[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Identification of Damage on Sluice Hoist Beams Using Local Mode Evoked by Swept Frequency Excitation

Sensors (Basel). 2021 Sep 23;21(19):6357. doi: 10.3390/s21196357.

Abstract

As a global vibration characteristic, natural frequency often suffers from insufficient sensitivity to structural damage, which is associated with local variations of structural material or geometric properties. Such a drawback is particularly significant when dealing with the large scale and complexity of sluice structural systems. To this end, a damage detection method in sluice hoist beams is proposed that relies on the utilization of the local primary frequency (LPF), which is obtained based on the swept frequency excitation (SFE) technique and local resonance response band (LRRB) selection. Using this method, the local mode of the target sluice hoist beam can be effectively excited, while the vibrations of other components in the system are suppressed. As a result, the damage will cause a significant shift in the LPF of the sluice hoist beam at the local mode. A damage index was constructed to quantitatively reflect the damage degree of the sluice hoist beam. The accuracy and reliability of the proposed method were verified on a three-dimensional finite element model of a sluice system, with the noise resistance increased from 0.05 to 0.2 based on the hammer impact method. The proposed method exhibits promising potential for damage detection in complex structural systems.

Keywords: damage detection; hoist beam; local mode; local primary frequency; local resonance response band.

MeSH terms

  • Reproducibility of Results
  • Vibration*