[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001010
Number of symmetric foldings of a strip of n stamps.
(Formerly M0323 N0120)
4
1, 2, 2, 4, 6, 8, 18, 20, 56, 48, 178, 132, 574, 348, 1870, 1008, 6144, 2812, 20314, 8420, 67534, 24396, 225472, 74756, 755672, 222556, 2540406, 693692, 8564622, 2107748, 28941258, 6656376, 98011464, 20548932
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..52
R. Dickau, Symmetric Stamp Foldings [Cached copy, pdf format, with permission]
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
Eric Weisstein's World of Mathematics, Stamp Folding.
FORMULA
a(2n) = 2*A000682(n+2), a(2n+1) = 2*A007822(n). - Sean A. Irvine, Mar 18 2013
MATHEMATICA
A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]];
A007822 = Cases[Import["https://oeis.org/A007822/b007822.txt", "Table"], {_, _}][[All, 2]];
a[n_] := Which[n == 1, 1, EvenQ[n], 2*A000682[[n/2 + 1]], OddQ[n], 2*A007822[[(n - 1)/2 + 1]]];
Array[a, 52] (* Jean-François Alcover, Sep 03 2019, updated Jul 13 2022 *)
CROSSREFS
Sequence in context: A216214 A269298 A153964 * A357952 A091966 A231187
KEYWORD
nonn,nice
STATUS
approved