[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Curse of Connectivity: t-Total Vertex (Edge) Cover

  • Conference paper
Computing and Combinatorics (COCOON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6196))

Included in the following conference series:

Abstract

We investigate the effect of certain natural connectivity constraints on the parameterized complexity of two fundamental graph covering problems, namely k-Vertex Cover and k-Edge Cover. Specifically, we impose the additional requirement that each connected component of a solution have at least t vertices (resp. edges from the solution), and call the problem t-total vertex cover (resp. t-total edge cover). We show that

  • both problems remain fixed-parameter tractable with these restrictions, with running times of the form \({\mathcal O}^{*}\left(c^{k}\right)\) for some constant c > 0 in each case;

  • for every t ≥ 2, t-total vertex cover has no polynomial kernel unless the Polynomial Hierarchy collapses to the third level;

  • for every t ≥ 2, t-total edge cover has a linear vertex kernel of size \(\frac{t+1}{t}k\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the Association for Computing Machinery 42(4), 844–856 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems (extended abstract). In: Hariharan, R., Mukund, M., Vinay, V. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2008, Bangalore, India, December 9-11. LIPIcs, vol. 2, pp. 1–12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2008)

    Google Scholar 

  3. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 71–82. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Beyer, T., Hedetniemi, S.M.: Constant time generation of rooted trees. SIAM Journal on Computing 9(4), 706–712 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Chen, J., Kanj, I.A., Jia, W.: Vertex Cover: Further observations and further improvements. Journal of Algorithms 41(2), 280–301 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for Vertex Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  11. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: Complexity and algorithms. Journal of Discrete Algorithms 7, 149–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2006)

    Google Scholar 

  14. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. In: Kannan, R., Kumar, K.N. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2009). LIPIcs, vol. 4, pp. 193–201. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2009)

    Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP–Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  16. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory of Computing Systems 41(3), 501–520 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proceedings of the London Mathematical Society 17 (1918)

    Google Scholar 

  18. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Communications, pp. 85–103 (1972)

    Google Scholar 

  19. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Intuitive algorithms and t-vertex cover. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 598–607. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 3. Addison-Wesley, Reading (1998)

    Google Scholar 

  22. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and Expand: Improved algorithms for Connected Vertex Cover and Tree Cover. Theory of Computing Systems 43(2), 234–253 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science (FOCS ’95), pp. 182–193. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  24. Norman, R.Z., Rabin, M.O.: An algorithm for a minimum cover of a graph. Proceedings of the American Mathematical Society 10, 315–319 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  25. Otter, R.: The number of trees. Annals of Mathematics 49(3), 583–599 (1948)

    Article  MathSciNet  Google Scholar 

  26. Zoghbi, A., Stojmenovic, I.: Fast algorithms for generating integer partitions. International Journal of Computer Mathematics 70, 319–332 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernau, H., Fomin, F.V., Philip, G., Saurabh, S. (2010). The Curse of Connectivity: t-Total Vertex (Edge) Cover. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14031-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14030-3

  • Online ISBN: 978-3-642-14031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics