Abstract
A parametric radical system is introduced as a new concept within parametric ideals. It is demonstrated that an algorithm for computing the radical of a non-parametric ideal can be generalized to its parametric version by utilizing several tools related to parametric ideals. The keys to this generalization are two types of comprehensive Gröbner systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbott, J., Bigatti, A.M., Palezzato, E., Robbiano, L.: Computing and using minimal polynomials. J. Symb. Comput. 100, 137–163 (2020)
Becker, T., Weispfenning, V.: Gröbner Bases, A Computational Approach to Commutative Algebra (GTM 141). Springer, Heidelberg (1993)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, Heidelberg (1997)
Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6, 149–167 (1988)
Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of the ISSAC 2010, pp. 29–36. ACM (2010)
Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system. J. Symb. Comput. 49, 74–44 (2013)
Montes, A.: The Gröbner Cover. Springer, Heidelberg (2018)
Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32973-9_21
Nabeshima, K., Tajima, S.: CSSg method for several genericities of parametric systems. Jpn. J. Ind. Appl. Math. 40, 315–337 (2023)
Nabeshima, K.: Generic Gröbner basis of a parametric ideal and its application to a comprehensive Gröbner systems. Appl. Algebra Eng. Commun. Comput. 35, 55–70 (2024)
Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html
Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of the ISSAC 2006, pp. 326–331. ACM (2006)
Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14, 1–29 (1992)
Yokoyama, K.: Stability of parametric decomposition. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 391–402. Springer, Heidelberg (2006). https://doi.org/10.1007/11832225_39
Acknowledgments
This work has been partly supported by JSPS Grant-in-Aid for Scientific Research(C)(No. 23K03076).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kuramochi, R., Tanaka, K., Nabeshima, K. (2024). On the Radical of a Polynomial Ideal with Parameters. In: Boulier, F., Mou, C., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2024. Lecture Notes in Computer Science, vol 14938. Springer, Cham. https://doi.org/10.1007/978-3-031-69070-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-69070-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-69069-3
Online ISBN: 978-3-031-69070-9
eBook Packages: Computer ScienceComputer Science (R0)