[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001011
Number of ways to fold a strip of n blank stamps.
(Formerly M1455 N0576)
9
1, 1, 2, 5, 14, 38, 120, 353, 1148, 3527, 11622, 36627, 121622, 389560, 1301140, 4215748, 14146335, 46235800, 155741571, 512559195, 1732007938, 5732533570, 19423092113, 64590165281, 219349187968, 732358098471, 2492051377341, 8349072895553, 28459491475593
OFFSET
1,3
REFERENCES
M. Gardner, Mathematical Games, Sci. Amer. Vol. 209 (No. 3, Mar. 1963), p. 262.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence - see entry 576, Fig. 17, and the front cover).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..45 [from S. Legendre, 2013]
B. Bobier and J. Sawada, A fast algorithm to generate open meandric systems and meanders, Transactions on Algorithms, Vol. 6 No. 2 (2010) 12 pages.
S. P. Castell, Computer Puzzles, Computer Bulletin, March 1975, pages 3, 33, 34. [Annotated scanned copy]
CombOS - Combinatorial Object Server, Generate meanders and stamp foldings.
R. Dickau, Stamp Folding.
R. Dickau, Stamp Folding. [Cached copy, pdf format, with permission]
R. Dickau, Unlabeled Stamp Foldings. [Cached copy, pdf format, with permission]
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
S. Legendre, Foldings and Meanders, arXiv preprint arXiv:1302.2025 [math.CO], 2013.
S. Legendre, Foldings and Meanders, Aust. J. Comb. 58(2), 275-291, 2014.
J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
N. J. A. Sloane, Illustration of initial terms. (Fig. 17 of the 1973 Handbook of Integer Sequences. The initial terms are also embossed on the front cover.)
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 2.
Eric Weisstein's World of Mathematics, Stamp Folding.
FORMULA
a(n) = (A001010(n) + A000136(n)) / 4. - Andrew Howroyd, Dec 07 2015
MATHEMATICA
A000136 = Import["https://oeis.org/A000136/b000136.txt", "Table"][[All, 2]];
A001010 = Cases[Import["https://oeis.org/A001010/b001010.txt", "Table"], {_, _}][[All, 2]];
a[n_] := If[n == 1, 1, (A001010[[n]] + A000136[[n]])/4];
Array[a, 45] (* Jean-François Alcover, Sep 04 2019 *)
CROSSREFS
Sequence in context: A079227 A371606 A148314 * A148315 A331573 A141752
KEYWORD
nonn,nice
EXTENSIONS
a(17) and a(20) corrected by Sean A. Irvine, Mar 17 2013
STATUS
approved