miR-30c-5p Gain and Loss of Function Modulate Sciatic Nerve Injury-Induced Nucleolar Stress Response in Dorsal Root Ganglia Neurons
<p>miR-30c-5p modulation effects on the chromatolysis developed by dorsal root ganglia neurons after spared nerve injury. (<b>A</b>–<b>H</b>) Dissociated dorsal root ganglia (DRG) neurons double stained with propidium iodide (PI, red) and Lamin B1 (green). Note the prominent NBs and round nuclei in sham rats treated with vehicle (<b>A</b>,<b>E</b>), miR-30c-5p mimic (<b>B</b>), or miR-30c-5p inhibitor (<b>F</b>), reflecting a normal distribution of the protein synthesis machinery and nuclear location. DRG neurons from day-5 (<b>C</b>) or day-10 SNI rats (<b>G</b>) exhibited central chromatolysis with dispersion and severe loss of NBs in the centre of the neuronal body, accumulations of Nissl substance at the marginal cytoplasm, and peripheral displacement of the nucleus, which were aggravated by treatment with miR-30c-5p mimic (<b>D</b>). Administration of miR-30c-5p inhibitor reduced the chromatolytic response observed after SNI (<b>H</b>). (<b>I</b>,<b>J</b>) Percentage of neurons showing chromatolysis. (<b>K</b>,<b>L</b>) Percentage of neurons showing eccentricity of the nucleus. The percentage of damaged neurons and eccentric nuclei was determined in 1000 neurons per rat (n = 3 rats per group). ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 vs. Sham; # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01, ### <span class="html-italic">p</span> < 0.001 vs. SNI (Two-way ANOVA followed by the Bonferroni post hoc test). Scale bar: 5 µm.</p> "> Figure 2
<p>Electron micrographs illustrating the ultrastructural characteristics of dorsal root ganglia neurons after administration of miR-30c-5p mimic or inhibitor to SNI rats. In dorsal root ganglia (DRG) neurons from sham (<b>A</b>) and SNI rats treated with miR-30c-5p inhibitor (<b>C</b>), the most prominent organelles are the NBs, composed of RER cisterns (<b>C</b>, arrow) and rosettes of free polyribosomes (<b>A</b>, arrow). Bundles of neurofilaments (NF) interspersed between NBs, profiles of Golgi complexes, and mitochondria are also apparent. In DRGs from SNI rats treated with vehicle (<b>B</b>) or miR-30c-5p mimic (<b>D</b>), the NBs disaggregated, leaving an extensive cleared chromatolytic area in the centre of the cell body, free of NBs. The increased number of NFs and the abundance of mitochondria (M)—some of which are very small (<0.5 µm)—in chromatolytic areas are also noteworthy. Scale bar: 5 µm.</p> "> Figure 3
<p>miR-30c-5p modulation effects on the nucleolar organisation of dorsal root ganglion neurons after spared nerve injury. (<b>A</b>–<b>H</b>) Dissociated dorsal root ganglia (DRG) neurons double immunostained for upstream binding factor (UBF, green) and Lamin B1 (red). DRG neurons from sham rats treated with vehicle (<b>A</b>,<b>E</b>), miR-30c-5p mimic (<b>B</b>), or miR-30c-5p inhibitor (<b>F</b>), and day-10 SNI rats treated with miR-30c-5p inhibitor (<b>H</b>) presented a normal UBF distribution as small dots corresponding to FCs. In contrast, DRG neurons from day-5 SNI rats treated with vehicle (<b>C</b>) or miR-30c-5p mimic (<b>D</b>) and day-10 SNI rats treated with vehicle (<b>G</b>) showed segregation of UBF nucleolar staining into one or a few giant FCs. (<b>I</b>,<b>J</b>) The percentage of neurons showing UBF-positive giant FCs was determined in 1000 neurons per rat (n = 3 rats per group); ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 vs. Sham; ### <span class="html-italic">p</span> < 0.001 vs. SNI (Two-way ANOVA followed by the Bonferroni post hoc test). Scale bar: 5 µm.</p> "> Figure 4
<p>Representative electron micrographs illustrating the ultrastructural nucleolar characteristics of dorsal root ganglia neurons after administration of miR-30c-5p mimic or inhibitor to SNI rats. Sham (<b>A</b>) and SNI rats treated with miR-30c-5p inhibitor (<b>C</b>) exhibit the typical nucleolar organisation of DRG neurons, characterised by the presence of numerous small-sized fibrillar centres (*, FCs), surrounded by a ring of dense fibrillar component (DFC), and areas of granular component (GC), preferentially at the nucleolar periphery. SNI rats treated with vehicle (<b>B</b>) or with miR-30c-5p mimic (<b>D</b>) present severe nucleolar alterations, including the formation of enlarged FCs and segregation of large masses of GC and DFC at the nucleolar periphery. Scale bar: 2 µm.</p> "> Figure 5
<p>miR-30c-5p modulation effects on the number of Cajal bodies in dorsal root ganglion neurons after spared nerve injury. Representative images of dissociated DRG neurons immunolabeled for coilin (green) and counterstained with propidium iodide ((PI), red). Example of neurons showing 0 (<b>A</b>), 1 (<b>B</b>), and 2 (<b>C</b>) CBs. (<b>D</b>,<b>E</b>) Quantitative analysis of the percentage of neurons carrying 0, 1, or more than 2 CBs in each of our experimental groups. The number of CBs per neuron was determined in 1000 neurons per rat, in 3 rats of each group (sham; SNI + vehicle; SNI + miR-30c-5p inhibitor; SNI + miR-30c-5p mimic). The quantification analysis indicates that, regardless of the experimental condition, most neurons present 1 CB. There is a significant increase in the percentage of neurons showing more than 2 CBs in SNI rats treated with miR-30c-5p inhibitor. The proportion of neurons without CBs is significantly increased in SNI rats treated with vehicle or miR-30c-5p mimic. (<b>F</b>,<b>G</b>) Electron microscopy of CBs in DRG neurons from SNI rats treated with miR-30c-5p inhibitor showing 3 CBs (<b>F</b>) and a hypertrophic CB physically close to the nucleolus (<b>G</b>). * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.01 vs. Sham; ### <span class="html-italic">p</span> < 0.001 vs. SNI). (Two-way ANOVA followed by the Bonferroni post hoc test). Scale bar: 5 µm. Scale bar: 2 µm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Administration of a miR-30c-5p Mimic Aggravates the Chromatolytic Damage in DRG Neurons After SNI, While Injection of a miR-30c-5p Inhibitor Reduces It
2.2. Administration of a miR-30c-5p Mimic Aggravates the Nucleolar Stress Response in DRG Neurons After SNI, While Injection of a miR-30c-5p Inhibitor Prevents It
2.3. Effects of miR-30c-5p Modulation on the Cajal Bodies of DRG Neurons After SNI
3. Discussion
4. Materials and Methods
4.1. Animals
4.1.1. Neuropathic Pain Model
4.1.2. Treatment and Experimental Design
4.2. Microscopy Techniques
4.2.1. Immunofluorescence and Confocal Microscopy
4.2.2. Electron Microscopy
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, O.; Austin, S.K.; Khan, R.A.; Smith, B.H.; Torrance, N. Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain 2014, 155, 654–662, Erratum in Pain 2014, 155, 1907. [Google Scholar] [CrossRef] [PubMed]
- Bouhassira, D. Neuropathic pain: Definition, assessment and epidemiology. Rev. Neurol. 2019, 175, 16–25. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Binder, A.; Wasner, G. Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010, 9, 807–819. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef]
- Attal, N.; Bouhassira, D. Advances in the treatment of neuropathic pain. Curr. Opin. Neurol. 2021, 34, 631–637. [Google Scholar] [CrossRef]
- Jayakar, S.; Shim, J.; Jo, S.; Bean, B.P.; Singeç, I.; Woolf, C.J. Developing nociceptor-selective treatments for acute and chronic pain. Sci. Transl. Med. 2021, 13, eabj9837. [Google Scholar] [CrossRef]
- Kuner, R.; Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 2016, 18, 20–30, Erratum in Nat. Rev. Neurosci. 2017, 18, 158; Erratum in Nat. Rev. Neurosci. 2017, 18, 113. [Google Scholar] [CrossRef]
- Torvik, A. Central chromatolysis and the axon reaction: A reappraisal. Neuropathol. Appl. Neurobiol. 1976, 2, 423–432. [Google Scholar] [CrossRef]
- Palanca, A.; Casafont, I.; Berciano, M.T.; Lafarga, M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell. Mol. Life Sci. 2014, 71, 1961–1975. [Google Scholar] [CrossRef] [PubMed]
- Moon, L.D.F. Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Dev. Neurobiol. 2018, 78, 1011–1024. [Google Scholar] [CrossRef]
- Samson Osuntokun, O.; Grace Akingboye, B.; Olayiwola, G.; Adekemi Abayomi, T.; Oladele Ayoka, A. The impairment of motor coordination following chronic carbamazepine-levetiracetam combination treatment with evidence of corticocerebellar toxicity in male Wistar rats. Brain Res. 2021, 1767, 147565. [Google Scholar] [CrossRef]
- Sano, T.; Masuda, Y.; Yasuno, H.; Shinozawa, T.; Watanabe, T.; Kakehi, M. Blood Neurofilament Light Chain as a Potential Biomarker for Central and Peripheral Nervous Toxicity in Rats. Toxicol. Sci. 2021, 185, 10–18. [Google Scholar] [CrossRef]
- Zhvania, M.; Japaridze, N.; Tizabi, Y.; Sharikadze, I.; Pochkhidze, N.; Cheishvili, L. Anxiety and ultrastructural consequences of chronic mild stress in rats. Neurosci. Lett. 2022, 771, 136390. [Google Scholar] [CrossRef]
- Peters, A.; Palay, S.L.; deF. Webster, H. The Fine Structure of the Nervous System: Neurons and Their Supporting Cells; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Martin, L.J. Neuronal death in amyotrophic lateral sclerosis is apoptosis: Possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol. 1999, 58, 459–471. [Google Scholar] [CrossRef]
- Raska, I.; Shaw, P.J.; Cmarko, D. New insights into nucleolar architecture and activity. Int. Rev. Cytol. 2006, 255, 177–235. [Google Scholar] [CrossRef]
- Iarovaia, O.V.; Minina, E.P.; Sheval, E.V.; Onichtchouk, D.; Dokudovskaya, S.; Razin, S.V.; Vassetzky, Y.S. Nucleolus: A Central Hub for Nuclear Functions. Trends Cell Biol. 2019, 29, 647–659. [Google Scholar] [CrossRef]
- Lafontaine, D.L.; Riback, J.A.; Bascetin, R.; Brangwynne, C.P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 2021, 22, 165–182. [Google Scholar] [CrossRef]
- Boulon, S.; Westman, B.J.; Hutten, S.; Boisvert, F.M.; Lamond, A.I. The nucleolus under stress. Mol. Cell 2010, 40, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yang, J.; Yi, J. Nucleolar Stress: Hallmarks, sensing mechanism and diseases. Cell Stress 2018, 2, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Sirozh, O.; Saez-Mas, A.; Jung, B.; Zarzuela, E.; Rodrigo-Perez, S.; Ventoso, I.; Lafarga, V.; Fernandez-Capetillo, O. Nucleolar stress caused by arginine-rich peptides triggers a ribosomopathy and accelerates aging in mice. Mol. Cell 2024, 84, 1527–1540. [Google Scholar] [CrossRef]
- Rieker, C.; Engblom, D.; Kreiner, G.; Domanskyi, A.; Schober, A.; Stotz, S.; Neumann, M.; Yuan, X.; Grummt, I.; Schutz, G.; et al. Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. J. Neurosci. 2011, 31, 453–460. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, Y.J.; Ryu, H.; Kowall, N.W.; Ryu, H. Nucleolar dysfunction in Huntington’s disease. Biochim. Biophys. Acta 2014, 1842, 785–790. [Google Scholar] [CrossRef]
- Parlato, R.; Kreiner, G. Nucleolar activity in neurodegenerative diseases: A missing piece of the puzzle? J. Mol. Med. 2013, 91, 541–547. [Google Scholar] [CrossRef]
- Riancho, J.; Ruiz-Soto, M.; Villagrá, N.T.; Berciano, J.; Berciano, M.T.; Lafarga, M. Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1(G93A) Model of Amyotrophic Lateral Sclerosis. Front. Cell. Neurosci. 2014, 8, 346. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, H.; Xia, Q.; Li, K.; Li, K.; Jiang, X.; Xu, G.; Wang, G.; Ying, Z. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum. Mol. Genet. 2015, 24, 2426–2441. [Google Scholar] [CrossRef]
- Tapia, O.; Narcís, J.O.; Riancho, J.; Tarabal, O.; Piedrafita, L.; Calderó, J.; Berciano, M.T.; Lafarga, M. Cellular bases of the RNA metabolism dysfunction in motor neurons of a murine model of spinal muscular atrophy: Role of Cajal bodies and the nucleolus. Neurobiol. Dis. 2017, 108, 83–99. [Google Scholar] [CrossRef]
- Baltanás, F.C.; Berciano, M.T.; Tapia, O.; Narcis, J.O.; Lafarga, V.; Díaz, D.; Weruaga, E.; Santos, E.; Lafarga, M. Nucleolin reorganization and nucleolar stress in Purkinje cells of mutant PCD mice. Neurobiol. Dis. 2019, 127, 312–322. [Google Scholar] [CrossRef]
- Arogundade, O.A.; Nguyen, S.; Leung, R.; Wainio, D.; Rodriguez, M.; Ravits, J. Nucleolar stress in C9orf72 and sporadic ALS spinal motor neurons precedes TDP-43 mislocalization. Acta Neuropathol. Commun. 2021, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Memudu, A.E.; Adewumi, A.E. Alpha lipoic acid ameliorates scopolamine induced memory deficit and neurodegeneration in the cerebello-hippocampal cortex. Metab. Brain Dis. 2021, 36, 1729–1745. [Google Scholar] [CrossRef] [PubMed]
- Gąssowska-Dobrowolska, M.; Kolasa-Wołosiuk, A.; Cieślik, M.; Dominiak, A.; Friedland, K.; Adamczyk, A. Alterations in Tau Protein Level and Phosphorylation State in the Brain of the Autistic-Like Rats Induced by Prenatal Exposure to Valproic Acid. Int. J. Mol. Sci. 2021, 22, 3209. [Google Scholar] [CrossRef] [PubMed]
- Berciano, M.T.; Novell, M.; Villagra, N.T.; Casafont, I.; Bengoechea, R.; Val-Bernal, J.F.; Lafarga, M. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons. J. Struct. Biol. 2007, 158, 410–420. [Google Scholar] [CrossRef]
- Pena, E.; Berciano, M.T.; Fernandez, R.; Ojeda, J.L.; Lafarga, M. Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J. Comp. Neurol. 2001, 430, 250–263. [Google Scholar] [CrossRef]
- Mackey, E.A.; Spiro, D.; Wiener, J. A study of chromatolysis in dorsal root ganglia at the cellular level. J. Neuropathol. Exp. Neurol. 1964, 23, 508–526. [Google Scholar]
- Meller, K. Chromatolysis of dorsal root ganglia neurons studied by cryofixation. Cell Tissue Res. 1989, 256, 283–292. [Google Scholar]
- Delibaş, B.; Kaplan, S. The histomorphological and stereological assessment of rat dorsal root ganglion tissues after various types of sciatic nerve injury. Histochem. Cell Biol. 2024, 161, 145–163. [Google Scholar] [CrossRef]
- Tramullas, M.; Francés, R.; de la Fuente, R.; Velategui, S.; Carcelén, M.; García, R.; Llorca, J.; Hurlé, M.A. MicroRNA-30c-5p modulates neuropathic pain in rodents. Sci. Transl. Med. 2018, 10, eaao6299. [Google Scholar] [CrossRef]
- Francés, R.; Mata-Garrido, J.; de la Fuente, R.; Carcelén, M.; Lafarga, M.; Berciano, M.T.; García, R.; Hurlé, M.A.; Tramullas, M. Identification of Epigenetic Interactions between MicroRNA-30c-5p and DNA Methyltransferases in Neuropathic Pain. Int. J. Mol. Sci. 2022, 23, 13994. [Google Scholar] [CrossRef]
- Stoica, B.A.; Faden, A.I. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 2010, 7, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Palanca, A.; Casafont, I.; Berciano, M.T.; Lafarga, M. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim. Biophys. Acta 2014, 1842, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Verdun, D.; Roussel, P.; Thiry, M.; Sirri, V.; Lafontaine, D.L. The nucleolus: Structure/function relationship in RNA metabolism. Wiley Interdiscip. Rev. RNA 2010, 1, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, M.; Tapia, O.; Romero, A.M.; Berciano, M.T. Cajal bodies in neurons. RNA Biol. 2017, 14, 712–725. [Google Scholar] [CrossRef]
- Machyna, M.; Heyn, P.; Neugebauer, K.M. Cajal bodies: Where form meets function. Wiley Interdiscip. Rev. RNA 2013, 4, 17–34. [Google Scholar] [CrossRef]
- Wang, Q.; Sawyer, I.A.; Sung, M.H.; Sturgill, D.; Shevtsov, S.P.; Pegoraro, G.; Hakim, O.; Baek, S.; Hager, G.L.; Dundr, M. Cajal bodies are linked to genome conformation. Nat. Commun. 2016, 7, 10966. [Google Scholar] [CrossRef]
- Hetman, M.; Pietrzak, M. Emerging roles of the neuronal nucleolus. Trends Neurosci. 2012, 35, 305–314. [Google Scholar] [CrossRef]
- Trinkle-Mulcahy, L.; Sleeman, J.E. The Cajal body and the nucleolus: “In a relationship” or “It’s complicated”? RNA Biol. 2017, 14, 739–751. [Google Scholar] [CrossRef]
- Machyna, M.; Kehr, S.; Straube, K.; Kappei, D.; Buchholz, F.; Butter, F.; Ule, J.; Hertel, J.; Stadler, P.F.; Neugebauer, K.M. The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol. Cell 2014, 56, 389–399. [Google Scholar] [CrossRef]
- Massenet, S.; Bertrand, E.; Verheggen, C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol. 2017, 14, 680–692. [Google Scholar] [CrossRef]
- Johnson, I.P.; Sears, T.A. Target-dependence of sensory neurons: An ultrastructural comparison of axotomised dorsal root ganglion neurons with allowed or denied reinnervation of peripheral targets. Neuroscience 2013, 228, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Inceoglu, B.; Bettaieb, A.; Trindade da Silva, C.A.; Lee, K.S.; Haj, F.G.; Hammock, B.D. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proc. Natl. Acad. Sci. USA 2015, 112, 9082–9087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Yi, M.H.; Shin, N.; Baek, H.; Kim, S.; Kim, E.; Kwon, K.; Lee, S.; Kim, H.W.; Chul Bae, Y.; et al. Endoplasmic reticulum stress impairment in the spinal dorsal horn of a neuropathic pain model. Sci. Rep. 2015, 5, 11555. [Google Scholar] [CrossRef]
- Zundel, M.A.; Basturea, G.N.; Deutscher, M.P. Initiation of ribosome degradation during starvation in Escherichia coli. RNA 2009, 15, 977–983. [Google Scholar] [CrossRef]
- Kedersha, N.; Ivanov, P.; Anderson, P. Stress granules and cell signaling: More than just a passing phase? Trends Biochem. Sci. 2013, 38, 494–506. [Google Scholar] [CrossRef]
- Baltanás, F.C.; Casafont, I.; Weruaga, E.; Alonso, J.R.; Berciano, M.T.; Lafarga, M. Nucleolar disruption and Cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in Purkinje cells. Brain Pathol. 2011, 21, 374–388. [Google Scholar] [CrossRef]
- Dong, W.-T.; Long, L.-H.; Den, Q.; Liu, D.; Wang, J.L.; Wang, F.; Chen, J.-G. Mitochondrial fission drives neuronal metabolic burden to promotes stress susceptibility in male mice. Nat. Metab. 2023, 5, 2220–2236. [Google Scholar] [CrossRef]
- Maurel, M.; Chevet, E. Endoplasmic reticulum stress signaling: The microRNA connection. Am. J. Physiol. Cell Physiol. 2013, 304, C1117–C1126. [Google Scholar] [CrossRef]
- Mesitov, M.V.; Soldatov, R.A.; Zaichenko, D.M.; Malakho, S.G.; Klementyeva, T.S.; Sokolovskaya, A.A.; Kubatiev, A.A.; Mironov, A.A.; Moskovtsev, A.A. Differential processing of small RNAs during endoplasmic reticulum stress. Sci. Rep. 2017, 7, 46080. [Google Scholar] [CrossRef]
- McCool, M.A.; Bryant, C.J.; Baserga, S.J. MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem. Soc. Trans. 2020, 48, 595–612. [Google Scholar] [CrossRef]
- Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. [Google Scholar] [CrossRef] [PubMed]
- Politz, J.C.; Hogan, E.M.; Pederson, T. MicroRNAs with a nucleolar location. RNA 2009, 15, 1705–1715. [Google Scholar] [CrossRef]
- Li, Z.F.; Liang, Y.M.; Lau, P.N.; Shen, W.; Wang, D.K.; Cheung, W.T.; Xue, C.J.; Poon, L.M.; Lam, Y.W. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials. PLoS ONE 2013, 8, e70869. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Liu, H.; Laiho, M. Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio 2014, 4, 441–449. [Google Scholar] [CrossRef]
- Atwood, B.L.; Woolnough, J.L.; Lefevre, G.M.; Saint Just Ribeiro, M.; Felsenfeld, G.; Giles, K.E. Human Argonaute 2 Is Tethered to Ribosomal RNA through MicroRNA Interactions. J. Biol. Chem. 2016, 291, 17919–17928. [Google Scholar] [CrossRef]
- Reyes-Gutierrez, P.; Ritland Politz, J.C.; Pederson, T. A mRNA and cognate microRNAs localize in the nucleolus. Nucleus 2014, 5, 636–642. [Google Scholar] [CrossRef]
- Reza, A.M.M.T.; Yuan, Y.G. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021, 10, 110. [Google Scholar] [CrossRef]
- Bryant, C.J.; McCool, M.A.; Rosado González, G.T.; Abriola, L.; Surovtseva, Y.V.; Baserga, S.J. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res. 2024, 52, 1988–2011. [Google Scholar] [CrossRef]
- Decosterd, I.; Woolf, C.J. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 2000, 87, 149–158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francés, R.; Mata-Garrido, J.; Lafarga, M.; Hurlé, M.A.; Tramullas, M. miR-30c-5p Gain and Loss of Function Modulate Sciatic Nerve Injury-Induced Nucleolar Stress Response in Dorsal Root Ganglia Neurons. Int. J. Mol. Sci. 2024, 25, 11427. https://doi.org/10.3390/ijms252111427
Francés R, Mata-Garrido J, Lafarga M, Hurlé MA, Tramullas M. miR-30c-5p Gain and Loss of Function Modulate Sciatic Nerve Injury-Induced Nucleolar Stress Response in Dorsal Root Ganglia Neurons. International Journal of Molecular Sciences. 2024; 25(21):11427. https://doi.org/10.3390/ijms252111427
Chicago/Turabian StyleFrancés, Raquel, Jorge Mata-Garrido, Miguel Lafarga, María A. Hurlé, and Mónica Tramullas. 2024. "miR-30c-5p Gain and Loss of Function Modulate Sciatic Nerve Injury-Induced Nucleolar Stress Response in Dorsal Root Ganglia Neurons" International Journal of Molecular Sciences 25, no. 21: 11427. https://doi.org/10.3390/ijms252111427
APA StyleFrancés, R., Mata-Garrido, J., Lafarga, M., Hurlé, M. A., & Tramullas, M. (2024). miR-30c-5p Gain and Loss of Function Modulate Sciatic Nerve Injury-Induced Nucleolar Stress Response in Dorsal Root Ganglia Neurons. International Journal of Molecular Sciences, 25(21), 11427. https://doi.org/10.3390/ijms252111427