Abstract
We investigate the effect of certain natural connectivity constraints on the parameterized complexity of two fundamental graph covering problems, namely k-Vertex Cover and k-Edge Cover. Specifically, we impose the additional requirement that each connected component of a solution have at least t vertices (resp. edges from the solution), and call the problem t-total vertex cover (resp. t-total edge cover). We show that
-
both problems remain fixed-parameter tractable with these restrictions, with running times of the form \({\mathcal O}^{*}\left(c^{k}\right)\) for some constant c > 0 in each case;
-
for every t ≥ 2, t-total vertex cover has no polynomial kernel unless the Polynomial Hierarchy collapses to the third level;
-
for every t ≥ 2, t-total edge cover has a linear vertex kernel of size \(\frac{t+1}{t}k\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the Association for Computing Machinery 42(4), 844–856 (1995)
Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems (extended abstract). In: Hariharan, R., Mukund, M., Vinay, V. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2008, Bangalore, India, December 9-11. LIPIcs, vol. 2, pp. 1–12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2008)
Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 71–82. Springer, Heidelberg (2009)
Beyer, T., Hedetniemi, S.M.: Constant time generation of rooted trees. SIAM Journal on Computing 9(4), 706–712 (1980)
Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)
Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)
Chen, J., Kanj, I.A., Jia, W.: Vertex Cover: Further observations and further improvements. Journal of Algorithms 41(2), 280–301 (2001)
Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for Vertex Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)
Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)
Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: Complexity and algorithms. Journal of Discrete Algorithms 7, 149–167 (2009)
Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2006)
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. In: Kannan, R., Kumar, K.N. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2009). LIPIcs, vol. 4, pp. 193–201. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2009)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP–Completeness. Freeman, San Francisco (1979)
Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory of Computing Systems 41(3), 501–520 (2007)
Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proceedings of the London Mathematical Society 17 (1918)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Communications, pp. 85–103 (1972)
Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)
Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Intuitive algorithms and t-vertex cover. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 598–607. Springer, Heidelberg (2006)
Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 3. Addison-Wesley, Reading (1998)
Mölle, D., Richter, S., Rossmanith, P.: Enumerate and Expand: Improved algorithms for Connected Vertex Cover and Tree Cover. Theory of Computing Systems 43(2), 234–253 (2008)
Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science (FOCS ’95), pp. 182–193. IEEE Computer Society Press, Los Alamitos (1995)
Norman, R.Z., Rabin, M.O.: An algorithm for a minimum cover of a graph. Proceedings of the American Mathematical Society 10, 315–319 (1959)
Otter, R.: The number of trees. Annals of Mathematics 49(3), 583–599 (1948)
Zoghbi, A., Stojmenovic, I.: Fast algorithms for generating integer partitions. International Journal of Computer Mathematics 70, 319–332 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fernau, H., Fomin, F.V., Philip, G., Saurabh, S. (2010). The Curse of Connectivity: t-Total Vertex (Edge) Cover. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-14031-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14030-3
Online ISBN: 978-3-642-14031-0
eBook Packages: Computer ScienceComputer Science (R0)