Kovač and Tao [KoTa24c] have proved that $2^n$ is not such an irrationality sequence. More generally, they prove that any strictly increasing sequence of positive integers such that $\sum\frac{1}{a_n}$ converges and \[\liminf \left(a_n^2\sum_{k>n}\frac{1}{a_k^2}\right) >0 \] is not such an irrationality sequence. In particular, any strictly increasing sequence with $\limsup a_{n+1}/a_n <\infty$ is not such an irrationality sequence.
On the other hand, Kovač and Tao do prove that for any function $F$ with $\lim F(n+1)/F(n)=\infty$ there exists such an irrationality sequence with $a_n\sim F(n)$.