Entropy Production in an Electro-Membrane Process at Underlimiting Currents—Influence of Temperature
<p>Sketch of the ion-exchange membrane system under study: An electric current passes through a cation exchange membrane separating two aqueous solutions of NaCl of equal concentration <span class="html-italic">c</span><sub>0</sub> (<b>above</b>). The Ag|AgCl electrodes are reversible to Cl<sup>−</sup> ion concentration profiles and different fluxes across the system (<b>bottom</b>).</p> "> Figure 2
<p>Sketch of a typical current–voltage curve of an ion-exchange membrane in an electrolyte solution (in black), showing the three distinct regions: (I) linear increase, (II) plateau, and (III) overlimiting transport. Profile predicted by the Nernst model (in red) and linear voltage–current curve (in blue) for a system without concentration polarization effects are also shown.</p> "> Figure 3
<p>Sketch of the experimental setup for measuring current–voltage curves. I: electric current; B: bath; T: thermostat; S: solution; M: membrane; IE: Ag|AgCl injecting electrode; ME: voltage Ag|AgCl electrode.</p> "> Figure 4
<p>(<b>a</b>) Current–Voltage curves and (<b>b</b>) corresponding Cowan plots at different temperatures. Dashed lines are included as visual guides.</p> "> Figure 5
<p>Estimated entropy production as a function of the applied electric current at different temperatures. Lines are provided as visual guides.</p> "> Figure 6
<p>(<b>a</b>) Estimated stored and (<b>b</b>) dissipated powers as a function of the electric current at different temperatures.</p> "> Figure 7
<p>Estimated efficiencies as a function of <span class="html-italic">I</span><sub>r</sub> = <span class="html-italic">I</span>/<span class="html-italic">I<sub>L</sub></span> at different temperatures. Dashed lines are only visual guides. The figure legend shows the efficiency values at different <span class="html-italic">I</span><sub>r</sub> percentages at the different temperatures for a better visualization.</p> ">
Abstract
:1. Introduction
2. Fundamentals
2.1. The System
2.2. The Current–Voltage Curve of a Single Membrane System
2.3. The Non-Equilibrium Thermodynamics Formalism
3. Materials and Methods
4. Results and Discussion
4.1. Properties of the Electrolyte Solution
4.2. Current–Voltage Curves
4.2.1. Determination of the Limiting Current Value
4.2.2. Determination of R0 and Counterion Transport Number in the Membrane
4.3. Entropy Production
4.4. Efficiency Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, model and applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Yamane, R.; Sata, T.; Mizutani, Y.; Onoue, Y. Concentration polarization phenomena in ion-exchange membrane electrodialysis. II. The effect of the condition of the diffusion-boundary layer on the limiting-current density and on the relative transport numbers of ions. Bull. Chem. Soc. Jpn. 1969, 42, 2741–2748. [Google Scholar] [CrossRef]
- Tay, M.; Pourcelly, G.; Lebon, F.; Gavach, C. Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. J. Electroanal. Chem. 1992, 336, 171–194. [Google Scholar]
- Sistat, P.; Pourcelly, G. Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers. J. Membr. Sci. 1997, 123, 121–131. [Google Scholar] [CrossRef]
- Barragán, V.M.; Ruiz-Bauzá, C. Current-voltage curves for ion-exchange membranes: A method for determining the liming current density. J. Colloid Interface Sci. 1998, 205, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Ślęzak, A.; Ślęzak, I.H.; Ślęzak, K.M. Influence of the concentration boundary layers on membrane potential in a single membrane system. Desalination 2005, 184, 113–123. [Google Scholar] [CrossRef]
- Belova, E.I.; Lopatkova, G.Y.; Pismenskaya, N.D.; Nikonenko, V.; Larchet, C.; Pourcelly, G. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 2006, 110, 13458–13469. [Google Scholar] [CrossRef]
- Larchet, C.; Nouri, S.; Auclair, B.; Dammak, L.; Nikonenko, V. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Adv. Colloid Interface Sci. 2008, 139, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y. Mass transfer in a boundary layer and in an ion exchange membrane: Mechanism of concentration polarization and water dissociation. Russ. J. Electrochem. 2012, 48, 665–681. [Google Scholar] [CrossRef]
- Moya, A.A.; Sistat, P. Chronoamperometric response of ion-exchange membrane systems. J. Membr. Sci. 2013, 444, 412–419. [Google Scholar] [CrossRef]
- Nikonenko, V.; Kovalenko, A.; Urtenov, M.K.; Pismenskaya, N.D.; Han, J.; Sistat, P.; Pourcelly, G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 2014, 342, 85–106. [Google Scholar] [CrossRef]
- Mareev, S.A.; Butylskii, D.Y.; Kovalenko, A.V.; Petukhova, A.V.; Pismenskaya, N.D.; Dammak, L.; Larchet, C.; Nikonenko, V. Accounting for the concentration dependence of electrolyte diffusion coefficient in the Sand and the Peers equation. Electrochim. Acta 2016, 195, 85–93. [Google Scholar] [CrossRef]
- Wenten, I.G.; Khoiruddin, K.; Alkhadra, M.A.; Tian, H.; Bazant, M.Z. Novel ionic separation mechanisms in electrically driven membrane process. Adv. Colloid Interface Sci. 2020, 284, 102269. [Google Scholar] [CrossRef]
- Barros, K.S.; Martí-Calatayud, M.C.; Scarazzato, T.; Bernardes, A.M.; Espinosa, D.C.R.; Pérez-Herranz, V. Investigation of ion-exchange membranes by means of chronopotentiometry: A compressive review on this highly informative and multipurpose technique. Adv. Colloid Interface Sci. 2021, 293, 102439. [Google Scholar] [CrossRef] [PubMed]
- Stockmeier, F.; Schatz, M.; Habermann, M.; Linkhorst, J.; Mani, A. Direct 3D observation and unravelling of electroconvection phenomena during concentration polarization at in exchange membranes. J. Membr. Sci. 2021, 640, 119846. [Google Scholar] [CrossRef]
- Batko, K.M.; Ślęzak-Prochazka, I.; Ślęzak, A.; Bajdur, W.M.; Ščurek, R. Modelling of the electrical membrane potential for concentration polarization conditions. Entropy 2022, 24, 138. [Google Scholar] [CrossRef]
- Uzdenova, A. Ion transport in electromembrane system under the passage of direct current: 1D modelling approach. Membranes 2023, 13, 421. [Google Scholar] [CrossRef] [PubMed]
- Uzdenova, A.M. Modeling of ion transport in a three-layer system with an ion-exchange membrane based on the Nernst Planck and displacement current equations. Membr. Membr. Technol. 2024, 6, 1–8. [Google Scholar] [CrossRef]
- Nguyen, D.; Pham, V.-S. Modeling non-linear ion transport phenomena in ion-selective membranes: Three simplified models. Sep. Purif. Technol. 2024, 333, 125929. [Google Scholar] [CrossRef]
- Zabolotsky, V.I.; Vasil’eva, V.I.; Lebedev, K.A.; Akberova, E.M.; Achoh, A.R.; Davidov, D.V.; Loza, S.A.; Dobryden, S.V. Towards optimized cation-exchange membranes for overlimiting current electrodialysis: Correlation between size of resin particles in membranes and mechanism of ion transport through them. Chem. Eng. Sci. 2024, 295, 120137. [Google Scholar] [CrossRef]
- Chehayeb, K.M.; Lienhard, V.J.H. Entropy generation analysis of electrodialysis. Desalination 2017, 414, 184–198. [Google Scholar] [CrossRef]
- Generous, M.M.; Qasen, N.A.A.; Zubair, S.M. Entropy generation analysis of electrodialysis desalination using multi-component groundwater. Desalination 2021, 500, 114858. [Google Scholar] [CrossRef]
- Ślęzak, A.; Ślęzak-Prochazka, I.; Grzegorczyn, S.; Jasik-Ślęzak, J. Evaluation of S-entropy production in a single-membrane system in concentration polarization conditions. Transp. Porous Med. 2017, 116, 941–957. [Google Scholar] [CrossRef]
- Kjelstrup, S.; Bedeaux, D.; Johannessen, E.; Gross, S. Non-Equilibrium Thermodynamics for Engineers, 2nd ed.; Word Scientific: Hackensack, NJ, USA, 2017. [Google Scholar]
- Kjelstrup, S.; Bedeaux, D. Non-Equilibrium Thermodynamics of Heterogeneous Systems; Series on Advances in Statistical Mechanics-Volume 16; Word Scientific: Hackensack, NJ, USA, 2008. [Google Scholar]
- Naterer, G.F.; Tokarz, C.D.; Avsec, J. Fuel cell entropy production with ohmic heating and diffusive polarization. Int. J. Heat Mass Tranfer. 2006, 49, 2673–2683. [Google Scholar] [CrossRef]
- Kristiansen, K.; Barragán, V.M.; Kjelstrup, S. Thermoelectric power of ion exchange membrane cells relevant to reverse electrodialysis plants. Phys. Rev. Appl. 2019, 11, 044037. [Google Scholar] [CrossRef]
- Kujawski, W.; Yaroshchuk, A.; Zholkovskiy, E.; Koter, I.; Koter, S. Analysis of membrane transport equations for reverse electrodialysis (RED) using irreversible thermodynamics. Int. J. Mol. Sci. 2020, 21, 6325. [Google Scholar] [CrossRef] [PubMed]
- Magnanelli, E.; Wilhelmsen, Ø.; Johannessen, E.; Kjelstrup, S. Energy efficient design of membrane processes by use of entropy production minimization. Comp. Chem. Eng. 2018, 117, 105–116. [Google Scholar] [CrossRef]
- Helfferich, F. Ion Exchange; Dover Publication, INC: Garden City, NY, USA, 1995. [Google Scholar]
- Levich, V.G. Physicochemical Hydrodynamics; Prentice-Hall: New York, NY, USA, 1962. [Google Scholar]
- Strathamann, H. Ion-Exchange Membrane Separation Processes; Membrane Science and Technology Series Volume 9; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Katchalsky, A.; Curran, P.F. Thermodynamics in Biophysics; Harvard University Press Cambridge: Cambridge, MA, USA, 1967. [Google Scholar]
- Brockris, J.O.M.; Reddy, A.K.N. Modern Electrochemistry; Plenum Press: New York, NY, USA, 1970; Volume 1. [Google Scholar]
- Lobo, V.M.; Quaresma, J.L. Handbook of Electrolyte Solutions; Parts A and B; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions, 2nd ed.; Dover Publication Inc.: Garden City, NY, USA, 2003. [Google Scholar]
- Avramov, S.G.; Lefterova, E.; Penchev, H.; Sinigersky, V.; Slavcheva, E. Comparative study on the proton conductivity of perfluorosulfonic and polybenzimidazole based polymer electrolyte membranes. Bulg. Chem. Commun. 2016, 48, 43–50. [Google Scholar]
- Hongsirikarn, K.; Goodwin, J.G.; Greenway, S.; Creager, S. Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane. J. Power Sources 2010, 195, 7213–7220. [Google Scholar] [CrossRef]
- Slade, S.; Campbell, S.A.; Ralph, T.R.; Walsh, F.C. Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J. Electrochem. Soc. 2002, 149, A1556–A1564. [Google Scholar] [CrossRef]
- Choi, J.-H.; Park, J.-S.; Moon, S.-H. Direct measurement of concentration distribution within the boundary layer of an ion-exchange membrane. J. Colloid Int. Sci. 2002, 251, 311–317. [Google Scholar] [CrossRef]
- Shaposhnik, V.A.; Grigorchuk, O.V.; Korzhov, E.N.; Vasil’Eva, V.I.; Klimov, V.Y. The effect of ion-conducting spacers on mass transfer-numerical analysis of laser interferometry. J. Membr. Sci. 1998, 139, 85–96. [Google Scholar] [CrossRef]
T (K) | κ (μS cm−1) * | Λ (Scm2mol−1) ** | D (10−9 m2 s−1) ** | t+ ** |
---|---|---|---|---|
276.15 | 350 | 71.62 | 0.884 | 0.360 |
279.15 | 376 | 76.94 | 0.959 | 0.386 |
283.15 | 415 | 84.92 | 1.074 | 0.389 |
288.15 | 474 | 96.99 | 1.248 | 0.392 |
293.15 | 535 | 109.47 | 1.433 | 0.394 |
298.15 | 608 | 119.91 | 1.596 | 0.395 |
303.15 | 654 | 131.98 | 1.787 | 0.397 |
313.15 | 753 | 154.08 | 2.155 | 0.399 |
T (K) | R0 (Ω) | IL Cowan (10−3 A) | δ (10−6 m) | |
---|---|---|---|---|
276.15 | 1995.6 ± 1.3 | 0.88 ± 0.10 | 1.37 | 545 |
279.15 | 1896.17 ± 0.06 | 0.88 ± 0.06 | 1.52 | 555 |
283.15 | 1651.6 ± 0.3 | 0.89 ± 0.08 | 1.73 | 540 |
288.15 | 1495.00 ± 0.04 | 0.89 ± 0.03 | 1.85 | 592 |
293.15 | 1330.8 ± 1.2 | 0.88 ± 0.15 | 2.04 | 633 |
298.15 | 1247.0 ± 0.1 | 0.88 ± 0.08 | 2.31 | 629 |
303.15 | 1113.9 ± 0.2 | 0.88 ± 0.06 | 2.54 | 635 |
313.15 | 921.40 ± 0.04 | 0.90 ± 0.05 | 2.98 | 645 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroto, J.C.; Muñoz, S.; Barragán, V.M. Entropy Production in an Electro-Membrane Process at Underlimiting Currents—Influence of Temperature. Entropy 2025, 27, 3. https://doi.org/10.3390/e27010003
Maroto JC, Muñoz S, Barragán VM. Entropy Production in an Electro-Membrane Process at Underlimiting Currents—Influence of Temperature. Entropy. 2025; 27(1):3. https://doi.org/10.3390/e27010003
Chicago/Turabian StyleMaroto, Juan Carlos, Sagrario Muñoz, and Vicenta María Barragán. 2025. "Entropy Production in an Electro-Membrane Process at Underlimiting Currents—Influence of Temperature" Entropy 27, no. 1: 3. https://doi.org/10.3390/e27010003
APA StyleMaroto, J. C., Muñoz, S., & Barragán, V. M. (2025). Entropy Production in an Electro-Membrane Process at Underlimiting Currents—Influence of Temperature. Entropy, 27(1), 3. https://doi.org/10.3390/e27010003