[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coordinated regulation of life and death by RB

Key Points

  • Loss of RB sensitizes cells to apoptosis.

  • Ectopic apoptosis of Rb-null neurons is not a default outcome of inappropriate S-phase entry.

  • RB can be inactivated by phosphorylation and degradation.

  • RB degradation is required for tumour necrosis factor type I receptor-induced apoptosis.

  • Most sporadic human cancers inactivate RB function by exploiting pathways that regulate RB phosphorylation.

  • Loss of RB can only contribute to tumour development under conditions in which apoptosis response is compromised.

Abstract

Recent studies have shown that RB can inhibit apoptosis, independently of its ability to block cell proliferation. This poses the question of how cells choose to grow or to die when RB becomes inactivated. RB is phosphorylated following mitogenic stimulation, but it is degraded in response to death stimuli. Most sporadic cancers also inactivate RB by phosphorylation, rather than losing RB entirely — possibly to exploit the survival advantage conferred by RB under stress. Drawing from the different mechanisms of RB inactivation, we propose two models for ways in which cells use RB to make the choice of life versus death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of RB inactivation.
Figure 2: Genetic inactivation of Rb sensitizes developing neurons and skeletal muscle to apoptosis.
Figure 3: Two explanations for the apoptosis phenotype of Rb-null cells.
Figure 4: Two models for the differential regulation of proliferation versus apoptosis.

Similar content being viewed by others

References

  1. Nevins, J. R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Harbour, J. W. & Dean, D. C. Rb function in cell-cycle regulation and apoptosis. Nature Cell Biol. 2, E65–E67 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Morgenbesser, S. D., Williams, B. O., Jacks, T. & DePinho, R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Macleod, K. F., Hu, Y. & Jacks, T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 15, 6178–6188 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Saavedra, H. I. et al. Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb. Cell Growth Differ. 13, 215–225 (2002).

    CAS  PubMed  Google Scholar 

  11. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  12. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001). This study identified E2F and p53 binding sites in the Aapf1 promoter. It was shown that Apaf1 mRNA and protein were inappropriately upregulated in the Rb-null embryos.

    Article  CAS  PubMed  Google Scholar 

  13. Fortin, A. et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155, 207–216 (2001). By infecting Apaf1-null and wild-type neurons with an adenoviral vector that expresses 53, this study showed that Apaf1 is required for p53 to induce apoptosis in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo, Z., Yikang, S., Yoshida, H., Mak, T. W. & Zacksenhaus, E. Inactivation of the retinoblastoma tumor suppressor induces apoptosis protease-activating factor-1 dependent and independent apoptotic pathways during embryogenesis. Cancer Res. 61, 8395–8400 (2001).

    CAS  PubMed  Google Scholar 

  15. Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–391 (2001). In this study, Rb−/− E2f3−/− embryos were examined and it was shown that E2f3-knockout mice could suppress the ectopic apoptosis phenotype of Rb-null neurons. These results indicate that the deregulation of E2f3 contributed to neuronal apoptosis in the absence of Rb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001). Experimenting with mouse embryonic fibroblasts from E2f1-, E2f2- and E2f3-knockout mice, this study showed that E2f1, but not E2f2 or E2f3, was required for Myc-induced apoptosis.

    Article  CAS  PubMed  Google Scholar 

  17. Simpson, M. T. et al. Caspase 3 deficiency rescues peripheral nervous system defect in retinoblastoma nullizygous mice. J. Neurosci. 21, 7089–7098 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, T. S. et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature Med. 6, 1241–1247 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002). Using in silico methods, this study identified E2F binding sites in the promoters of several caspase genes, including CASP3, 7, 8 and 9. When the expression of these caspases was examined during cell-cycle progression, it was found that some, but not all, of these caspases were induced as cells enter S phase.

    Article  CAS  PubMed  Google Scholar 

  20. Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, Z. et al. E2F1 and p53 are dispensable, whereas p21(Waf1/Cip1) cooperates with Rb to restrict endoreduplication and apoptosis during skeletal myogenesis. Dev. Biol. 227, 8–41 (2000). This study showed that, unlike the developing nervous systems, E2f1 and p53 were not required for the ectopic apoptosis phenotype of Rb-null skeletal muscle.

    Article  CAS  PubMed  Google Scholar 

  22. Iavarone, A., Garg, P., Lasorella, A., Hsu, J. & Israel, M. A. The helix–loop–helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 8, 1270–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Zacksenhaus, E. et al. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev. 10, 3051–3064 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J., Guo, K., Wills, K. N. & Walsh, K. Rb functions to inhibit apoptosis during myocyte differentiation. Cancer Res. 57, 351–354 (1997).

    CAS  PubMed  Google Scholar 

  25. Ferguson, K. L. et al. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J. 21, 3337–3346 (2002). By examining conditional Rb-knockout mice, this study showed that ectopic apoptosis could be uncoupled from the ectopic S-phase entry in the Rb-null neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MacPherson, D. et al. Conditional mutation of Rb causes cell cycle defects without apoptosis in the central nervous system. Mol. Cell. Biol. 23, 1044–1053 (2003).By experimenting with an independently derived strain of conditional Rb-knockout mice, this study reported observations similar to those in the study cited in reference 25. The authors conclude that hypoxia induced by the developmental defect of Rb-null erythrocytes contributes to the ectopic apoptosis phenotype of neurons in Rb-null embryos. So, the ectopic apoptosis phenotypes in Rb-null embryos is a non-cell-autonomous event.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Field, S. J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001). Using inducible E2F-ER proteins combined with microarray analyses, this study found that E2Fs activated S-phase genes and genes involved in differentiation, development and apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chau, B. N. et al. Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nature Cell Biol. 4, 757–765 (2002). Through the generation of Rb-MI knockin mice that express a caspase-resistant Rb protein, this study showed that caspase-mediated degradation of Rb is required for tumor necrosis factor receptor type I, but not DNA damage to induce apoptosis. These results indicate that Rb is an anti-apoptotic factor that regulates selective death pathways.

    Article  CAS  PubMed  Google Scholar 

  30. Tan, X. & Wang, J. Y. The caspase-RB connection in cell death. Trends Cell Biol. 8, 116–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Fattman, C. L., Delach, S. M., Dou, Q. P. & Johnson, D. E. Sequential two-step cleavage of the retinoblastoma protein by caspase-3/-7 during etoposide-induced apoptosis. Oncogene 20, 2918–2926 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Fattman, C. L., An, B. & Dou, Q. P. Characterization of interior cleavage of retinoblastoma protein in apoptosis. J. Cell. Biochem. 67, 399–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Tan, X., Martin, S. J., Green, D. R. & Wang, J. Y. Degradation of retinoblastoma protein in tumor necrosis factor- and CD95-induced cell death. J. Biol. Chem. 272, 9613–9616 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Boutillier, A. L., Trinh, E. & Loeffler, J. P. Caspase-dependent cleavage of the retinoblastoma protein is an early step in neuronal apoptosis. Oncogene 19, 2171–2178 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang, G., Yang, J., Minemoto, Y. & Lin, A. Blocking caspase-3-mediated proteolysis of IKKβ suppresses TNF-α-induced apoptosis. Mol. Cell 8, 1005–1016 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, J. Y. Regulation of cell death by the Abl tyrosine kinase. Oncogene 19, 5643–5650 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Welch, P. J. & Wang, J. Y. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75, 779–790 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Shim, J. et al. Rb protein down-regulates the stress-activated signals through inhibiting c-Jun N-terminal kinase/stress-activated protein kinase. J. Biol. Chem. 275, 14107–14111 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Doostzadeh-Cizeron, J., Evans, R., Yin, S. & Goodrich, D. W. Apoptosis induced by the nuclear death domain protein p84N5 is inhibited by association with Rb protein. Mol. Biol. Cell 10, 3251–3261 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doostzadeh-Cizeron, J., Yin, S. & Goodrich, D. W. Apoptosis induced by the nuclear death domain protein p84N5 is associated with caspase-6 and NF-κB activation. J. Biol. Chem. 275, 25336–25341 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Pennaneach, V. et al. The large subunit of replication factor C promotes cell survival after DNA damage in an LxCxE motif- and Rb-dependent manner. Mol. Cell 7, 715–727 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Schwarz, J. K. et al. Interactions of the p107 and Rb proteins with E2F during the cell proliferation response. EMBO J. 12, 1013–1020 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barkett, M. & Gilmore, T. D. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18, 6910–6924 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Merlo, A. et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med. 1, 686–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M. & Issa, J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Zukerberg, L. R. et al. Cyclin D1 (PRAD1) protein expression in breast cancer: approximately one-third of infiltrating mammary carcinomas show overexpression of the cyclin D1 oncogene. Mod. Pathol. 8, 560–567 (1995).

    CAS  PubMed  Google Scholar 

  53. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. White, E. Regulation of p53-dependent apoptosis by E1A and E1B. Curr. Top. Microbiol. Immunol. 199, 34–58 (1995).

    PubMed  Google Scholar 

  55. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000). In this study, tissue-specific knockout of Rb was introduced into the Trp53-knockout background. This led to the formation of medulloblastoma in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mairal, A. et al. Detection of chromosome imbalances in retinoblastoma by parallel karyotype and CGH analyses. Genes Chromosom. Cancer 28, 370–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, D., Gallie, B. L. & Squire, J. A. Minimal regions of chromosomal imbalance in retinoblastoma detected by comparative genomic hybridization. Cancer Genet. Cytogenet. 129, 57–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, E. Y. et al. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8, 2008–2021 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Hu, N. et al. Heterozygous Rb-1 delta 20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9, 1021–1027 (1994).

    CAS  PubMed  Google Scholar 

  60. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–1609 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, Z. & Zacksenhaus, E. Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma. J. Cell Biol. 156, 185–198 (2002). This study examined several lines of transgenic mice that express a phosphorylation-resistant (constitutively active) Rb in the mouse mammary epithelium. Some of these mice developed adenocarcinomas, indicating that constitutive Rb activity facilitates tumour development in vivo . This could be because the constitutively active form of Rb protects mammary epithelial cells from stress-induced apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harvey, M., Vogel, H., Lee, E. Y., Bradley, A. & Donehower, L. A. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res. 55, 1146–1151 (1995).

    CAS  PubMed  Google Scholar 

  63. Williams, B. O. et al. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nature Genet. 7, 480–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−)mice. Nature Genet. 18, 360–364 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Wang lab members for stimulating discussion and critical reading of the manuscript throughout its preparation. B.N.C is supported by a postdoctoral fellowship from the Damon Runyon Cancer Research Foundation. This work is supported by a National Cancer Institute grant awarded to J.Y.J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Y.J. Wang.

Related links

Related links

DATABASES

LocusLink

ABL

AKT

Apaf1

Casp3

CDK4

CDK6

Cdkn1a

CDKN2A

cyclin D1

E2f1

E2F1

E2f3

Id2

IKKβ

NF-κB

Rb

RB

RIP

TNF-α

TNFRI

TNFRII

Trp53

OMIM

hereditary retinoblastoma

FURTHER INFORMATION

CancerGeneticsWeb

Mouse Knockout and Mutation database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, B., Wang, J. Coordinated regulation of life and death by RB. Nat Rev Cancer 3, 130–138 (2003). https://doi.org/10.1038/nrc993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc993

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing