OFFSET
1,4
COMMENTS
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Washington Bomfim, Table of n, a(n) for n = 1..120
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
FORMULA
a(n) = Sum_{t=1, floor(n/2)}( t*F(n,t) ), where F(n,t) = Sum_{P_1(n,t)} (Product_{k=2..n} binomial(A000081(k-1) + c_k - 1, c_k)), where P_1(n, t) is the set of the partitions of n with t parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. - Washington Bomfim, Jul 08 2020
PROG
(PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1])); f[m+1] };
global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
F(n, t)={my(s=0, D, c, P_1); forpart(P_1 = n, D = Set(P_1); c = vector(#D);
for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k]) )
, [2, n], [t, t]); s};
seq(n) = sum(t=1, n\2, t*F(n, t) ); \\ Washington Bomfim, Jul 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition clarified by N. J. A. Sloane, May 29 2012
STATUS
approved