[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Oxidative stress concept updated: Definitions, classifications, and regulatory pathways implicated

EXCLI J. 2021 May 26:20:956-967. doi: 10.17179/excli2021-3596. eCollection 2021.

Abstract

Reactive oxygen species were discovered in living organisms in the early 1950's and their action has been implicated in diverse biological processes. First formulated by H. Sies in 1985[57], the oxidative stress concept stimulated substantial interest in reactive oxygen species and it is now common that fundamental research in various biomedical fields includes mention of research on the involvement of oxidative stress. Such strong interest has resulted in the development of definitions and classifications of oxidative stress and much research progress in the field. Although we clearly understand the limitations of various definitions or classifications, such parameters may help to provide quantitative descriptions, compare related processes among different laboratories, and introduce some measurable parameters. This paper highlights recent advances in the areas of oxidative stress definitions and the classification of oxidative stresses. Such items are directly associated with our understanding of the molecular mechanisms involved in organismal responses to oxidative insults. The knowledge accumulated to date indicates that selective expression of specific genes is a central player in the adaptive response to oxidative stress and reversible oxidation of cysteine residues of sensor proteins is a key process regulating responses to oxidative stress.

Keywords: Nrf2; OxyR; SoxRS; Yap1; adaptation; cysteine residues; reversible oxidation.

Publication types

  • Review