[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing

Bioinformatics. 2021 Aug 25;37(16):2299-2307. doi: 10.1093/bioinformatics/btab112.

Abstract

Motivation: Off-target predictions are crucial in gene editing research. Recently, significant progress has been made in the field of prediction of off-target mutations, particularly with CRISPR-Cas9 data, thanks to the use of deep learning. CRISPR-Cas9 is a gene editing technique which allows manipulation of DNA fragments. The sgRNA-DNA (single guide RNA-DNA) sequence encoding for deep neural networks, however, has a strong impact on the prediction accuracy. We propose a novel encoding of sgRNA-DNA sequences that aggregates sequence data with no loss of information.

Results: In our experiments, we compare the proposed sgRNA-DNA sequence encoding applied in a deep learning prediction framework with state-of-the-art encoding and prediction methods. We demonstrate the superior accuracy of our approach in a simulation study involving Feedforward Neural Networks (FNNs), Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) as well as the traditional Random Forest (RF), Naive Bayes (NB) and Logistic Regression (LR) classifiers. We highlight the quality of our results by building several FNNs, CNNs and RNNs with various layer depths and performing predictions on two popular gene editing datasets (CRISPOR and GUIDE-seq). In all our experiments, the new encoding led to more accurate off-target prediction results, providing an improvement of the area under the Receiver Operating Characteristic (ROC) curve up to 35%.

Availability and implementation: The code and data used in this study are available at: https://github.com/dagrate/dl-offtarget.

Supplementary information: Supplementary data are available at Bioinformatics online.