Insights into Acinetobacter baumannii AMA205’s Unprecedented Antibiotic Resistance
<p>Comparative genomics circular visualization of AMA205. AMA205 used as reference in BRIGS. (<b>A</b>) AMA205 chromosome comparison against ST79 complete genome. The inner circle shows the GC content and skew of the reference sequence. Blast comparisons with strains are shown ordered according to the observed phylogenetic distance, from inside (close) to the outside rings: AbH12O, AR_0063, AB30, AF-401, UC23022, and MRSN15313. (<b>B</b>) pAMA205_1 comparison against closest related plasmid available in GenBank. The inner circle shows the GC content of the reference sequence. Blast comparisons with strains are shown ordered according to the nucleotide identity and coverage, from inside (close) to the outside rings: pAba810CPb, pAba11510b, pIBAC_oxa58_20C15, and pAbCTX11. (<b>C</b>) pAMA205_2 comparison against closest related plasmid available in GenBank. The inner circle shows the GC content of the reference sequence. Blast comparisons with strains are shown ordered according to the nucleotide identity and coverage, from inside (close) to the outside rings: pAba810CPa, FDAARGOS724_p3, FDAARGOS1094_p2, p3_010053, and pXG_4K.</p> "> Figure 2
<p>Core-genome phylogenetic analysis of AMA205 and 246 ST79 <span class="html-italic">A. baumannii</span> genomes. The figure displays the maximum likelihood phylogeny of 247 <span class="html-italic">A. baumannii</span> sequences. The bootstrap method was used as a supporting method (1000 iterations). The molecular substitution model was GTR. The tree representation was carried out by iTOL. Red and blue branches represent A and B phylogenetic clusters, respectively. The country of isolation, OXA-23 (absence/presence), BAPS1 cluster, and sampling date are provided for each strain.</p> "> Figure 3
<p>Comparative analysis of ST79 (<b>A</b>) and CMY-6 (<b>B</b>) distribution in clinical isolates from around the world. #: number of cases reported.</p> "> Figure 4
<p>Comparison of genetic structure of GI-CMY genomic island. Gray bars, regions shared between isolates; red arrows, antibiotic resistances genes; green arrows, IS elements; blue arrows, class I integrase. The figure was created using EasyFig, version 2.2.2.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genomic and Phylogenomic Comparative Analysis of A. baumannii AMA205 Reveals a Distinct Location of ST79
2.2. AMA205 Exhibits Resistance to Almost All Tested Antibiotics, Including Cefiderocol
2.3. Genomic Studies Reveal the Presence of CMY-6 and Other Antimicrobial Resistance Genes in the AMA205 Genome
2.4. AMA205 Genomic Analysis Revealed the Presence of a Variety of Virulence Factors
3. Materials and Methods
3.1. Bacterial Isolates
3.2. Whole Genomic Sequencing (WGS)
3.3. Comparative Genomic Analysis
3.4. Antibiotic Susceptibility Testing (AST)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henley, S.J.; King, J.B.; German, R.R.; Richardson, L.C.; Plescia, M.; Centers for Disease Control & Prevention (CDC). Surveillance of screening-detected cancers (colon and rectum, breast, and cervix)—United States, 2004–2006. MMWR Surveill Summ. 2010, 59, 1–25. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/ss5909a1.htm (accessed on 22 October 2024). [PubMed]
- Appaneal, H.J.; Lopes, V.V.; LaPlante, K.L.; Caffrey, A.R. Treatment, Clinical Outcomes, and Predictors of Mortality among a National Cohort of Admitted Patients with Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 2022, 66, e0197521. [Google Scholar] [CrossRef]
- Roca, I.; Espinal, P.; Vila-Farrés, X.; Vila, J. The Acinetobacter baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace. Front. Microbiol. 2012, 3, 148. [Google Scholar] [CrossRef]
- Perez, F.; Stiefel, U. The Impact of Natural Transformation on the Acquisition of Antibiotic Resistance Determinants. MBio 2022, 13, e00336-22. [Google Scholar] [CrossRef]
- Antunes, L.C.S.; Imperi, F.; Carattoli, A.; Visca, P. Deciphering the Multifactorial Nature of Acinetobacter baumannii Pathogenicity. PLoS ONE 2011, 6, e22674. [Google Scholar] [CrossRef]
- Nasr, P. Genetics, Epidemiology, and Clinical Manifestations of Multidrug-Resistant Acinetobacter baumannii. J. Hosp. Infect. 2020, 104, 4–11. [Google Scholar] [CrossRef]
- Godeux, A.-S.; Svedholm, E.; Barreto, S.; Potron, A.; Venner, S.; Charpentier, X.; Laaberki, M.-H. Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. MBio 2022, 13, e02631-21. [Google Scholar] [CrossRef]
- Traglia, G.M.; Place, K.; Dotto, C.; Fernandez, J.S.; Montaña, S.; Bahiense, C.d.S.; Soler-Bistue, A.; Iriarte, A.; Perez, F.; Tolmasky, M.E.; et al. Interspecies DNA Acquisition by a Naturally Competent Acinetobacter baumannii Strain. Int. J. Antimicrob. Agents 2019, 53, 483–490. [Google Scholar] [CrossRef]
- Traglia, G.M.; Pasteran, F.; Escalante, J.; Nishimura, B.; Tuttobene, M.R.; Subils, T.; Nuñez, M.R.; Rivollier, M.G.; Corso, A.; Tolmasky, M.E.; et al. Genomic Comparative Analysis of Two Multi-Drug Resistance (MDR) Acinetobacter baumannii Clinical Strains Assigned to International Clonal Lineage II Recovered Pre- and Post-COVID-19 Pandemic. Biology 2023, 12, 358. [Google Scholar] [CrossRef]
- López, C.; Ayala, J.A.; Bonomo, R.A.; González, L.J.; Vila, A.J. Protein Determinants of Dissemination and Host Specificity of Metallo-β-Lactamases. Nat. Commun. 2019, 10, 3617. [Google Scholar] [CrossRef]
- Bauernfeind, A.; Stemplinger, I.; Jungwirth, R.; Wilhelm, R.; Chong, Y. Comparative Characterization of the Cephamycinase BlaCMY-1 Gene and Its Relationship with Other Beta-Lactamase Genes. Antimicrob. Agents Chemother. 1996, 40, 1926–1930. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, M.; Shin, J.H.; Lee, M.H.; Kang, S.H.; Park, A.J.; Yong, D.; Chong, Y. Prevalence of Plasmid-Mediated AmpC β-Lactamases in Escherichia Coli and Klebsiella Pneumoniae in Korea. Microb. Drug Resist. 2006, 12, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Sekar, R.; Mahalakshmi, D.; Srivani, R.; Shankar, E.M.; Vignesh, R. High Rate of Detection of High-Level Aminoglycoside-Resistant Enterococci from Urinary Tract Specimens in South India. Int. J. Antimicrob. Agents 2008, 31, 383–385. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
- Domingues, S.; Harms, K.; Fricke, W.F.; Johnsen, P.J.; da Silva, G.J.; Nielsen, K.M. Natural Transformation Facilitates Transfer of Transposons, Integrons and Gene Cassettes between Bacterial Species. PLoS Pathog. 2012, 8, e1002837. [Google Scholar] [CrossRef]
- Da Silva, G.; Domingues, S. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms 2016, 4, 29. [Google Scholar] [CrossRef]
- Héritier, C.; Poirel, L.; Fournier, P.-E.; Claverie, J.-M.; Raoult, D.; Nordmann, P. Characterization of the Naturally Occurring Oxacillinase of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 4174–4179. [Google Scholar] [CrossRef]
- Figueiredo, S.; Poirel, L.; Croize, J.; Recule, C.; Nordmann, P. In Vivo Selection of Reduced Susceptibility to Carbapenems in Acinetobacter baumannii Related to IS Aba1-Mediated Overexpression of the Natural Bla OXA-66 Oxacillinase Gene. Antimicrob. Agents Chemother. 2009, 53, 2657–2659. [Google Scholar] [CrossRef]
- Nigro, S.; Hall, R.M. Distribution of the Bla OXA-23-Containing Transposons Tn 2006 and Tn 2008 in Australian Carbapenem-Resistant Acinetobacter baumannii Isolates. J. Antimicrob. Chemother. 2015, 70, 2409–2411. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Kim, J.O.; Yang, J.W.; Kim, H.S.; Lee, K.J.; Jeong, S.H.; Lee, H.; Lee, K. The BlaOXA-23-Associated Transposons in the Genome of Acinetobacter Spp. Represent an Epidemiological Situation of the Species Encountering Carbapenems. J. Antimicrob. Chemother. 2017, 72, 2708–2714. [Google Scholar] [CrossRef]
- Traglia, G.; Chiem, K.; Quinn, B.; Fernandez, J.S.; Montaña, S.; Almuzara, M.; Mussi, M.A.; Tolmasky, M.E.; Iriarte, A.; Centrón, D.; et al. Genome Sequence Analysis of an Extensively Drug-Resistant Acinetobacter baumannii Indigo-Pigmented Strain Depicts Evidence of Increase Genome Plasticity. Sci. Rep. 2018, 8, 16961. [Google Scholar] [CrossRef]
- Martino, F.; Tijet, N.; Melano, R.; Petroni, A.; Heinz, E.; De Belder, D.; Faccone, D.; Rapoport, M.; Biondi, E.; Rodrigo, V.; et al. Isolation of Five Enterobacteriaceae Species Harbouring BlaNDM-1 and Mcr-1 Plasmids from a Single Paediatric Patient. PLoS ONE 2019, 14, e0221960. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Kaminski, M.; Landman, D.; Quale, J. Cefiderocol Resistance in Acinetobacter baumannii: Roles of β-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrob. Agents Chemother. 2020, 64, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Yamano, Y.; Ishibashi, N.; Kuroiwa, M.; Takemura, M.; Sheng, W.-H.; Hsueh, P.-R. Characterisation of Cefiderocol-Non-Susceptible Acinetobacter baumannii Isolates from Taiwan. J. Glob. Antimicrob. Resist. 2022, 28, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Lucidi, M.; Visaggio, D.; Migliaccio, A.; Capecchi, G.; Visca, P.; Imperi, F.; Zarrilli, R. Pathogenicity and Virulence of Acinetobacter baumannii: Factors Contributing to the Fitness in Healthcare Settings and the Infected Host. Virulence 2024, 15, 2289769. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Penwell, W.F.; Traglia, G.M.; Zimbler, D.L.; Gaddy, J.A.; Nikolaidis, N.; Arivett, B.A.; Adams, M.D.; Bonomo, R.A.; Actis, L.A.; et al. Identification of Potential Virulence Factors in the Model Strain Acinetobacter baumannii A118. Front. Microbiol. 2019, 10, 1599. [Google Scholar] [CrossRef]
- Tomaras, A.P.; Dorsey, C.W.; Edelmann, R.E.; Actis, L.A. Attachment to and Biofilm Formation on Abiotic Surfaces by Acinetobacter baumannii: Involvement of a Novel Chaperone-Usher Pili Assembly System. Microbiology 2003, 149, 3473–3484. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Actis, L.A. Regulation of Acinetobacter baumannii Biofilm Formation. Future Microbiol. 2009, 4, 273–278. [Google Scholar] [CrossRef]
- Kishii, K.; Hamada, M.; Aoki, K.; Ito, K.; Onodera, J.; Ishii, Y.; Tateda, K. Differences in Biofilm Formation and Transcription of Biofilm-Associated Genes among Acinetobacter baumannii Clinical Strains Belonging to the International Clone II Lineage. J. Infect. Chemother. 2020, 26, 693–698. [Google Scholar] [CrossRef]
- Hamidian, M.; Wick, R.R.; Hartstein, R.M.; Judd, L.M.; Holt, K.E.; Hall, R.M. Insights from the Revised Complete Genome Sequences of Acinetobacter baumannii Strains AB307-0294 and ACICU Belonging to Global Clones 1 and 2. Microb. Genom. 2019, 5, e000298. [Google Scholar] [CrossRef]
- Fattahian, Y.; Rasooli, I.; Mousavi Gargari, S.L.; Rahbar, M.R.; Astaneh, S.D.A.; Amani, J. Protection against Acinetobacter baumannii Infection via Its Functional Deprivation of Biofilm Associated Protein (Bap). Microb. Pathog. 2011, 51, 402–406. [Google Scholar] [CrossRef]
- Crosa, J.H. Genetics and Molecular Biology of Siderophore-Mediated Iron Transport in Bacteria. Microbiol. Rev. 1989, 53, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Zimbler, D.L.; Penwell, W.F.; Gaddy, J.A.; Menke, S.M.; Tomaras, A.P.; Connerly, P.L.; Actis, L.A. Iron Acquisition Functions Expressed by the Human Pathogen Acinetobacter baumannii. BioMetals 2009, 22, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Klebba, P.E.; Newton, S.M.C.; Six, D.A.; Kumar, A.; Yang, T.; Nairn, B.L.; Munger, C.; Chakravorty, S. Iron Acquisition Systems of Gram-Negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem. Rev. 2021, 121, 5193–5239. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Penwell, W.F.; DeGrace, N.; Tentarelli, S.; Gauthier, L.; Gilbert, C.M.; Arivett, B.A.; Miller, A.A.; Durand-Reville, T.F.; Joubran, C.; Actis, L.A. Discovery and Characterization of New Hydroxamate Siderophores, Baumannoferrin A and B, Produced by Acinetobacter baumannii. ChemBioChem 2015, 16, 1896–1904. [Google Scholar] [CrossRef]
- Sheldon, J.R.; Skaar, E.P. Acinetobacter baumannii Can Use Multiple Siderophores for Iron Acquisition, but Only Acinetobactin Is Required for Virulence. PLOS Pathog. 2020, 16, e1008995. [Google Scholar] [CrossRef]
- Kenyon, J.J.; Hall, R.M. Variation in the Complex Carbohydrate Biosynthesis Loci of Acinetobacter baumannii Genomes. PLoS ONE 2013, 8, e62160. [Google Scholar] [CrossRef]
- Tickner, J.; Hawas, S.; Totsika, M.; Kenyon, J.J. The Wzi Outer Membrane Protein Mediates Assembly of a Tight Capsular Polysaccharide Layer on the Acinetobacter baumannii Cell Surface. Sci. Rep. 2021, 11, 21741. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Tonkin-Hill, G.; Lees, J.A.; Bentley, S.D.; Frost, S.D.W.; Corander, J. Fast Hierarchical Bayesian Analysis of Population Structure. Nucleic Acids Res. 2019, 47, 5539–5549. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. TRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A Comparative Pathogenomic Platform with an Interactive Web Interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.-M. ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef]
AMA205 Chromosome | pAMA205_1 Plasmid | pAMA205_2 Plasmid | |
---|---|---|---|
Size (bp) | 4,139,231 | 16,095 | 5281 |
G + C content (%) | 50.9 | 35.32 | 36.37 |
Protein-coding sequences (CDSs) | 4007 | 19 | 7 |
Insertion sequences | 71 | 0 | 0 |
rRNA operons | 18 | 0 | 0 |
tRNA | 73 | 0 | 0 |
Antimicrobial Agent | MIC (mg/L) | CLSI 1/EUCAST 2/FDA 3 Breakpoint |
---|---|---|
CAZ | >256 | S ≤ 8; I = 16; R ≥ 32 1 |
FDC | 4 * (IHC) | S ≤ 2; R ≥ 4 2 |
IMP | 96 | S ≤ 2; I = 4; R ≥ 8 1 |
MEM | 128 | S ≤ 2; I = 4; R ≥ 8 1 |
AMS | >256 | S ≤ 8/4; I = 16/8; R ≥ 32/16 1 |
AK | >256 | S ≤ 16; I = 32; R ≥ 64 1 |
CN | >1024 | S ≤ 4; I = 8; R ≥ 16 1 |
TIG | 0.50 | S ≤ 2; R ≥ 8 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traglia, G.M.; Pasteran, F.; Moheb, S.; Akhtar, U.; Gonzalez, S.; Maldonado, C.; Furtado, N.; Mohamed, A.; Escalante, J.; Tuttobene, M.R.; et al. Insights into Acinetobacter baumannii AMA205’s Unprecedented Antibiotic Resistance. Int. J. Mol. Sci. 2024, 25, 11424. https://doi.org/10.3390/ijms252111424
Traglia GM, Pasteran F, Moheb S, Akhtar U, Gonzalez S, Maldonado C, Furtado N, Mohamed A, Escalante J, Tuttobene MR, et al. Insights into Acinetobacter baumannii AMA205’s Unprecedented Antibiotic Resistance. International Journal of Molecular Sciences. 2024; 25(21):11424. https://doi.org/10.3390/ijms252111424
Chicago/Turabian StyleTraglia, German Matias, Fernando Pasteran, Samyar Moheb, Usman Akhtar, Sebastian Gonzalez, Carolina Maldonado, Nicholas Furtado, Ahmed Mohamed, Jenny Escalante, Marisel R. Tuttobene, and et al. 2024. "Insights into Acinetobacter baumannii AMA205’s Unprecedented Antibiotic Resistance" International Journal of Molecular Sciences 25, no. 21: 11424. https://doi.org/10.3390/ijms252111424
APA StyleTraglia, G. M., Pasteran, F., Moheb, S., Akhtar, U., Gonzalez, S., Maldonado, C., Furtado, N., Mohamed, A., Escalante, J., Tuttobene, M. R., Quillen, A., Fontan, C., Albornoz, E., Corso, A., Bonomo, R. A., Rao, G. G., Tolmasky, M. E., & Ramirez, M. S. (2024). Insights into Acinetobacter baumannii AMA205’s Unprecedented Antibiotic Resistance. International Journal of Molecular Sciences, 25(21), 11424. https://doi.org/10.3390/ijms252111424