[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN

Int J Comput Assist Radiol Surg. 2018 Jul;13(7):967-975. doi: 10.1007/s11548-018-1733-7. Epub 2018 Mar 19.

Abstract

Purpose: Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach.

Methods: The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result.

Results: We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net.

Conclusion: Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.

Keywords: Bladder; CNN; CRF-RNN; Segmentation.

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted
  • Neural Networks, Computer
  • Tomography, X-Ray Computed / methods*
  • Urinary Bladder / diagnostic imaging*