[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
create a website
The Recurrence Interval Difference of Power Load in Heavy/Light Industries of China. (2018). Fu, Jiasha ; Pu, Zhengning ; Zhang, Chi.
In: Energies.
RePEc:gam:jeners:v:11:y:2018:i:1:p:106-:d:125285.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 76

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A New Perspective on Improving Hospital Energy Administration Based on Recurrence Interval Analysis. (2018). Chao, Wei ; Wang, Fei.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:5:p:1303-:d:148029.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Altmann E.G.; Kantz H.. Recurrence time analysis, long-term correlations, and extreme events. Phys. Rev. E 2005, 71, 056106.
    Paper not yet in RePEc: Add citation now
  2. Analysis and Prediction Report on National Electricity Demand and Supply in 2017. 2017.
    Paper not yet in RePEc: Add citation now
  3. Azadeh A.; Ghaderi S.; Tarverdian S.; Saberi M.. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Appl. Math. Comput. 2007, 186, 1731-1741.
    Paper not yet in RePEc: Add citation now
  4. Bashir Z.; El-Hawary M.. Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans. Power Syst. 2009, 24, 20-27.
    Paper not yet in RePEc: Add citation now
  5. Bianco V.; Manca O.; Nardini S.. Electricity consumption forecasting in Italy using linear regression models. Energy 2009, 34, 1413-1421.

  6. Boeing G.. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

  7. Bogachev M.I.; Eichner J.F.; Bunde A.. Effect of nonlinear correlations on the statistics of return intervals in multifractal data sets. Phys. Rev. Lett. 2007, 99, 240601.
    Paper not yet in RePEc: Add citation now
  8. Bogachev M.I.; Kireenkov I.S.; Nifontov E.M.; Bunde A.. Statistics of return intervals between long heartbeat intervals and their usability for online prediction of disorders. New J. Phys. 2009, 11, 063036.
    Paper not yet in RePEc: Add citation now
  9. Bunde A.; Eichner J.F.; Havlin S.; Kantelhardt J.W.. Return intervals of rare events in records with long-term persistence. Phys. A Stat. Mech. Appl. 2004, 342, 308-314.

  10. Bunde A.; Eichner J.F.; Kantelhardt J.W.; Havlin S.. Long-term memory: A natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Phys. Rev. Lett. 2005, 94, 048701.
    Paper not yet in RePEc: Add citation now
  11. Burioni R.; Gradenigo G.; Sarracino A.; Vezzani A.; Vulpiani A.. Rare events and scaling properties in field-induced anomalous dynamics. J. Stat. Mech. Theory Exp. 2013, 2013, 1267-1279.
    Paper not yet in RePEc: Add citation now
  12. Cao G.; Cao J.; Xu L.. Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA. Phys. A Stat. Mech. Appl. 2013, 392, 797-807.

  13. Cardella E.; Ewing B.T.; Williams R.B.. Price volatility and residential electricity decisions: Experimental evidence on the convergence of energy generating source. Energy Econ. 2017, 62, 428-437.

  14. Cardona M.; Chamberlin R.V.; Marx W.. The history of the stretched exponential function. Ann. Phys. 2010, 16, 842-845.
    Paper not yet in RePEc: Add citation now
  15. Cerjan M.; Matijas M.; Delimar M.. Dynamic Hybrid Model for Short-Term Electricity Price Forecasting. Energies 2014, 7, 3304-3318.

  16. Chang P.-C.; Fan C.-Y.; Lin J.-J.. Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Electr. Power Energy Syst. 2011, 33, 17-27.
    Paper not yet in RePEc: Add citation now
  17. Chen Z.; Ivanov P.; Hu K.; Stanley H.E.. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 2002, 65, 041107.
    Paper not yet in RePEc: Add citation now
  18. Chow J.. Power-Law Distributions In Events Involving Nuclear and Radiological Materials; Massachusetts Institute of Technology: Cambridge, MA, USA, 2009.
    Paper not yet in RePEc: Add citation now
  19. Ciarreta A.; Muniain P.; Zarraga A.. Modeling and forecasting realized volatility in German-Austrian continuous intraday electricity prices. J. Forecast. 2017, 36, 680-690.

  20. Clauset A.; Shalizi C.R.; Newman M.E.J.. Power-Law Distributions in Empirical Data. SIAM Rev. 2009, 51, 661-703.
    Paper not yet in RePEc: Add citation now
  21. de Benicio R.B.; Stošić T.; de Figueirêdo P.H.; Stošić B.D.. Multifractal behavior of wild-land and forest fire time series in Brazil. Phys. A Stat. Mech. Appl. 2013, 392, 6367-6374.
    Paper not yet in RePEc: Add citation now
  22. Dologlou E.. Stability of a power law relation between characteristics of earthquakes and electric precursors. Nat. Hazards Earth Syst. Sci. 2012, 12, 1783-1787.
    Paper not yet in RePEc: Add citation now
  23. Dong B.; Li Z.; Rahman S.M.M.; Vega R.. A hybrid model approach for forecasting future residential electricity consumption. Energy Build. 2016, 117, 341-351.
    Paper not yet in RePEc: Add citation now
  24. Ekonomou L.; Oikonomou D.S.. Application and comparison of several artificial neural networks for forecasting the Hellenic daily electricity demand load. Proceedings of the 7th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Databases, Cambridge, UK, 20–22 February 2008, ; pp. 67-71.
    Paper not yet in RePEc: Add citation now
  25. Elder J.; Serletis A.. Long memory in energy futures prices. Rev. Financ. Econ. 2008, 17, 146-155.

  26. Forte M.F.; Hanson J.L.; Hagerman G.. North Atlantic Wind and Wave Climate: Observed Extremes, Hindcast Performance, and Extratropical Recurrence Intervals. Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012, .
    Paper not yet in RePEc: Add citation now
  27. Fumo N.; Rafe Biswas M.A.. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332-343.

  28. Gao R.; Wang F.; Liu W.. Competitive Electricity Price Characteristic Analysis Based On Multifractal Detrended Moving Average Analysis. Proceedings of the 6th International Conference on Electrical and Control Engineering (ICECE2015) and The 4th International Conference on Materials Science and Manufacturing (ICMSM2015), Shanghai, China, 14–15 August 2015, ; pp. 129-134.
    Paper not yet in RePEc: Add citation now
  29. Gillespie C.S.. A complete data frame work for fitting power law distributions. arXiv; 2014.
    Paper not yet in RePEc: Add citation now
  30. Gong L.; Zhang S.. The Inability of Japan to Adapt to China’s Rise and China’s Strategic Response. Contemp. Int. Relat. 2014, 24, 27-31.
    Paper not yet in RePEc: Add citation now
  31. Hagan M.T.; Behr S.M.. The time series approach to short term load forecasting. IEEE Trans. Power Syst. 1987, 2, 785-791.
    Paper not yet in RePEc: Add citation now
  32. Hippert H.S.; Taylor J.W.. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting. Neural Netw. 2010, 23, 386-395.
    Paper not yet in RePEc: Add citation now
  33. Hou X.Y.; Qiu W.; Ping J.U.; Zhao J.Q.; Luo J.Y.; Zhu H.. Study of the Optimization of Under-frequency Load Shedding in Jiangsu Power Grid. Jiangsu Electr. Eng. 2008, 27.
    Paper not yet in RePEc: Add citation now
  34. Hu K.; Ivanov P.C.; Chen Z.; Carpena P.; Stanley H.E.. Effect of trends on detrended fluctuation analysis. Phys. Rev. E 2001, 64, 011114.
    Paper not yet in RePEc: Add citation now
  35. Huo C.Y.; Lu Y.; Huang X.L.; Liu H.X.; Ning X.B.. Multi-scale Recurrence Quantification Analysis of Heartbeat Interval Series in Healthy vs. Heart Failure Subjects. Proceedings of the 2014 7th International Conference on Biomedical Engineering and Informatics (Bmei 2014), Dalian, China, 14–16 October 2014, ; pp. 347-352.
    Paper not yet in RePEc: Add citation now
  36. Izvekov S.; Voth G.A.. A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 2005, 109, 2469-2473.
    Paper not yet in RePEc: Add citation now
  37. Jan W.; Kantelhardt S.A.Z.; Koscielny-Bundec E.; Havlind S.; Bunde A.; Stanley H.E.. Multifractal detrended $uctuation analysis of nonstationary time series. Phys. A Stat. Mech. Appl. 2002, 316, 87-114.

  38. Jiang A.; Gao J.. Fractal analysis of complex power load variations through adaptive multiscale filtering. Proceedings of the International Conference on Behavioral, Economic and Socio-Cultural Computing, Cracow, Poland, 16–18 October 2017, ; pp. 1-5.
    Paper not yet in RePEc: Add citation now
  39. Kandananond K.. Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach. Energies 2011, 4, 1246-1257.

  40. Kisslinger C.. The stretched exponential function as an alternative model for aftershock decay rate. J. Geophys. Res. Solid Earth 1993, 98, 1913-1921.
    Paper not yet in RePEc: Add citation now
  41. Laherrère J.; Sornette D.. Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales. Eur. Phys. J. B Condens. Matter Complex Syst. 1998, 2, 525-539.
    Paper not yet in RePEc: Add citation now
  42. Lee K.; Siegel J.; Webb S.; Leveque-Fort S.; Cole M.; Jones R.; Dowling K.; Lever M.; French P.. Application of the stretched exponential function to fluorescence lifetime imaging. Biophys. J. 2001, 81, 1265-1274.
    Paper not yet in RePEc: Add citation now
  43. Li Y.; Guo P.; Li X.. Short-Term Load Forecasting Based on the Analysis of User Electricity Behavior. Algorithms 2016, 9.
    Paper not yet in RePEc: Add citation now
  44. Liang J.; Liang Y.. Analysis and Modeling for China’s Electricity Demand Forecasting Based on a New Mathematical Hybrid Method. Information 2017, 8.
    Paper not yet in RePEc: Add citation now
  45. Liao G.-C.; Tsao T.-P.. Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Trans. Evolut. Comput. 2006, 10, 330-340.
    Paper not yet in RePEc: Add citation now
  46. Lin A.; Ma H.; Shang P.. The scaling properties of stock markets based on modified multiscale multifractal detrended fluctuation analysis. Phys. A Stat. Mech. Appl. 2015, 436, 525-537.

  47. Liu C.; Dong P.; Shi Y.. Recurrence interval of the 2008 Mw 7.9 Wenchuan earthquake inferred from geodynamic modelling stress buildup and release. J. Geodyn. 2017, 110, 1-11.
    Paper not yet in RePEc: Add citation now
  48. Liu W.; Shang J.; Zhou W.; Wen F.; Lin Z.. Evaluation of value-at-risk in electricity markets based on multifractal theory. Autom. Electr. Power Syst. 2013, 37, 48-54.
    Paper not yet in RePEc: Add citation now
  49. Müller-Plathe F.. Coarse-graining in polymer simulation: From the atomistic to the mesoscopic scale and back. ChemPhysChem 2002, 3, 754-769.
    Paper not yet in RePEc: Add citation now
  50. Matthews J.O.; Hopcraft K.I.; Jakeman E.; Siviour G.B.. Accuracy analysis of measurements on a stable power-law distributed series of events. J. Phys. A Gen. Phys. 2006, 39, 45.
    Paper not yet in RePEc: Add citation now
  51. McSharry P.E.; Bouwman S.; Bloemhof G.. Probabilistic Forecasts of the Magnitude and Timing of Peak Electricity Demand. IEEE Trans. Power Syst. 2005, 20, 1166-1172.
    Paper not yet in RePEc: Add citation now
  52. Mingli P.. The Global Electricity Report in 2015. 2015.
    Paper not yet in RePEc: Add citation now
  53. Murguia J.S.; Pérez-Terrazas J.E.; Rosu H.C.. Multifractal properties of elementary cellular automata in a discrete wavelet approach of MF-DFA. EPL Europhys. Lett. 2009, 87, 28003.
    Paper not yet in RePEc: Add citation now
  54. Ning A.N.; Zhou S.X.; Zhu L.Z.; Wang Q.H.; Zong-Xiang L.U.; Wei H.U.; Wang X.Y.. Analysis of 2006 Jiangsu power grid voltage stability influenced by load characteristics. Electr. Power 2006, 39, 16-20.
    Paper not yet in RePEc: Add citation now
  55. Nogales F.J.; Contreras J.; Conejo A.J.; Espínola R.. Forecasting next-day electricity prices by time series models. IEEE Trans. Power Syst. 2002, 17, 342-348.
    Paper not yet in RePEc: Add citation now
  56. Pérez-García J.; Moral-Carcedo J.. Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain. Energy 2016, 97, 127-143.

  57. Park D.C.; El-Sharkawi M.; Marks R.; Atlas L.; Damborg M.. Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 1991, 6, 442-449.
    Paper not yet in RePEc: Add citation now
  58. Peng C.K.; Buldyrev S.V.; Havlin S.; Simons M.; Stanley H.E.; Goldberger A.L.. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685-1689.
    Paper not yet in RePEc: Add citation now
  59. Quilumba F.L.; Lee W.-J.; Huang H.; Wang D.Y.; Szabados R.L.. Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer Behavior Similarities. IEEE Trans. Smart Grid 2015, 6, 911-918.
    Paper not yet in RePEc: Add citation now
  60. Shi C.K.; Yan W.Q.; Zhang X.H.; Zhang B.; Fan Y.H.; Tang W.. Heavy overload forecasting of distribution transformer during the spring festival based on BP network and grey model. J. Electr. Power Sci. Technol. 2016, 31.
    Paper not yet in RePEc: Add citation now
  61. Sreenivasan K.R.. Fractals and Multifractals in Fluid Turbulence. Annu. Rev. Fluid Mech. 1991, 23, 539-604.
    Paper not yet in RePEc: Add citation now
  62. Suh D.; Chang S.. An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea. Energies 2012, 5, 4497-4516.

  63. Sun J.; Niu D.; Li C.. Study on Chaos Characteristics of Electricity Price Based on Power-Law Distribution. Lect. Notes Electr. Eng. 2011, 121, 503-510.
    Paper not yet in RePEc: Add citation now
  64. Sun K.; Chen X.; Cao Y.; Han Z.. Research on the Fractal Characteristics of Prices in Electricity Market. Proceedings of the IET International Conference on Advances in Power System Control, Operation and Management, Hong Kong, China, 30 October–2 November 2006, .
    Paper not yet in RePEc: Add citation now
  65. Sun K.; Han Z.X.. Fractal feature of prices in California electricity market. Energy Eng. 2006, 5, 1-3.
    Paper not yet in RePEc: Add citation now
  66. Suo Y.-Y.; Wang D.-H.; Li S.-P.. Risk estimation of CSI 300 index spot and futures in China from a new perspective. Econ. Model. 2015, 49, 344-353.

  67. Tepedino C.; Guarnaccia C.; Iliev S.; Popova S.; Quartieri J.. A Forecasting Model Based on Time Series Analysis Applied to Electrical Energy Consumption. Int. J. Math. Models Methods Appl. Sci. 2015, 9, 432-445.
    Paper not yet in RePEc: Add citation now
  68. To W.-M.; Lee P.K.C.; Lai T.-M.. Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models—The Case of Hong Kong. Energies 2017, 10.

  69. Ulagammai M.; Venkatesh P.; Kannan P.; Padhy N.P.. Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting. Neurocomputing 2007, 70, 2659-2667.
    Paper not yet in RePEc: Add citation now
  70. Wang F.; Liao G.P.; Li J.H.; Li X.C.; Zhou T.J.. Multifractal detrended fluctuation analysis for clustering structures of electricity price periods. Phys. A Stat. Mech. Appl. 2013, 392, 5723-5734.

  71. Williams R.T.; Goodwin L.B.; Sharp W.D.; Mozley P.S.. Reading a 400,000-year record of earthquake frequency for an intraplate fault. Proc. Natl. Acad. Sci. USA 2017, 114, 4893-4898.
    Paper not yet in RePEc: Add citation now
  72. Xia L.I.. Regression Forecasting of the Power Load in Jiangsu Province. Value Eng. 2014, 3, 64-65.
    Paper not yet in RePEc: Add citation now
  73. Xie W.-J.; Jiang Z.-Q.; Zhou W.-X.. Extreme value statistics and recurrence intervals of NYMEX energy futures volatility. Econ. Model. 2014, 36, 8-17.

  74. Yamamoto Y.; Hughson R.L.. Coarse-graining spectral analysis: New method for studying heart rate variability. J. Appl. Physiol. 1991, 71, 1143-1150.
    Paper not yet in RePEc: Add citation now
  75. Yamasaki K.; Muchnik L.; Havlin S.; Bunde A.; Stanley H.E.. Scaling and memory in volatility return intervals in financial markets. Proc. Natl. Acad. Sci. USA 2005, 102, 9424-9428.
    Paper not yet in RePEc: Add citation now
  76. Yang J.Y.; Zhou Q.; Zhao H.D.; Tan J.. Affection study on load and electricity consumption of Jiangsu power grid during Spring Festival. Power Demand Side Manag. 2015, 17.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Using inclusive wealth for policy evaluation: Application to electricity infrastructure planning in oil-exporting countries. (2017). Collins, Ross D ; Clark, William C ; de Weck, Olivier L ; Selin, Noelle E.
    In: Ecological Economics.
    RePEc:eee:ecolec:v:133:y:2017:i:c:p:23-34.

    Full description at Econpapers || Download paper

  2. Modeling of district load forecasting for distributed energy system. (2017). Zhou, Ruoyu ; Ma, Weiwu ; Fang, Song ; Liu, Gang.
    In: Applied Energy.
    RePEc:eee:appene:v:204:y:2017:i:c:p:181-205.

    Full description at Econpapers || Download paper

  3. A probabilistic portfolio-based model for financial valuation of community solar. (2017). Shakouri, Mahmoud ; Kim, Yong-Woo ; Lee, Hyun Woo .
    In: Applied Energy.
    RePEc:eee:appene:v:191:y:2017:i:c:p:709-726.

    Full description at Econpapers || Download paper

  4. Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution. (2016). Hallgrimsson, Jonas Hlynur ; Davidsdottir, Brynhildur ; Fazeli, Reza.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:57:y:2016:i:c:p:1210-1226.

    Full description at Econpapers || Download paper

  5. Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain. (2016). Perez Garcia, Julian ; Moral Carcedo, Julian ; Moral-Carcedo, Julian ; Perez-Garcia, Julian.
    In: Energy.
    RePEc:eee:energy:v:97:y:2016:i:c:p:127-143.

    Full description at Econpapers || Download paper

  6. Continuous fractional-order grey model and electricity prediction research based on the observation error feedback. (2016). Yang, Yang ; Xue, Dingyu.
    In: Energy.
    RePEc:eee:energy:v:115:y:2016:i:p1:p:722-733.

    Full description at Econpapers || Download paper

  7. Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. (2016). Gunay, Merdem .
    In: Energy Policy.
    RePEc:eee:enepol:v:90:y:2016:i:c:p:92-101.

    Full description at Econpapers || Download paper

  8. Analysis and long term forecasting of electricity demand through a decomposition model: A case study for Spain. (2015). Perez Garcia, Julian ; Moral Carcedo, Julian.
    In: Working Papers in Economic Theory.
    RePEc:uam:wpaper:201507.

    Full description at Econpapers || Download paper

  9. A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: Hidden characteristic extraction and probability density prediction. (2015). Shao, Zhen ; Yu, Ben-Gong ; Yang, Shan-Lin ; Gao, Fei.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:52:y:2015:i:c:p:876-889.

    Full description at Econpapers || Download paper

  10. Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices. (2015). Bianco, Vincenzo ; Tagliafico, Luca A. ; Scarpa, Federico.
    In: Energy.
    RePEc:eee:energy:v:87:y:2015:i:c:p:153-164.

    Full description at Econpapers || Download paper

  11. Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i. (2015). Shao, Zhen ; Yang, Shan-Lin ; Zhang, Qiang ; Gao, Fei.
    In: Applied Energy.
    RePEc:eee:appene:v:156:y:2015:i:c:p:502-518.

    Full description at Econpapers || Download paper

  12. Seasonal climate forecasts for medium-term electricity demand forecasting. (2015). Alessandri, Andrea ; de Felice, Matteo ; Catalano, Franco .
    In: Applied Energy.
    RePEc:eee:appene:v:137:y:2015:i:c:p:435-444.

    Full description at Econpapers || Download paper

  13. Household electricity demand in Spanish regions. Public policy implications. (2014). Romero-Jordan, Desiderio ; Peasco, Cristina ; del Rio, Pablo.
    In: Working Papers.
    RePEc:ieb:wpaper:2013/6/doc2014-24.

    Full description at Econpapers || Download paper

  14. Green power in Ontario: A dynamic model-based analysis. (2014). Qudrat-Ullah, Hassan.
    In: Energy.
    RePEc:eee:energy:v:77:y:2014:i:c:p:859-870.

    Full description at Econpapers || Download paper

  15. Is there any relationship between energy and TFP (total factor productivity)? A panel cointegration approach for Italian regions. (2014). Meleddu, Marta ; Ladu, Maria Gabriela.
    In: Energy.
    RePEc:eee:energy:v:75:y:2014:i:c:p:560-567.

    Full description at Econpapers || Download paper

  16. Forecasting the annual electricity consumption of Turkey using an optimized grey model. (2014). Hamzacebi, Coskun ; Es, Huseyin Avni .
    In: Energy.
    RePEc:eee:energy:v:70:y:2014:i:c:p:165-171.

    Full description at Econpapers || Download paper

  17. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency. (2014). Comodi, Gabriele ; Renzi, Massimiliano ; Cioccolanti, Luca .
    In: Energy.
    RePEc:eee:energy:v:68:y:2014:i:c:p:92-103.

    Full description at Econpapers || Download paper

  18. A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption. (2014). Guan, Jingjing ; Tso, Geoffrey K. F., .
    In: Energy.
    RePEc:eee:energy:v:66:y:2014:i:c:p:722-731.

    Full description at Econpapers || Download paper

  19. Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types. (2014). Ardakani, F. J. ; Ardehali, M. M..
    In: Energy.
    RePEc:eee:energy:v:65:y:2014:i:c:p:452-461.

    Full description at Econpapers || Download paper

  20. Impact of oil prices, economic diversification policies and energy conservation programs on the electricity and water demands in Kuwait. (2014). Wood, Michael ; Alsayegh, Osamah A..
    In: Energy Policy.
    RePEc:eee:enepol:v:66:y:2014:i:c:p:144-156.

    Full description at Econpapers || Download paper

  21. Scenario analysis of nonresidential natural gas consumption in Italy. (2014). Scarpa, Federico ; Bianco, Vincenzo ; Tagliafico, Luca A..
    In: Applied Energy.
    RePEc:eee:appene:v:113:y:2014:i:c:p:392-403.

    Full description at Econpapers || Download paper

  22. An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption. (2013). Saberi, M. ; Gitiforouz, A. ; Azadeh, A..
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:47:y:2013:i:4:p:2163-2176.

    Full description at Econpapers || Download paper

  23. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting. (2013). Hong, Wei-Chiang ; Wang, Hua ; Li, Hong-Juan ; Fan, Guo-Feng ; Qing, Shan.
    In: Energies.
    RePEc:gam:jeners:v:6:y:2013:i:4:p:1887-1901:d:24702.

    Full description at Econpapers || Download paper

  24. A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing. (2013). Dai, Chao ; Cai, Yanpeng ; Wang, Xingwei ; Chen, Jiajun .
    In: Energy.
    RePEc:eee:energy:v:63:y:2013:i:c:p:334-344.

    Full description at Econpapers || Download paper

  25. Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case. (2013). Tanrisever, Fehmi ; Heeren, Michael ; Derinkuyu, Kursad .
    In: Energy.
    RePEc:eee:energy:v:58:y:2013:i:c:p:247-257.

    Full description at Econpapers || Download paper

  26. The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030. (2013). ozer, Betul ; ncecik, Selahattin ; Gorgun, Erdem .
    In: Energy.
    RePEc:eee:energy:v:49:y:2013:i:c:p:395-403.

    Full description at Econpapers || Download paper

  27. Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions. (2013). Radhi, Hassan ; Sharples, Stephen .
    In: Applied Energy.
    RePEc:eee:appene:v:112:y:2013:i:c:p:371-380.

    Full description at Econpapers || Download paper

  28. Forecasting Annual Power Generation Using a Harmony Search Algorithm-Based Joint Parameters Optimization Combination Model. (2012). Sun, Wei ; Wang, Jingmin ; Chang, Hong.
    In: Energies.
    RePEc:gam:jeners:v:5:y:2012:i:10:p:3948-3971:d:20674.

    Full description at Econpapers || Download paper

  29. Energy models for demand forecasting—A review. (2012). Samuel, Anand A. ; Suganthi, L..
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:16:y:2012:i:2:p:1223-1240.

    Full description at Econpapers || Download paper

  30. Long term energy demand projection and potential for energy savings of Croatian tourism–catering trade sector. (2012). Irsag, Bojan ; Pukec, Tomislav ; Dui, Neven.
    In: Energy.
    RePEc:eee:energy:v:48:y:2012:i:1:p:398-405.

    Full description at Econpapers || Download paper

  31. Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors. (2012). Pielow, Amy ; Sioshansi, Ramteen ; Roberts, Matthew C..
    In: Energy.
    RePEc:eee:energy:v:46:y:2012:i:1:p:533-540.

    Full description at Econpapers || Download paper

  32. Integrated resource planning for Iran: Development of reference energy system, forecast, and long-term energy-environment plan. (2012). Sadri, A. ; Ardehali, M. M. ; Amirnekooei, K..
    In: Energy.
    RePEc:eee:energy:v:46:y:2012:i:1:p:374-385.

    Full description at Econpapers || Download paper

  33. A user-mode distributed energy management architecture for smart grid applications. (2012). Karabiber, A. ; Alagoz, B. B. ; Kaygusuz, A..
    In: Energy.
    RePEc:eee:energy:v:44:y:2012:i:1:p:167-177.

    Full description at Econpapers || Download paper

  34. Decomposition and statistical analysis for regional electricity demand forecasting. (2012). Wang, Chi-Hsiang ; Seo, Seongwon ; Grozev, George .
    In: Energy.
    RePEc:eee:energy:v:41:y:2012:i:1:p:313-325.

    Full description at Econpapers || Download paper

  35. Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. (2012). Tseng, Cheng-Lung ; Fu, Hsin-Chia ; Pao, Hsiao-Tien.
    In: Energy.
    RePEc:eee:energy:v:40:y:2012:i:1:p:400-409.

    Full description at Econpapers || Download paper

  36. Scenario analysis on future electricity supply and demand in Japan. (2012). McLellan, Benjamin C. ; Tezuka, Tetsuo ; Zhang, QI ; Ishihara, Keiichi N..
    In: Energy.
    RePEc:eee:energy:v:38:y:2012:i:1:p:376-385.

    Full description at Econpapers || Download paper

  37. An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. (2012). Wang, Guangfu ; Che, JinXing .
    In: Energy.
    RePEc:eee:energy:v:37:y:2012:i:1:p:657-664.

    Full description at Econpapers || Download paper

  38. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China. (2012). Zhao, GE ; Wang, Yuanyuan ; Dong, Yao .
    In: Energy Policy.
    RePEc:eee:enepol:v:48:y:2012:i:c:p:284-294.

    Full description at Econpapers || Download paper

  39. Development of benchmark models for the Egyptian residential buildings sector. (2012). Evrard, Arnaud ; Attia, Shady ; Gratia, Elisabeth .
    In: Applied Energy.
    RePEc:eee:appene:v:94:y:2012:i:c:p:270-284.

    Full description at Econpapers || Download paper

  40. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. (2012). Yu, Lean ; Li, Jianping ; Wang, Shuai ; Tang, Ling.
    In: Applied Energy.
    RePEc:eee:appene:v:93:y:2012:i:c:p:432-443.

    Full description at Econpapers || Download paper

  41. Mid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models. (2011). Abdollahzade, Majid ; Iranmanesh, Hossein ; Miranian, Arash .
    In: Energies.
    RePEc:gam:jeners:v:5:y:2011:i:1:p:1-21:d:15373.

    Full description at Econpapers || Download paper

  42. Fuel consumption and emission prediction by Iranian power plants until 2025. (2011). Moghavvemi, Mahmoud ; Mazandarani, A. ; Chong, W. T. ; Mahlia, T. M. I., .
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:15:y:2011:i:3:p:1575-1592.

    Full description at Econpapers || Download paper

  43. Modeling CO2 emissions from fossil fuel combustion using the logistic equation. (2011). Niu, Dongxiao ; Meng, Ming.
    In: Energy.
    RePEc:eee:energy:v:36:y:2011:i:5:p:3355-3359.

    Full description at Econpapers || Download paper

  44. An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherical ARTMAP network) neural network. (2011). Wang, Jian-Zhou ; Tang, Yun ; Cai, Yuan ; Yang, Yu-Chen.
    In: Energy.
    RePEc:eee:energy:v:36:y:2011:i:2:p:1340-1350.

    Full description at Econpapers || Download paper

  45. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. (2011). Yu, Lean ; Wang, Shuai ; Tang, Ling.
    In: Energy.
    RePEc:eee:energy:v:36:y:2011:i:11:p:6542-6554.

    Full description at Econpapers || Download paper

  46. Estimates of the potential for energy conservation in the Chinese steel industry. (2011). Lin, Boqiang ; Wu, YA ; Zhang, LI.
    In: Energy Policy.
    RePEc:eee:enepol:v:39:y:2011:i:6:p:3680-3689.

    Full description at Econpapers || Download paper

  47. Modeling and forecasting of Turkeys energy consumption using socio-economic and demographic variables. (2011). AkpInar, Adem ; zsahin, Talat Sukru ; Kankal, Murat ; Komurcu, Murat Ihsan.
    In: Applied Energy.
    RePEc:eee:appene:v:88:y:2011:i:5:p:1927-1939.

    Full description at Econpapers || Download paper

  48. A seasonal hybrid procedure for electricity demand forecasting in China. (2011). Zhao, Weigang ; Wang, Jianzhou ; Zhu, Suling .
    In: Applied Energy.
    RePEc:eee:appene:v:88:y:2011:i:11:p:3807-3815.

    Full description at Econpapers || Download paper

  49. Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey. (2010). Cinar, Didem ; Daim, Tugrul ; Kayakutlu, Gulgun .
    In: Energy.
    RePEc:eee:energy:v:35:y:2010:i:4:p:1724-1729.

    Full description at Econpapers || Download paper

  50. Analysis and forecasting of nonresidential electricity consumption in Romania. (2010). Minea, Alina A. ; Bianco, Vincenzo ; Nardini, Sergio ; Manca, Oronzio .
    In: Applied Energy.
    RePEc:eee:appene:v:87:y:2010:i:11:p:3584-3590.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-02-19 03:28:37 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.