数学、とくに位相幾何学において、n 次元の単体(たんたい、英: simplex)とは、「r ≤ n ならばどの r + 1 個の点も r − 1 次元の超平面に同時に含まれることのない」ような n + 1 個の点からなる集合の凸包のことで、点・線分・三角形・四面体・五胞体といった基本的な図形の n 次元への一般化である。 全ての辺の長さが等しい時、正単体と言う。 単体は、頂点の位置さえ決めればそれのみによって一意的に決定される。さらに単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学をあるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。