[Akyurek, Z., Hall, D.K., Riggs, G.A., Sorman, A.U., 2010. Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey. International Journal Remote Sensing, 31, 14, 3727-3744.10.1080/01431161.2010.483484]Search in Google Scholar
[Arsenault, K.R., Houser, P.R., De Lannoy, G.J., 2014. Evaluation of the MODIS snow cover fraction product. Hydrol. Process., 28, 3, 980-998.10.1002/hyp.9636]Search in Google Scholar
[Brander, D., Seidel, K., Zurflüh, M., Huggel, C., 2000. Snow cover duration maps in alpine regions from remote sensing data. In Proceedings of EARSeL-SIG-Workshop Land Ice and Snow, Dresden/FRG, pp 292-296.]Search in Google Scholar
[Cornwell, E., Molotch, N.P., McPhee, J., 2016. Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover. Hydrology Earth System Science, 20, 411-430.10.5194/hess-20-411-2016]Search in Google Scholar
[Crawford, C.J., 2015. MODIS Terra Collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM. Hydrologic Processes, 29, 1, 128-138.10.1002/hyp.10134]Search in Google Scholar
[Da Ronco, P., De Michele, C., 2014. Cloudiness and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci. Discuss., 11, 3967-4015.10.5194/hessd-11-3967-2014]Search in Google Scholar
[Day, A.C., 2013. Modeling snowmelt runoff response to climate change in the Animas River Basin. Colorado. Journal of Geology and Geoscience, 2, 110.10.4172/2329-6755.1000110]Search in Google Scholar
[Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., Guntner, A., 2014. The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia. Water Resources Research, 50, 3, 2002-2021. DOI: 10.1002/2013WR014382.10.1002/2013WR014382]Open DOISearch in Google Scholar
[Finger, D., Vis, M., Huss, M., Seibert, J., 2015. The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments. Water Resources Research, 51, 4, 1939-1958.10.1002/2014WR015712]Search in Google Scholar
[Forsythe, N., Kilsby, C.G., Fowler, H.J., Archer, D.R., 2012. Assessment of runoff sensitivity in the upper Indus basin to interannual climate variability and potential change using MODIS satellite data products. Mountain Research and Development, 32, 1, 16-29.10.1659/MRD-JOURNAL-D-11-00027.1]Open DOISearch in Google Scholar
[Franz, K.J., Karsten, L.R., 2013. Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol., 494, 160-175.10.1016/j.jhydrol.2013.04.026]Search in Google Scholar
[Gafurov, A., Bárdossy, A., 2009. Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13, 7, 1361-1373.10.5194/hess-13-1361-2009]Open DOISearch in Google Scholar
[Gafurov, A., Vorogushyn, S., Farinotti, D., Duethmann, D., Merkushkin, A., Merz, B., 2015. Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data. The Cryosphere, 9, 2, 451-463.10.5194/tc-9-451-2015]Search in Google Scholar
[Gao, Y., Xie, H., Lu, N., Yao, T., Liang, T., 2010. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J. Hydrol., 385, 1, 23-35.10.1016/j.jhydrol.2010.01.022]Search in Google Scholar
[Garen, D.C., Johnson, G.L., Hanson, C.L., 1994. Mean areal precipitation for daily hydrologic modeling in mountainous regions. Water Resour. Bull., 30, 3, 481-491.10.1111/j.1752-1688.1994.tb03307.x]Open DOISearch in Google Scholar
[Garen, D.C., Marks, D., 2005. Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results. J. Hydrol., 315, 126-153.10.1016/j.jhydrol.2005.03.026]Search in Google Scholar
[Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.F., Szczypta, C., Marti, R., Sánchez, R., 2015. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrology and Earth System Sciences, 19, 5, 2337-2351.10.5194/hess-19-2337-2015]Search in Google Scholar
[Gómez-Landesa, E., Rango, A., 2002. Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model. Hydrol. Process., 16, 1583-1591.10.1002/hyp.1022]Search in Google Scholar
[Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J., 2002. MODIS snow-cover products. Remote sensing of Environment, 83, 1, 181-194.10.1016/S0034-4257(02)00095-0]Search in Google Scholar
[Hall, D.K., Riggs, G.A., 2007. Accuracy assessment of the MODIS snow products. Hydrol. Process., 21, 12, 1534-1547.10.1002/hyp.6715]Search in Google Scholar
[He, Z.H., Parajka, J., Tian, F.Q., Blöschl, G., 2014. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrology Earth System Science, 18, 4773-4789.10.5194/hess-18-4773-2014]Search in Google Scholar
[Huang, X.D., Liang, T.G., Zhang, X.T., Guo, Z.G., 2011. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001-2005 snow seasons over northern Xinjiang, China. International Journal of Remote Sensing, 32, 1, 133-52.10.1080/01431160903439924]Open DOISearch in Google Scholar
[Jain, S.K., Goswami, A., Saraf, A.K., 2010a. Snowmelt runoff modelling in a Himalayan basin with the aid of satellite data. Int. J. Remote Sens., 31, 24, 6603-6618.10.1080/01431160903433893]Open DOISearch in Google Scholar
[Jain, S.K., Goswami, A., Saraf, A.K., 2010b. Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff. Water Resour. Manag., 24, 9, 1763-1777.10.1007/s11269-009-9523-1]Open DOISearch in Google Scholar
[Jain, S.K., Thakural, L.N., Singh, R.D., Lohani, A.K., Mishra, S.K., 2011. Snow cover depletion under changed climate with the help of remote sensing and temperature data. Nat. Hazards, 58, 3, 891-904.10.1007/s11069-010-9696-1]Search in Google Scholar
[Krajčí, P., Holko, L., Perdigão, R.A., Parajka, J., 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol., 519, 1769-1778.10.1016/j.jhydrol.2014.08.064]Search in Google Scholar
[Krajčí, P., Holko, L., Parajka, J., 2016. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001-2014. J. Hydrol. Hydromech., 64, 1, 12-22.10.1515/johh-2016-0011]Search in Google Scholar
[Lee, S.W., Klein, A.G., Over, T.M., 2005. A comparison of MODIS and NOHRSC snow-cover products for simulating stream flow using the Snowmelt Runoff Model. Hydrol. Process., 19, 15, 2951-2972.10.1002/hyp.5810]Search in Google Scholar
[Li, X.G., Williams, M.W., 2008. Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China. Hydrological Processes, 22, 19, 3931-3940.10.1002/hyp.7098]Open DOISearch in Google Scholar
[López-Burgos, V., Gupta, H.V., Clark, M., 2013. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrology and Earth System Sciences, 17, 5, 1809-1823.10.5194/hess-17-1809-2013]Open DOISearch in Google Scholar
[Marcil, G.K., Leconte, R., Trudel, M., 2016. Using remotely sensed MODIS snow product for the management of reservoirs in a mountainous Canadian watershed. Water Resources Management, 30, 8, 2735-2747.10.1007/s11269-016-1319-5]Search in Google Scholar
[Martinec, J., 1975. Snowmelt-runoff model for stream flow forecasts. Nord. Hydrol., 6, 145-154.10.2166/nh.1975.0010]Search in Google Scholar
[Martinec, J., Rango, A., Roberts, R., 2008. Snowmelt runoff model (SRM) user's manual. New Mexico State University, College of Agriculture and Home Economics, Las Cruces, New Mexico, USA.]Search in Google Scholar
[Maurer, E.P., Rhoads, J.D., Dubayah, R.O., Lettenmaier, D.P., 2003. Evaluation of the snow‐covered area data product from MODIS. Hydrol. Process., 17, 1, 59-71.10.1002/hyp.1193]Search in Google Scholar
[Panday, P.K., Williams, C.A., Frey, K.E., Brown, M.E., 2014. Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol. Process., 28, 21, 5337-5353.10.1002/hyp.10005]Search in Google Scholar
[Parajka, J., Blöschl, G., 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 3, 240-258.10.1016/j.jhydrol.2008.06.006]Search in Google Scholar
[Parajka, J., Pepe, M., Rampini, A., Rossi, S., Blöschl, G., 2010. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol., 381, 3, 203-212.10.1016/j.jhydrol.2009.11.042]Search in Google Scholar
[Raleigh, M.S., Rittger, K., Moore, C.E., Henn, B., Lutz, J.A., Lundquist, J.D., 2013. Ground-based testing of MODIS fractional snow cover in subalpine meadows and forests of the Sierra Nevada. Remote Sensing of Environment, 128, 44-57.10.1016/j.rse.2012.09.016]Search in Google Scholar
[Richer, E.E., 2009. Snowmelt runoff analysis and modelling for the upper cache La Poudre River basin, Colorado. MsS Thesis, Colorado State University, Fort Collins, USA.]Search in Google Scholar
[Riggs, G.A., Hall, D.K., Salomonson, V.V., 2006. MODIS Snow Products User Guide to Collection 5. http://modissnow- ice.gsfc.nasa.gov/?c=userguides. (Accessed Feb 2018)]Search in Google Scholar
[Sensoy, A., Parajka, J., Coskun, C., Sorman, A., Ertas, C., 2014a. Quantifying the performance of two conceptual models for snow dominated catchments in Austria and Turkey. In: EGU General Assembly Conference Abstracts, 16, p. 10421.]Search in Google Scholar
[Sensoy, A., Schwanenberg, D., Sorman, A., Akkol, B., Montero, R., Uysal, G., 2014b, May. Assimilating HSAF and MODIS Snow Cover Data into the Conceptual Models HBV and SRM. In: EGU General Assembly Conference Abstracts, 16, p. 10240.]Search in Google Scholar
[Singh, P., Bengtsson, L., Berndtsson, R., 2003. Relating air temperatures to the depletion of snow covered area in a Himalayan basin. Nord. Hydrol., 34, 4, 267-280.10.2166/nh.2003.0007]Search in Google Scholar
[Sorman, A.A., Yamankurt, E., 2011. Modified satellite products on snow covered area in upper Euphrates basin, Turkey. Geophys Res. Abstr., 13, EGU2011-7887.]Search in Google Scholar
[Sorman, A.U., Beser, O., 2013. Determination of snow water equivalent over the eastern part of Turkey using passive microwave data. Hydrol. Process., 27, 14, 1945-1958.10.1002/hyp.9267]Search in Google Scholar
[Şensoy, A., Şorman, A.A., Tekeli, A.E., Şorman, A.Ü., Garen, D.C., 2006. Point‐scale energy and mass balance snowpack simulations in the upper Karasu basin, Turkey. Hydrol. Process., 20, 4, 899-922.10.1002/hyp.6120]Search in Google Scholar
[Şensoy, A., Uysal, G., 2012. The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and Numerical Weather Prediction Data. Water Resour. Manag., 26, 12, 3415-3440.10.1007/s11269-012-0079-0]Open DOISearch in Google Scholar
[Şorman, A.A., Şensoy, A., Tekeli, A.E., Şorman, A.Ü., Akyürek, Z., 2009. Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrol. Process., 23, 7, 1031-1040.10.1002/hyp.7204]Search in Google Scholar
[Şorman, A.Ü., Akyürek, Z., Şensoy, A., Şorman, A.A., Tekeli, A. E., 2007. Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey. Hydrol. Earth Syst. Sc., 11, 4, 1353-1360.10.5194/hess-11-1353-2007]Open DOISearch in Google Scholar
[Tahir, A.A., Chevallier, P., Arnaud, Y., Neppel, L., Ahmad, B., 2011. Modeling snowmelt-runoff under climate scenarios in the Hunza River Basin, Karakoram Range, Northern Pakistan. J. Hydrol., 409, 104-117.10.1016/j.jhydrol.2011.08.035]Search in Google Scholar
[Tang, Z., Wang, J., Li, H., Yan, L., 2013. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud‐removed moderate resolution imaging spectraradiometer fractional snow cover product from 2001 to 2011. Journal of Applied Remote Sensing, 7, 1, 073582.10.1117/1.JRS.7.073582]Search in Google Scholar
[Tang, Z., Wang, J., Li, H., Liang, J., Li, C., Wang, X., 2014. Extraction and assessment of snowline altitude over the Tibetan plateau using MODIS fractional snow cover data (2001 to 2013). Journal of Applied Remote Sensing, 8, 084689.10.1117/1.JRS.8.084689]Search in Google Scholar
[Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, A.Ü., 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ., 97, 2, 216-230.10.1016/j.rse.2005.03.013]Open DOISearch in Google Scholar
[Tekeli, A.E., Sönmez, I., Erdi, E., 2016. Snow-covered area determination based on satellite-derived probabilistic snow cover maps. Arabic Journal of Geosciences, 9, 198.10.1007/s12517-015-2149-0]Search in Google Scholar
[Tong, J., Déry, S.J., Jackson, P.L., 2009. Interrelationships between MODIS/Terra remotely sensed snow cover and the hydrometeorology of the Quesnel River Basin, British Columbia, Canada. Hydrology and Earth System Sciences, 13, 8, 1439-1452.10.5194/hess-13-1439-2009]Search in Google Scholar
[Uysal, G., Akkol, B., Ertaş, C., Çoşkun, C., Şorman, A., Şensoy, A., Schwanenberg, D., 2015. Developing an Operational Hydrologic Forecast System using EPS and Satellite Data in Mountainous Basins of Turkey, DSD-2015, Delft Software Days, Delft, The Netherlands.]Search in Google Scholar
[Wang, M., Son, S., Shi, W., 2009. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sensing of Environment, 113, 3, 635-644.10.1016/j.rse.2008.11.005]Search in Google Scholar
[Wang, X., Xie, H., 2009. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. J. Hydrol., 371, 1, 192-200.10.1016/j.jhydrol.2009.03.028]Search in Google Scholar