[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Open Access

Naringenin ameliorates pathological changes in liver and kidney of diabetic mice: a preliminary study / Naringenin reducira histopatološke promjene u jetri i bubregu miševa s dijabetesom


Cite

1. Bugianesi R, Catasta G, Spigno P, D’Uva A, Maiani G. Naringenin from cooked tomato paste is bioavailable in men. J Nutr 2002;132:3349-52. PMID: 1242184910.1093/jn/132.11.3349Search in Google Scholar

2. Orhan IE, Nabavi SF, Daglia M, Tenore GC, Mansouri K, Nabavi SM. Naringenin and Atherosclerosis: A Review of Literature. Curr Pharm Biotechnol 2015;16:245-51. doi: 10 .2174/138920101566614120211021610.2174/1389201015666141202110216Search in Google Scholar

3. Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 2009;58:2198-210. doi: 10.2337/db09-063410.2337/db09-0634Search in Google Scholar

4. Oršolić N, Gajski G, Garaj-Vrhovac V, Đikić D, Prskalo ZŠ, Sirovina D. DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur J Pharmacol 2011;656:110-8. doi: 10.1016/j.ejphar.2011.01.02110.1016/j.ejphar.2011.01.021Search in Google Scholar

5. Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010;30:742-8. doi: 10.1161/ATVBAHA.109.20109510.1161/ATVBAHA.109.201095Search in Google Scholar

6. Allister EM, Borradaile NM, Edwards JY, Huff MW. Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes 2005;54:1676-83. doi: 10.2337/diabetes.54.6.167610.2337/diabetes.54.6.1676Search in Google Scholar

7. Heo HJ, Choi SJ, Kim HK, Shin DH. Effect of antioxidant flavanone, naringenin, from Citrus junos on neuroprotection. J Agric Food Chem 2004;52:1520-5. doi: 10.1021/jf035079g10.1021/jf035079gSearch in Google Scholar

8. Oršolić N, Bašić I. Honey bee products and their polyphenolic compounds in tretment of diabetes. In: Govil JN, Singh VK, editors. Recent Progres in Medical Plants Volume 22: Phytopharmacology and Therapetutic Values IV. Houston (TX): Studium Press, LLC; 2008. p. 455-71.Search in Google Scholar

9. Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants.Search in Google Scholar

Food Chem 2011;125:288-306. doi: 10.1016/j. foodchem.2010.08.012Search in Google Scholar

10. Felgines C, Texier O, Morand C, Manach C, Scalbert A, Régerat F, Rémésy C. Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 2000;279:G1148-54. PMID:1109393610.1152/ajpgi.2000.279.6.G1148Search in Google Scholar

11. Yue KK, Chung WS, Leung AW, Cheng C. Redox changes precede the occurrence of oxidative stress in eyes and aorta, but not in kidneys of diabetic rats. Life Sci 2003;73:2557-70. doi: 10.1016/S0024-3205(03)00662-310.1016/S0024-3205(03)00662-3Search in Google Scholar

12. Obrosova IG, Minchenko AG, Vasupuram R, White L, Abatan OI, Kumagai AK, Frank RN, Stevens MJ. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 2003;52:864-71. doi: 10.2337/diabetes.52.3.86410.2337/diabetes.52.3.86412606532Search in Google Scholar

13. Yue KK, Leung SN, Man PM, Yeung WF, Chung WS, Lee KW, Leung AW, Cheng CH. Alterations in antioxidant enzyme activities in the eyes, aorta and kidneys of diabetic rats relevant to the onset of oxidative stress. Life Sci 2005;77:721-34. doi: 10.1016/j.lfs.2004.10.08110.1016/j.lfs.2004.10.08115936347Search in Google Scholar

14. Sirovina D, Oršolić N, Zovko Končić M, Kovačević G, Benković V, Gregorović G. Quercetin vs chrysin: effect on liver histopathology in diabetic mice. Hum Exp Toxicol 2013;32:1058-66. doi: 10.1177/096032711247299310.1177/096032711247299323357962Search in Google Scholar

15. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. In vivo protective effects of quercetin against sodium fluorideinduced oxidative stress in the hepatic tissue. Food Chem 2012;132:931-5. doi: 10.1016/j.foodchem.2011.11.07010.1016/j.foodchem.2011.11.070Search in Google Scholar

16. Navarro SA, Serafim GG, Mizokami SS, Hohmann MSN, Casagrande R, Verri Jr WA. Analgesic activity of piracetam: Effect on cytokine production and oxidative stress. Pharmacol Biochem Behav 2013;105:183-92. doi: 10.1016/j. pbb.2013.02.018Search in Google Scholar

17. Oršolić N, Goluža E, Đikić D, Lisičić D, Sašilo K, Rođak E, Jeleč Ž, Vihnanek Lazarus M, Orct T. Role of flavonoids on oxidative stress and mineral contents in the retinoic acidinduced bone loss model of rat. Eur J Nutr 2014;53:1217-27. doi: 10.1007/s00394-013-0622-710.1007/s00394-013-0622-724271527Search in Google Scholar

18. Khalili M, Ebrahimzadeh MA, Safdari Y. Antihaemolytic activity of thirty herbal extracts in mouse red blood cells. Arh Hig Rada Toksikol 2014;65:399-406. doi: 10.2478/10004-1254-65-2014-251310.2478/10004-1254-65-2014-251325720027Search in Google Scholar

19. Cvjetko P, Zovko M, Balen B. Proteomics of heavy metal toxicity in plants. Arh Hig Rada Toksikol 2014;65:1-18. doi: 10.2478/10004-1254-65-2014-244310.2478/10004-1254-65-2014-244324526604Search in Google Scholar

20. Kanno S, Tomizawa A, Hiura T, Osanai Y, Shouji A, Ujibe M, Ohtake T, Kimura K, Ishikawa M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol Pharm Bull 2005;28:527-30. doi: 10.1248/bpb.28.52710.1248/bpb.28.52715744083Search in Google Scholar

21. Erlund I, Meririnne E, Alfthan G, Aro A. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr 2001;131:235-41. PMID:1116053910.1093/jn/131.2.23511160539Search in Google Scholar

22. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008;22:659-61. doi: 10.1096/fj.07-9574LSF10.1096/fj.07-9574LSF17942826Search in Google Scholar

23. Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muniz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 2010;90:1238-44. doi: 10.1002/ jsfa.395910.1002/jsfa.395920394007Search in Google Scholar

24. Hermenean A, Ardelean A, Stan M, Herman H, Mihali CV, Costache M, Dinischiotu A. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem-Biol Interact 2013;205:138-47. doi: 10.1016/j.cbi.2013.06.01610.1016/j.cbi.2013.06.016Search in Google Scholar

25. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002;13:572-84. doi: 10.1016/ S0955-2863(02)00208-510.1016/S0955-2863(02)00208-5Search in Google Scholar

26. Jabbari M, Mir H, Kanaani A, Ajloo D. Kinetic solvent effects on the reaction between flavonoid naringenin and 2,2-diphenyl-1-picrylhydrazyl radical in different aqueous solutions of ethanol: An experimental and theoretical study. J MolLiq 2014; 196:381-91. doi: 10.1016/j. molliq.2014.04.015Search in Google Scholar

27. Khalil M, Mohamed G, Dallak M, Al-Hashem F, Sakr H, Eid RA, Adly MA, Al-Khateeb M, Banihani S, Hassan Z, Bashir N. The effect of Citrullus colocynthis pulp extract on the liver of diabetic rats a light and scanning electron microscopic study. Am J Biochem Biotechnol 2010;6:155-63. doi: 10.3844/ajbbsp.2010.155.16310.3844/ajbbsp.2010.155.163Search in Google Scholar

28. Prabhakar S, Starnes J, Shi S, Lonis B, Tran R. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J Am Soc Nephrol 2007;8:2945-52. doi: 10.1681/ASN.200608089510.1681/ASN.200608089517928507Search in Google Scholar

29. Teoh SL, Latiff AA, Das S. Histological changes in the kidneys of experimental diabetic rats fed with Momordica charantia (bitter gourd) extract. Rom J Morphol Embryol 2010;51:91-5. PMID: 20191126Search in Google Scholar

30. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semi Nephrol 2007;27:195-207. doi: 10.1016/j. semnephrol.2007.01.012Search in Google Scholar

31. Wolf G, Chen SD, Ziyadeh FN. From the periphery of the glomerular capillary wall toward the center of disease - Podocyte injury comes of age in diabetic nephropathy. Diabetes 2005;54:1626-34. doi: 10.2337/diabetes.54.6.162610.2337/diabetes.54.6.162615919782Search in Google Scholar

32. Martín MÁ, Serrano AB, Ramos S, Pulido MI, Bravo L, Goya L. Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. J Nutr Biochem 2010;21:196-205. doi: 10.1016/j.jnutbio.2008.10.00910.1016/j.jnutbio.2008.10.00919195869Search in Google Scholar

33. Renugadevi J, Milton Prabu S. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 2009;256:128-34. doi: 10.1016/j.tox.2008.11.01210.1016/j.tox.2008.11.01219063931Search in Google Scholar

34. Oršolić N, Sirovina D, Zovko Končić M, Lacković G, Gregorović G. Effect of Croatian propolis on diabetic nephrophaty and liver toxicity in mice. BMC Complem Altern M 2012;12:117. doi: 10.1186/1472-6882-12-11710.1186/1472-6882-12-117355173122866906Search in Google Scholar

35. El Agawany A, Meguid EMA, Khalifa H, El Harry M. Propolis effect on rodent models of streptozotocin-induced diabetic nephropathy. J Am Sci 2012;8:1125-32.Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, Basic Medical Science, other