[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 654-660.doi: 10.11896/jsjkx.210800049

• 交叉&应用 • 上一篇    下一篇

面向供应链风险评估的改进BP小波神经网络研究

徐佳楠1, 张天瑞1, 赵伟博2, 贾泽轩1   

  1. 1 沈阳大学机械工程学院 沈阳 110044
    2 沈阳大学国际学院 沈阳 110044
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 张天瑞(trzhang@syu.edu.cn)
  • 作者简介:(mikexu1226@163.com)
  • 基金资助:
    中央引导地方科技发展资金计划(2021JH6/10500149);辽宁省自然科学基金(20180551001)

Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment

XU Jia-nan1, ZHANG Tian-rui1, ZHAO Wei-bo2, JIA Ze-xuan1   

  1. 1 School of Mechanical Engineering,Shenyang University,Shenyang 110044,China
    2 School of International Studies,Shenyang University,Shenyang 110044,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:XU Jia-nan,born in 1997,postgraduate.His main research interests include supply chain management and so on.
    ZHANG Tian-rui,born in 1985,Ph.D,associate professor,postgraduate supervisor.His main research interests include intelligent manufacturing and production and operation management.
  • Supported by:
    Science and Technology Development Fund Projects of Central Guided Region(2021JH6/10500149) and Natural Science Foundation of Liaoning Province,China(20180551001).

摘要: 针对供应链风险在制造行业上下游企业之间产生的影响,首先以供应链运作参考(Supply Chain Operation Reference,SCOR)模型为基础,以汽车制造企业为研究背景,通过对汽车供应链风险进行分析并结合现场调研结果,研究了供应链风险指标识别过程,建立了涉及战略计划风险等五大风险类别的评价指标体系。其次,鉴于BP神经网络模型在优化评估过程中容易出现局部最优解等问题,通过增加动量对其改进优化,同时用Morlet小波函数替换基础评价模型中的S型函数,重构供应链风险评价模型。最后,通过汽车企业实际案例进行风险识别与评估研究,采用Matlab进行仿真,对比分析改进BP小波神经网络与模糊综合评价、BP神经网络、增加动量的BP神经网络,结果表明,改进的BP小波神经网络模型具有良好的实用性和可靠性。

关键词: BP神经网络, SCOR, 风险识别, 供应链, 小波理论

Abstract: In view of the impact of supply chain risks on upstream and downstream enterprises in the manufacturing industry,it is important to research the method of identification and evaluation for the supply chain risks.Firstly,based on supply chain operation reference model(SCOR) and taking automobile manufacturing enterprises as the research background,the identification process of supply chain risk indicators is studied by analyzing automobile supply chain risks and combining with the field survey results.An evaluation index system involving five risk categories,including strategic planning risk,procu-rement risk,manufacturing risk,distribution risk and return risk,is established.Secondly,considering that BP neural network model is prone to local optimal solution and other problems in the process of optimization evaluation,it is improved and optimized by increasing momentum,and the S-type function in the basic evaluation model is replaced by Morlet wavelet function to reconstruct the supply chain risk evaluation model.Finally,risk identification and assessment are studied with automobile enterprise of actual case,using the Matlab simulation to compare and analyze the improved BP wavelet neural network and fuzzy comprehensive evaluation,BP neural network,increased momentum of BP neural network.The results show that the improved BP wavelet neural network model has the better practicability and reliability.

Key words: BP neural network, Risk identification, Supply chain, Supply chain operation reference, Wavelet theory

中图分类号: 

  • TP391.9
[1] WEI R R.Research on Collaborative Innovation Risk of Automotive Supply Chain Based on BP Neural Network[D].Luo-yang:Henan University of Science and Technology,2020.
[2] GAO J,WANG X.Contract Design and Decision of Relational Supply Chain with Uncertainty of Supply and Demand[J].Chinese Journal of Management Science,2016,24(12):127-138.
[3] GUAN S Y.Study on Risk Assessment of Sustainable Supply Chain Based on BP Neural Network[D].Qinhuangdao:Yanshan University,2018.
[4] YANG Z Y.Risk Identification and Control Countermeasures of Auto Parts Supply Chain[J].China Hi-technology,2020,(12):104-105.
[5] CHOPRA S,SODHI M.Managing Risk to Avoid Supply Chain Breakdown[J].MIT Sloan Management Review(1532-9194),2004,46(1):53-61.
[6] BLACKHURST J V,SCHEIBE K P,JOHNSON D J.Supply Risk Assessment and Monitoring for the Automotive Industry[J].International Journal of Physical Distribution & Logistics Management,2008,38(2):143-165.
[7] LI J S.Research on Identification of Supply Risk in Automobile Manufacturing Industry[D].Wuhan:Huazhong University of Science and Technology,2010.
[8] LEE D H,PARK D.An Efficient Algorithm for Fuzzy Weighted Average[J].Fuzzy Sets and Systems,1997,87(1):39-45.
[9] NGA I.Fuzzy Decision Support System for Risk Analysis inEcommerce Development[J].Decision Support Systems,2005,40(2):235-255.
[10] XU Y,LIU Q M,ZHOU L S.Study on Decision Making of Closed-loop Double-Channel Recycling Supply Chain Based on Game Theory[J/OL].Journal of System Simulation.http://kns.cnki.net/kcms/detail/11.3092.V.20210129.1742.008.html.
[11] WANG X J.Study on Identification and Evaluation of SupplyChain Risk of Otis Elevator Company[D].Shihezi:Shihezi University,2020.
[12] CHU C,HUANG J H.Risk Diagnosis of Fresh Agricultural Products Supply Chain Based on Bayes-OWA Hybrid Operator[J].Journal of Wuhan University of Technology(Information and Management Engineering Edition),2016,38(6):686-689.
[13] UCHE O.Impact of the Integration of Tactical Supply ChainPlanning Determinants on Performance[J].Journal of Manufacturing Systems,2016,5(38):181-194.
[14] SUN D S,XIE D L,GUAN F,et al.Simulation of IncentiveMechanism of Dual-drive Reverse Supply Chain for Waste Pro-ducts[J].Journal of System Simulation,2020,32(11):2272-2281.
[15] LIU B.The Risk Identification and Control of the Supply Chain of Automobile Enterprises Based on SCOR Model[D].Shen-yang:Shenyang University,2021.
[16] ZHANG W B,SU Q.Study on Quality Risk Control Decision of Food Supply Chain Based on Fuzzy Multi-objective Programming[J].Industrial Engineering and Management,2018,23(1):30-37.
[17] ZHAO Q Q.Risk and Countermeasure Analysis of Supply Chain Management in Manufacturing Enterprises[J].China Logistics &Purchasing,2020(20):77-78.
[18] YAO C J.Risk Assessment of Cross-border E-commerce Logistics Based on BP Neural Network[J].Economic Research Guide,2017(22):157-159.
[19] PAN M,ZHANG J T,CHEN X D,et al.Research on Automotive Supply Chain Risk Assessment Based on Neural Network[J].Shanghai Management Science,2019,41(1):99-106.
[20] PU D.Evaluation of Goodwill Value of Cultural EnterprisesBased on Wavelet Neural Network[D].Harbin:Harbin Insti-tute of Technology,2018.
[1] 吴功兴, 孙兆洋, 琚春华.
考虑中断风险与模糊定价的闭环供应链网络设计模型
Closed-loop Supply Chain Network Design Model Considering Interruption Risk and Fuzzy Pricing
计算机科学, 2022, 49(7): 220-225. https://doi.org/10.11896/jsjkx.201100084
[2] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[3] 朱旭辉, 沈国娇, 夏平凡, 倪志伟.
基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用
Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction
计算机科学, 2022, 49(6A): 667-674. https://doi.org/10.11896/jsjkx.210800088
[4] 夏静, 马中, 戴新发, 胡哲琨.
基于BP神经网络的智能云效能模型
Efficiency Model of Intelligent Cloud Based on BP Neural Network
计算机科学, 2022, 49(2): 353-367. https://doi.org/10.11896/jsjkx.201100140
[5] 程铁军, 王曼.
基于变权组合的突发事件网络舆情趋势预测
Network Public Opinion Trend Prediction of Emergencies Based on Variable Weight Combination
计算机科学, 2021, 48(6A): 190-195. https://doi.org/10.11896/jsjkx.200600094
[6] 郭福民, 张华, 胡瑢华, 宋岩.
一种基于表面肌电信号的腕部肌力估计方法研究
Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals
计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021
[7] 石琳姗, 马创, 杨云, 靳敏.
基于SSC-BP神经网络的异常检测算法
Anomaly Detection Algorithm Based on SSC-BP Neural Network
计算机科学, 2021, 48(12): 357-363. https://doi.org/10.11896/jsjkx.201000086
[8] 周俊, 尹悦, 夏斌.
基于LSTM神经网络的声发射信号识别研究
Acoustic Emission Signal Recognition Based on Long Short Time Memory Neural Network
计算机科学, 2021, 48(11A): 319-326. https://doi.org/10.11896/jsjkx.210700034
[9] 焦东来, 王浩翔, 吕海洋, 徐轲.
基于手机传感器轨迹的路面地物检测方法
Road Surface Object Detection from Mobile Phone Based Sensor Trajectories
计算机科学, 2021, 48(11A): 283-289. https://doi.org/10.11896/jsjkx.210200145
[10] 李姝, 杨华, 宋波.
多层供应链网络中欠载失效和过载级联失效的协同演化研究
Study on Co-evolution of Underload Failure and Overload Cascading Failure in Multi-layer Supply Chain Network
计算机科学, 2021, 48(10): 351-358. https://doi.org/10.11896/jsjkx.200900144
[11] 诸珺文.
基于改进BP神经网络的SQL注入识别
SQL InJection Recognition Based on Improved BP Neural Network
计算机科学, 2020, 47(6A): 352-359. https://doi.org/10.11896/JsJkx.191200054
[12] 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋.
基于sEMG的改进SVM+BP肌力预测分层算法
Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG
计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143
[13] 林旭丹, 鲍士兼, 赵立昕, 赵成林.
基于Hyperledger Fabric的汽车供应链系统的方案设计与性能分析
Design and Performance Analysis of Automotive Supply Chain System Based on Hyperledger Fabric
计算机科学, 2020, 47(6A): 546-551. https://doi.org/10.11896/JsJkx.190700022
[14] 周立鹏, 孟利民, 周磊, 蒋维, 董建平.
基于BP神经网络的摔倒检测算法
Fall Detection Algorithm Based on BP Neural Network
计算机科学, 2020, 47(6A): 242-246. https://doi.org/10.11896/JsJkx.191000077
[15] 陈燕文,李坤,韩焱,王燕平.
基于MFCC和常数Q变换的乐器音符识别
Musical Note Recognition of Musical Instruments Based on MFCC and Constant Q Transform
计算机科学, 2020, 47(3): 149-155. https://doi.org/10.11896/jsjkx.190100224
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!