More Web Proxy on the site http://driver.im/
Background: Previous studies have investigated the association between single nucleotide polymorphisms (SNPs) located in microRNAs (miRNAs) and breast cancer susceptibility; however, because of their limited statistical power, many discrepancies are revealed in these studies. The meta-analysis presented here aimed to identify and characterize the roles of miRNA SNPs in breast cancer risk, and evaluate the associations of polymorphisms in miR-146a rs2910164, miR-196a rs11614913 and miR-499 rs3746444 with breast cancer susceptibility, respectively.
Methodology/principal findings: The PubMed and Embases databases were searched updated to 31(st) December, 2012. The complete data of polymorphisms in miR-146a rs2910164, miR-196a rs11614913 and miR-499 rs3746444 from case-control studies for breast cancer were analyzed by odds ratios (ORs) with 95% confidence intervals (CIs) to reveal the associations of SNPs in miRNAs with breast cancer susceptibility. Totally, six studies for rs2910164 in miR-146a, involving 4225 cases and 4469 controls; eight studies for rs11614913 in miR-196a, involving 4110 cases and 5100 controls; and three studies of rs3746444 in miR-499, involving 2588 cases and 3260 controls, were investigated in the meta-analysis. The rs11614913 (TT+CT) genotype of miR-196a2 was revealed to be associated with a decreased breast cancer susceptibility compared with the CC genotypes (OR = 0.906, 95% CI: 0.825-0.995, P = 0.039); however, no significant associations were observed between rs2910164 in miR-146a (or rs3746444 in miR-499) and breast cancer susceptibility.
Conclusions: This meta-analysis demonstrates the compelling evidence that the rs11614913 CC genotype in miR-196a2 increases breast cancer risk, which provides useful information for the early diagnosis and prevention of breast cancer.