | p = 0.99 | F2,132 = 0.22 | p = 0.79 |
Interaction sex and treatment | F2,132 = 0.31 | p = 0.73 | F2,132 = 0.03 | p = 0.96 |
Interaction sex, SN-6, and treatment | F2,132 = 0.31 | p = 0.73 | F2,132 = 0.036 | p = 0.96 |
Water | 2 h | 24 h | ||
Factor sex | F1,132 = 9.17 | p = 0.002 | F1,132 = 3.57 | p = 0.06 |
Factor treatment | F2,132 = 3.80 | p = 0.02 | F2,132 = 0.41 | p = 0.66 |
Factor KB-R7943 doses | F1,132 = 0.63 | p = 0.42 | F1,132= 1.81 | p = 0.18 |
Interaction sex and KB-R7943 | F1,132 = 0.00009 | p = 0.99 | F1,132 = 0.109 | p = 0.74 |
Interaction KB-R7943 and treatment | F2,132 = 1.06 | p = 0.34 | F 2,132 = 0.59 | p = 0.55 |
Interaction sex and treatment | F2,132 = 1.37 | p = 0.25 | F2,132 = 0.14 | p = 0.86 |
Interaction sex, SN-6, and treatment | F2,132 = 0.32 | p = 0.72 | F2,132 = 0.056 | p = 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Cardoso, G.K.; N’Gouemo, P. Inhibition of the Sodium–Calcium Exchanger Reverse Mode Activity Reduces Alcohol Consumption in Rats. Int. J. Mol. Sci. 2024, 25, 4132. https://doi.org/10.3390/ijms25074132
Silva-Cardoso GK, N’Gouemo P. Inhibition of the Sodium–Calcium Exchanger Reverse Mode Activity Reduces Alcohol Consumption in Rats. International Journal of Molecular Sciences. 2024; 25(7):4132. https://doi.org/10.3390/ijms25074132
Chicago/Turabian StyleSilva-Cardoso, Gleice Kelli, and Prosper N’Gouemo. 2024. "Inhibition of the Sodium–Calcium Exchanger Reverse Mode Activity Reduces Alcohol Consumption in Rats" International Journal of Molecular Sciences 25, no. 7: 4132. https://doi.org/10.3390/ijms25074132
APA StyleSilva-Cardoso, G. K., & N’Gouemo, P. (2024). Inhibition of the Sodium–Calcium Exchanger Reverse Mode Activity Reduces Alcohol Consumption in Rats. International Journal of Molecular Sciences, 25(7), 4132. https://doi.org/10.3390/ijms25074132