OPEN
Let $a_n$ be a sequence of integers such that for every sequence of integers $b_n$ with $b_n/a_n\to 1$ the sum
\[\sum\frac{1}{b_n}\]
is irrational. Is $a_n=2^{2^n}$ such a sequence? Must such a sequence satisfy $a_n^{1/n}\to \infty$?
One possible definition of an 'irrationality sequence' (see also
[262] and
[264]).