Analysis of Membrane Transport Equations for Reverse Electrodialysis (RED) Using Irreversible Thermodynamics
<p>The system: ion-exchange membrane with adjacent boundary diffusion layers. l<sub>p</sub>—thickness of concentration polarization layer; l<sub>m</sub>—thickness of the membrane; c′, c″—concentrations of ions in the bulk solution; c′<sup>(m)</sup>, c″<sup>(m)</sup>—concentrations of ions at the membrane surface.</p> "> Figure 2
<p>Electric power vs. −<span class="html-italic">I</span> calculated using Equation (5) (full ITE) for the real thickness of Nafion 120 equal to <span class="html-italic">l<sub>m</sub></span> = 0.3 mm, and the assumed value <span class="html-italic">l<sub>m</sub></span> = 0.1 mm, for 0.1–1.0 M and 0.05–3.7 M NaCl, <span class="html-italic">T</span> = 298 K. <span class="html-italic">l<sub>p</sub></span>—thickness of the concentration polarization layer, <span class="html-italic">l<sub>m</sub></span>—thickness of the membrane.</p> "> Figure 3
<p>Pressure profile across the membrane calculated from Equation (5) (full ITE) for <span class="html-italic">l<sub>m</sub></span> = 0.3 mm and <span class="html-italic">l<sub>m</sub></span> = 0.1 mm, for 0.1–1.0 M and 0.05–3.7 M NaCl, <span class="html-italic">T</span> = 298 K. Thickness of the concentration polarization layer <span class="html-italic">l<sub>p</sub></span> = 0.05 mm. Thickness of the membrane—<span class="html-italic">l<sub>m</sub></span>.</p> "> Figure 4
<p>Profiles of electroosmotic (el), osmotic (osm), and pressure-driven (p), components of <span class="html-italic">J<sub>v</sub></span> calculated from Equation (5) (full ITE) for the current density –<span class="html-italic">I</span> = 100 and 200 A/m<sup>2</sup>; one can notice a dominant role of electroosmotic contribution to <span class="html-italic">J<sub>v</sub></span> at higher current density.</p> "> Figure 5
<p>Dependence of the maximum of power density, <span class="html-italic">P</span><sub>max</sub>, and the current density, −<span class="html-italic">I</span>, at <span class="html-italic">P</span><sub>max</sub> on the membrane thickness, <span class="html-italic">l<sub>m</sub></span>, for 0.1–1.0 M and 0.05–3.7 M NaCl, <span class="html-italic">T</span> = 298 K, Equation (5), full ITE.</p> "> Figure 6
<p>Dependence of the maximum of power density, <span class="html-italic">P</span><sub>max</sub>, and the current density, <span class="html-italic">−I</span>, at <span class="html-italic">P</span><sub>max</sub> on the diffusion boundary layer thickness, <span class="html-italic">l<sub>p</sub></span>, for 0.1–1.0 M and 0.05–3.7 M NaCl, <span class="html-italic">T</span> = 298 K, Equation (5), full ITE.</p> "> Figure 7
<p>Power density vs. current density for full model and approximate approaches: TCP—3-coefficients approach (P<sub>1</sub>, P<sub>2</sub>, and L12 calculated from <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mi>p</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>, <span class="html-italic">k<sub>m</sub></span>, and <span class="html-italic">P</span><sub>s</sub>), (t<sub>1<span class="html-italic">app</span></sub>, <span class="html-italic">P<sub>s</sub></span>); TP, CP, TC—2-coefficients approach (<span class="html-italic">P</span><sub>1</sub> and <span class="html-italic">P</span><sub>2</sub> calculated from <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mi>p</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> and <span class="html-italic">P</span><sub>s</sub>, <span class="html-italic">k<sub>m</sub></span> and <span class="html-italic">P<sub>s</sub></span>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mi>p</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> and <span class="html-italic">k<sub>m</sub></span>, respectively); the Nafion 120 membrane separates (<b>a</b>) 0.1 and 1 M NaCl, (<b>b</b>) 0.05 and 3.7 M NaCl; <span class="html-italic">l<sub>m</sub></span> = 0.1 mm, <span class="html-italic">l<sub>p</sub></span> = 0.05 mm, <span class="html-italic">T</span> = 298 K.</p> "> Figure 7 Cont.
<p>Power density vs. current density for full model and approximate approaches: TCP—3-coefficients approach (P<sub>1</sub>, P<sub>2</sub>, and L12 calculated from <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mi>p</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>, <span class="html-italic">k<sub>m</sub></span>, and <span class="html-italic">P</span><sub>s</sub>), (t<sub>1<span class="html-italic">app</span></sub>, <span class="html-italic">P<sub>s</sub></span>); TP, CP, TC—2-coefficients approach (<span class="html-italic">P</span><sub>1</sub> and <span class="html-italic">P</span><sub>2</sub> calculated from <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mi>p</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> and <span class="html-italic">P</span><sub>s</sub>, <span class="html-italic">k<sub>m</sub></span> and <span class="html-italic">P<sub>s</sub></span>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mi>p</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> and <span class="html-italic">k<sub>m</sub></span>, respectively); the Nafion 120 membrane separates (<b>a</b>) 0.1 and 1 M NaCl, (<b>b</b>) 0.05 and 3.7 M NaCl; <span class="html-italic">l<sub>m</sub></span> = 0.1 mm, <span class="html-italic">l<sub>p</sub></span> = 0.05 mm, <span class="html-italic">T</span> = 298 K.</p> "> Figure 8
<p>Power density vs. current density for full model—comparison of the TC const approach with logarithmic mean with the TC approach and the full ITE for the concentrations 0.1–1 M and 0.05–3.7 M NaCl; <span class="html-italic">l<sub>m</sub></span> = 0.1 mm, <span class="html-italic">l<sub>p</sub></span> = 0.05 mm, <span class="html-italic">T</span> = 298 K.</p> ">
Abstract
:1. Introduction
- (1)
- the four-coefficients approach—the pressure difference in the full set of ITE is neglected,
- (2)
- the three-coefficients approach—the coupling of ion flows with the gradient of chemical potential of water is neglected,
- (3)
- the two-coefficients approach (i.e., Nernst–Planck equation)—the ion flux is a function of the gradient of its electrochemical potential only.
2. Theory
2.1. Transport Equations of Irreversible Thermodynamics (ITE)
2.2. The Four-Coefficients Approach
2.3. The Three-Coefficients Approach
2.4. The Two-Coefficients Approach
3. Results and Discussion
The Two-Coefficients Approach
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Transport Equation in the Concentration Polarization Layers
References
- Lee, K.H.; Baker, R.W.; Lonsdale, H.K. Membranes for power generation by pressure retarded osmosis. J. Membr. Sci. 1981, 8, 141–171. [Google Scholar] [CrossRef]
- Levenspiel, O.; De Nevers, N. The osmotic pump. Science 1974, 183, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Narebska, A.; Koter, S.; Kujawski, W. Conversion of Osmotic into Mechanical Energy in Systems with Charged Membranes. J. Non Equilib. Thermodyn. 1990, 15, 1–10. [Google Scholar] [CrossRef]
- Kilsgaard, B.S.; Haldrup, S.; Catalano, J.; Bentien, A. High figure of merit for electrokinetic energy conversion in Nafion membranes. J. Power Source 2014, 247, 235–242. [Google Scholar] [CrossRef]
- Manecke, G. Membranakkumulator. Z. Physik. Chem. 1952, 201, 1–15. [Google Scholar] [CrossRef]
- Pattle, R.F. Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile. Nature 1954, 174, 660. [Google Scholar] [CrossRef]
- Dlugolecki, P.; Gambier, A.; Nijmeijer, K.; Wessling, M. Practical Potential of Reverse Electrodialysis As Process for Sustainable Energy Generation. Environ. Sci. Technol. 2009, 43, 6888–6894. [Google Scholar] [CrossRef]
- Veerman, J.; de Jong, R.M.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. J. Membr. Sci. 2009, 343, 7–15. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant. Environ. Sci. Technol. 2010, 44, 9207–9212. [Google Scholar] [CrossRef]
- Turek, M.; Bandura, B. Renewable energy by reverse electrodialysis. Desalination 2007, 205, 67–74. [Google Scholar] [CrossRef]
- Giacalone, F.; Papapetrou, M.; Kosmadakis, G.; Tamburini, A.; Micale, G.; Cipollina, A. Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment. Energy 2019, 181, 532–547. [Google Scholar] [CrossRef]
- Veerman, J.; Post, J.W.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model. J. Membr. Sci. 2008, 310, 418–430. [Google Scholar] [CrossRef] [Green Version]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: Evaluation of suitable electrode systems. J. Appl. Electrochem. 2010, 40, 1461–1474. [Google Scholar] [CrossRef] [Green Version]
- Guler, E.; Elizen, R.; Vermaas, D.A.; Saakes, M.; Nijmeijer, K. Performance-determining membrane properties in reverse electrodialysis. J. Membr. Sci. 2013, 446, 266–276. [Google Scholar] [CrossRef]
- Tedesco, M.; Hamelers, H.V.M.; Biesheuvel, P.M. Nernst-Planck transport theory for (reverse) electrodialysis: III. Optimal membrane thickness for enhanced process performance. J. Membr. Sci. 2018, 565, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Vermaas, D.A.; Kunteng, D.; Saakes, M.; Nijmeijer, K. Fouling in reverse electrodialysis under natural conditions. Water Res. 2013, 47, 1289–1298. [Google Scholar] [CrossRef]
- Pintossi, D.; Saakes, M.; Borneman, Z.; Nijmeijer, K. Electrochemical impedance spectroscopy of a reverse electrodialysis stack: A new approach to monitoring fouling and cleaning. J. Power Source 2019, 444, 227302. [Google Scholar] [CrossRef]
- Vermaas, D.A.; Saakes, M.; Nijmeijer, K. Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis. J. Membr. Sci. 2014, 453, 312–319. [Google Scholar] [CrossRef]
- Pawlowski, S.; Rijnaarts, T.; Saakes, M.; Nijmeijer, K.; Crespo, J.G.; Velizarov, S. Improved fluid mixing and power density in reverse electrodialysis stacks with chevron-profiled membranes. J. Membr. Sci. 2017, 531, 111–121. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Yasukawa, M.; Abo, T.; Kakihana, Y.; Higa, M. Effect of spacer geometry on membrane and solution compartment resistances in reverse electrodialysis. J. Membr. Sci. 2019, 572, 271–280. [Google Scholar] [CrossRef]
- Jeong, H.I.; Kim, H.J.; Kim, D.K. Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization. Energy 2014, 68, 229–237. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse electrodialysis: A validated process model for design and optimization. Chem. Eng. J. 2011, 166, 256–268. [Google Scholar] [CrossRef]
- Kim, D.K. Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels. J. Mech. Sci. Technol. 2011, 25, 5–10. [Google Scholar] [CrossRef]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; van Baak, W.; Micale, G. Modelling the Reverse ElectroDialysis process with seawater and concentrated brines. Desalin. Water Treat. 2012, 49, 404–424. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; Bogle, I.D.L.; Micale, G. A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chem. Eng. Res. Des. 2015, 93, 441–456. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Hamelers, H.V.M.; Biesheuvel, P.M. Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes. J. Membr. Sci. 2016, 510, 370–381. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, N.; Yang, S.; Choi, J.; Lee, M.S.; Nam, J.Y.; Jwa, E.; Kim, B.; Ryu, K.S.; Choi, Y.W. Nernst-Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential. Water Res. 2019, 165, 114970. [Google Scholar] [CrossRef]
- Moya, A.A. Uphill transport in improved reverse electrodialysis by removal of divalent cations in the dilute solution: A Nernst-Planck based study. J. Membr. Sci. 2020, 598, 117784. [Google Scholar] [CrossRef]
- Tedesco, M.; Hamelers, H.V.M.; Biesheuvel, P.M. Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes. J. Membr. Sci. 2017, 531, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Nikonenko, V.; Nebavsky, A.; Mareev, S.; Kovalenko, A.; Urtenov, M.; Pourcelly, G. Modelling of Ion Transport in Electromembrane Systems: Impacts of Membrane Bulk and Surface Heterogeneity. Appl. Sci. 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Kedem, O.; Katchalsky, A. Permeability of composite membranes. Part 1. Electric current, volume flow and flow of solute through membranes. Trans. Faraday Soc. 1963, 59, 1918–1930. [Google Scholar] [CrossRef]
- Foley, T.; Klinowski, J.; Meares, P. Differential Conductance Coefficients in a Cation-Exchange Membrane. Proc. R. Soc. Lond. Ser. A 1974, 336, 327–354. [Google Scholar]
- Kumamoto, E.; Kimizuka, H. Transport Properties of the Barium Form of a Poly(styrenesu1fonic acid) Cation-Exchange Membrane. J. Phys. Chem. 1981, 85, 635–642. [Google Scholar] [CrossRef]
- Narebska, A.; Koter, S.; Kujawski, W. Irreversible Thermodynamics of Transport across Charged Membranes. Part, I. Macroscopic Resistance Coefficients for a System with Nafion 120 Membrane. J. Membr. Sci. 1985, 25, 153–170. [Google Scholar] [CrossRef]
- Narebska, A.; Kujawski, W.; Koter, S. Irreversible Thermodynamics of Transport across Charged Membranes. Part II. Ion-Water Interactions at Permeation of Alkalis. J. Membr. Sci. 1987, 30, 125–140. [Google Scholar] [CrossRef]
- McCallum, C.; Meares, P. Computer prediction of stationary states of membranes from differential permeabilities. J. Membr. Sci. 1976, 1, 65–98. [Google Scholar] [CrossRef]
- Krämer, H.; Meares, P. Correlation of electrical and permeability properties of ion-selective membranes. Biophys. J. 1969, 9, 1006–1028. [Google Scholar] [CrossRef] [Green Version]
- Koter, S. Transport of electrolytes across cation-exchange membranes. Test of Onsager reciprocity in zero-current processes. J. Membr. Sci. 1993, 78, 155–162. [Google Scholar] [CrossRef]
- Miller, D.G. Application of Irreversible Thermodynamics to Electrolyte Solutions. I. J. Phys. Chem. 1966, 70, 2639–2659. [Google Scholar] [CrossRef]
- Meares, P. Coupling of ion and water fluxes in synthetic membranes. J. Membr. Sci. 1981, 8, 295–307. [Google Scholar] [CrossRef]
- Dresner, L. Stability of the Extended Nernst-Planck Equations in the Description of Hyperfiltration through Ion-Exchange Membranes. J. Phys. Chem. 1972, 76, 2256–2267. [Google Scholar] [CrossRef]
Experiment | Equation |
---|---|
conductivity | |
the real transport number of ion 1 | |
electroosmotic coefficient | |
the apparent transport number of ion 1 (electromotive force) | |
electrolyte permeability | |
osmotic permeability | |
hydrodynamic permeability |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawski, W.; Yaroshchuk, A.; Zholkovskiy, E.; Koter, I.; Koter, S. Analysis of Membrane Transport Equations for Reverse Electrodialysis (RED) Using Irreversible Thermodynamics. Int. J. Mol. Sci. 2020, 21, 6325. https://doi.org/10.3390/ijms21176325
Kujawski W, Yaroshchuk A, Zholkovskiy E, Koter I, Koter S. Analysis of Membrane Transport Equations for Reverse Electrodialysis (RED) Using Irreversible Thermodynamics. International Journal of Molecular Sciences. 2020; 21(17):6325. https://doi.org/10.3390/ijms21176325
Chicago/Turabian StyleKujawski, Wojciech, Andriy Yaroshchuk, Emiliy Zholkovskiy, Izabela Koter, and Stanislaw Koter. 2020. "Analysis of Membrane Transport Equations for Reverse Electrodialysis (RED) Using Irreversible Thermodynamics" International Journal of Molecular Sciences 21, no. 17: 6325. https://doi.org/10.3390/ijms21176325
APA StyleKujawski, W., Yaroshchuk, A., Zholkovskiy, E., Koter, I., & Koter, S. (2020). Analysis of Membrane Transport Equations for Reverse Electrodialysis (RED) Using Irreversible Thermodynamics. International Journal of Molecular Sciences, 21(17), 6325. https://doi.org/10.3390/ijms21176325