[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Open Access

Probabilistic Snow Cover and Ensemble Streamflow Estimations in the Upper Euphrates Basin


Cite

Akyurek, Z., Hall, D.K., Riggs, G.A., Sorman, A.U., 2010. Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey. International Journal Remote Sensing, 31, 14, 3727-3744.10.1080/01431161.2010.483484Search in Google Scholar

Arsenault, K.R., Houser, P.R., De Lannoy, G.J., 2014. Evaluation of the MODIS snow cover fraction product. Hydrol. Process., 28, 3, 980-998.10.1002/hyp.9636Search in Google Scholar

Brander, D., Seidel, K., Zurflüh, M., Huggel, C., 2000. Snow cover duration maps in alpine regions from remote sensing data. In Proceedings of EARSeL-SIG-Workshop Land Ice and Snow, Dresden/FRG, pp 292-296.Search in Google Scholar

Cornwell, E., Molotch, N.P., McPhee, J., 2016. Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover. Hydrology Earth System Science, 20, 411-430.10.5194/hess-20-411-2016Search in Google Scholar

Crawford, C.J., 2015. MODIS Terra Collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM. Hydrologic Processes, 29, 1, 128-138.10.1002/hyp.10134Search in Google Scholar

Da Ronco, P., De Michele, C., 2014. Cloudiness and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci. Discuss., 11, 3967-4015.10.5194/hessd-11-3967-2014Search in Google Scholar

Day, A.C., 2013. Modeling snowmelt runoff response to climate change in the Animas River Basin. Colorado. Journal of Geology and Geoscience, 2, 110.10.4172/2329-6755.1000110Search in Google Scholar

Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., Guntner, A., 2014. The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia. Water Resources Research, 50, 3, 2002-2021. DOI: 10.1002/2013WR014382.10.1002/2013WR014382Open DOISearch in Google Scholar

Finger, D., Vis, M., Huss, M., Seibert, J., 2015. The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments. Water Resources Research, 51, 4, 1939-1958.10.1002/2014WR015712Search in Google Scholar

Forsythe, N., Kilsby, C.G., Fowler, H.J., Archer, D.R., 2012. Assessment of runoff sensitivity in the upper Indus basin to interannual climate variability and potential change using MODIS satellite data products. Mountain Research and Development, 32, 1, 16-29.10.1659/MRD-JOURNAL-D-11-00027.1Open DOISearch in Google Scholar

Franz, K.J., Karsten, L.R., 2013. Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol., 494, 160-175.10.1016/j.jhydrol.2013.04.026Search in Google Scholar

Gafurov, A., Bárdossy, A., 2009. Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13, 7, 1361-1373.10.5194/hess-13-1361-2009Open DOISearch in Google Scholar

Gafurov, A., Vorogushyn, S., Farinotti, D., Duethmann, D., Merkushkin, A., Merz, B., 2015. Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data. The Cryosphere, 9, 2, 451-463.10.5194/tc-9-451-2015Search in Google Scholar

Gao, Y., Xie, H., Lu, N., Yao, T., Liang, T., 2010. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J. Hydrol., 385, 1, 23-35.10.1016/j.jhydrol.2010.01.022Search in Google Scholar

Garen, D.C., Johnson, G.L., Hanson, C.L., 1994. Mean areal precipitation for daily hydrologic modeling in mountainous regions. Water Resour. Bull., 30, 3, 481-491.10.1111/j.1752-1688.1994.tb03307.xOpen DOISearch in Google Scholar

Garen, D.C., Marks, D., 2005. Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results. J. Hydrol., 315, 126-153.10.1016/j.jhydrol.2005.03.026Search in Google Scholar

Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.F., Szczypta, C., Marti, R., Sánchez, R., 2015. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrology and Earth System Sciences, 19, 5, 2337-2351.10.5194/hess-19-2337-2015Search in Google Scholar

Gómez-Landesa, E., Rango, A., 2002. Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model. Hydrol. Process., 16, 1583-1591.10.1002/hyp.1022Search in Google Scholar

Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J., 2002. MODIS snow-cover products. Remote sensing of Environment, 83, 1, 181-194.10.1016/S0034-4257(02)00095-0Search in Google Scholar

Hall, D.K., Riggs, G.A., 2007. Accuracy assessment of the MODIS snow products. Hydrol. Process., 21, 12, 1534-1547.10.1002/hyp.6715Search in Google Scholar

He, Z.H., Parajka, J., Tian, F.Q., Blöschl, G., 2014. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrology Earth System Science, 18, 4773-4789.10.5194/hess-18-4773-2014Search in Google Scholar

Huang, X.D., Liang, T.G., Zhang, X.T., Guo, Z.G., 2011. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001-2005 snow seasons over northern Xinjiang, China. International Journal of Remote Sensing, 32, 1, 133-52.10.1080/01431160903439924Open DOISearch in Google Scholar

Jain, S.K., Goswami, A., Saraf, A.K., 2010a. Snowmelt runoff modelling in a Himalayan basin with the aid of satellite data. Int. J. Remote Sens., 31, 24, 6603-6618.10.1080/01431160903433893Open DOISearch in Google Scholar

Jain, S.K., Goswami, A., Saraf, A.K., 2010b. Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff. Water Resour. Manag., 24, 9, 1763-1777.10.1007/s11269-009-9523-1Open DOISearch in Google Scholar

Jain, S.K., Thakural, L.N., Singh, R.D., Lohani, A.K., Mishra, S.K., 2011. Snow cover depletion under changed climate with the help of remote sensing and temperature data. Nat. Hazards, 58, 3, 891-904.10.1007/s11069-010-9696-1Search in Google Scholar

Krajčí, P., Holko, L., Perdigão, R.A., Parajka, J., 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol., 519, 1769-1778.10.1016/j.jhydrol.2014.08.064Search in Google Scholar

Krajčí, P., Holko, L., Parajka, J., 2016. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001-2014. J. Hydrol. Hydromech., 64, 1, 12-22.10.1515/johh-2016-0011Search in Google Scholar

Lee, S.W., Klein, A.G., Over, T.M., 2005. A comparison of MODIS and NOHRSC snow-cover products for simulating stream flow using the Snowmelt Runoff Model. Hydrol. Process., 19, 15, 2951-2972.10.1002/hyp.5810Search in Google Scholar

Li, X.G., Williams, M.W., 2008. Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China. Hydrological Processes, 22, 19, 3931-3940.10.1002/hyp.7098Open DOISearch in Google Scholar

López-Burgos, V., Gupta, H.V., Clark, M., 2013. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrology and Earth System Sciences, 17, 5, 1809-1823.10.5194/hess-17-1809-2013Open DOISearch in Google Scholar

Marcil, G.K., Leconte, R., Trudel, M., 2016. Using remotely sensed MODIS snow product for the management of reservoirs in a mountainous Canadian watershed. Water Resources Management, 30, 8, 2735-2747.10.1007/s11269-016-1319-5Search in Google Scholar

Martinec, J., 1975. Snowmelt-runoff model for stream flow forecasts. Nord. Hydrol., 6, 145-154.10.2166/nh.1975.0010Search in Google Scholar

Martinec, J., Rango, A., Roberts, R., 2008. Snowmelt runoff model (SRM) user's manual. New Mexico State University, College of Agriculture and Home Economics, Las Cruces, New Mexico, USA.Search in Google Scholar

Maurer, E.P., Rhoads, J.D., Dubayah, R.O., Lettenmaier, D.P., 2003. Evaluation of the snow‐covered area data product from MODIS. Hydrol. Process., 17, 1, 59-71.10.1002/hyp.1193Search in Google Scholar

Panday, P.K., Williams, C.A., Frey, K.E., Brown, M.E., 2014. Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol. Process., 28, 21, 5337-5353.10.1002/hyp.10005Search in Google Scholar

Parajka, J., Blöschl, G., 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 3, 240-258.10.1016/j.jhydrol.2008.06.006Search in Google Scholar

Parajka, J., Pepe, M., Rampini, A., Rossi, S., Blöschl, G., 2010. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol., 381, 3, 203-212.10.1016/j.jhydrol.2009.11.042Search in Google Scholar

Raleigh, M.S., Rittger, K., Moore, C.E., Henn, B., Lutz, J.A., Lundquist, J.D., 2013. Ground-based testing of MODIS fractional snow cover in subalpine meadows and forests of the Sierra Nevada. Remote Sensing of Environment, 128, 44-57.10.1016/j.rse.2012.09.016Search in Google Scholar

Richer, E.E., 2009. Snowmelt runoff analysis and modelling for the upper cache La Poudre River basin, Colorado. MsS Thesis, Colorado State University, Fort Collins, USA.Search in Google Scholar

Riggs, G.A., Hall, D.K., Salomonson, V.V., 2006. MODIS Snow Products User Guide to Collection 5. http://modissnow- ice.gsfc.nasa.gov/?c=userguides. (Accessed Feb 2018)Search in Google Scholar

Sensoy, A., Parajka, J., Coskun, C., Sorman, A., Ertas, C., 2014a. Quantifying the performance of two conceptual models for snow dominated catchments in Austria and Turkey. In: EGU General Assembly Conference Abstracts, 16, p. 10421.Search in Google Scholar

Sensoy, A., Schwanenberg, D., Sorman, A., Akkol, B., Montero, R., Uysal, G., 2014b, May. Assimilating HSAF and MODIS Snow Cover Data into the Conceptual Models HBV and SRM. In: EGU General Assembly Conference Abstracts, 16, p. 10240.Search in Google Scholar

Singh, P., Bengtsson, L., Berndtsson, R., 2003. Relating air temperatures to the depletion of snow covered area in a Himalayan basin. Nord. Hydrol., 34, 4, 267-280.10.2166/nh.2003.0007Search in Google Scholar

Sorman, A.A., Yamankurt, E., 2011. Modified satellite products on snow covered area in upper Euphrates basin, Turkey. Geophys Res. Abstr., 13, EGU2011-7887.Search in Google Scholar

Sorman, A.U., Beser, O., 2013. Determination of snow water equivalent over the eastern part of Turkey using passive microwave data. Hydrol. Process., 27, 14, 1945-1958.10.1002/hyp.9267Search in Google Scholar

Şensoy, A., Şorman, A.A., Tekeli, A.E., Şorman, A.Ü., Garen, D.C., 2006. Point‐scale energy and mass balance snowpack simulations in the upper Karasu basin, Turkey. Hydrol. Process., 20, 4, 899-922.10.1002/hyp.6120Search in Google Scholar

Şensoy, A., Uysal, G., 2012. The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and Numerical Weather Prediction Data. Water Resour. Manag., 26, 12, 3415-3440.10.1007/s11269-012-0079-0Open DOISearch in Google Scholar

Şorman, A.A., Şensoy, A., Tekeli, A.E., Şorman, A.Ü., Akyürek, Z., 2009. Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrol. Process., 23, 7, 1031-1040.10.1002/hyp.7204Search in Google Scholar

Şorman, A.Ü., Akyürek, Z., Şensoy, A., Şorman, A.A., Tekeli, A. E., 2007. Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey. Hydrol. Earth Syst. Sc., 11, 4, 1353-1360.10.5194/hess-11-1353-2007Open DOISearch in Google Scholar

Tahir, A.A., Chevallier, P., Arnaud, Y., Neppel, L., Ahmad, B., 2011. Modeling snowmelt-runoff under climate scenarios in the Hunza River Basin, Karakoram Range, Northern Pakistan. J. Hydrol., 409, 104-117.10.1016/j.jhydrol.2011.08.035Search in Google Scholar

Tang, Z., Wang, J., Li, H., Yan, L., 2013. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud‐removed moderate resolution imaging spectraradiometer fractional snow cover product from 2001 to 2011. Journal of Applied Remote Sensing, 7, 1, 073582.10.1117/1.JRS.7.073582Search in Google Scholar

Tang, Z., Wang, J., Li, H., Liang, J., Li, C., Wang, X., 2014. Extraction and assessment of snowline altitude over the Tibetan plateau using MODIS fractional snow cover data (2001 to 2013). Journal of Applied Remote Sensing, 8, 084689.10.1117/1.JRS.8.084689Search in Google Scholar

Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, A.Ü., 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ., 97, 2, 216-230.10.1016/j.rse.2005.03.013Open DOISearch in Google Scholar

Tekeli, A.E., Sönmez, I., Erdi, E., 2016. Snow-covered area determination based on satellite-derived probabilistic snow cover maps. Arabic Journal of Geosciences, 9, 198.10.1007/s12517-015-2149-0Search in Google Scholar

Tong, J., Déry, S.J., Jackson, P.L., 2009. Interrelationships between MODIS/Terra remotely sensed snow cover and the hydrometeorology of the Quesnel River Basin, British Columbia, Canada. Hydrology and Earth System Sciences, 13, 8, 1439-1452.10.5194/hess-13-1439-2009Search in Google Scholar

Uysal, G., Akkol, B., Ertaş, C., Çoşkun, C., Şorman, A., Şensoy, A., Schwanenberg, D., 2015. Developing an Operational Hydrologic Forecast System using EPS and Satellite Data in Mountainous Basins of Turkey, DSD-2015, Delft Software Days, Delft, The Netherlands.Search in Google Scholar

Wang, M., Son, S., Shi, W., 2009. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sensing of Environment, 113, 3, 635-644.10.1016/j.rse.2008.11.005Search in Google Scholar

Wang, X., Xie, H., 2009. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. J. Hydrol., 371, 1, 192-200.10.1016/j.jhydrol.2009.03.028Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, Engineering, other